A07Discrete Morse Theory

Finding Global Topological Information from Local Properties in a Discrete World

The idea behind Morse theory is to derive global topological information about objects which are locally investigated by means of differential geometry. Although originally coming from the smooth world, Morse theory has also been adapted several years ago to discrete objects, for instance to triangulations. But there are many open questions, particularly concerning those vertices in the nets that are critical for the underlying topology.

• Group: A. Geometry
• Principal Investigators:
• Universities:
• Term: 2012 - 2016

Scientific Details+

Classical Morse Theory considers the topological changes of the level sets Mh = {x∈M : f(x) = h} of a smooth and sufficiently generic function f defined on a manifold M as the height h varies. At critical points, where the gradient of f vanishes, the topology changes. These changes can be classified locally, and they can be related to global topological properties of M. Between critical values, the level sets vary smoothly.

There are two flavors of applications in which Morse Theory is applied. In both areas, it is important to consider not only smooth manifolds and smooth functions, but also simplicial complexes and piecewise linear function defined on them.

(A) In one arena, the function f is given, as a measurement of some experiment or some numerical simulation, and the objective of the analysis is to highlight the critical points of f , in order to get a better understanding of the data or to provide an efficient means of visualization . Such spatial data may come from data acquisition processes (like medical imaging) or numerical simulations (like fluid dynamics) and they need to be represented for the purpose of storage on a computer, visualization, or further processing. Commonly they are represented as piecewise linear functions.

(B) In a different context (for example in Topological Combinatorics) one is interested in some topological space M, and the mathematician who wants to investigate M tries to define a convenient function f in order to conclude something about M. There is a discretized version of Morse theory due to Robin Forman , where smooth functions are replaced by weakly-increasing maps on the face poset of the complex. Forman´s approach opens interesting doors to algorithmic geometry, commutative algebra, knot theory and classical combinatorics.

In this project, we combine the study of both notions of discrete Morse theory (and their interplay) and try to make them fruitful for both application areas.

Publications+

Papers

Authors: Atariah, Dror and Rote, Günter and Wintraecken, Mathijs
Date: 2015

Smoothing discrete Morse theory

Author: Benedetti, B.
Journal: Annali Sc.\ Norm.\ Sup.\ Cl.\ Sci.
Note: accepted, preprint at arxiv
Date: 2015

Subdivisions, shellability, and collapsibility of products

Authors: Adiprasito, K. and Benedetti, B.
Journal: Combinatorica
Note: accepted, preprint at arxiv
Date: 2015

Tight complexes in $3$-space admit perfect discrete Morse functions

Authors: Adiprasito, K. and Benedetti, B.
Journal: Eur. J. Comb., 45:71--84
Date: 2015

Extremal examples of collapsible complexes and random discrete Morse theory

Authors: Adiprasito, K. and Benedetti, B. and Lutz, F. H.
Note: 20 pages
Date: 2014

Random discrete Morse theory and a new library of triangulations

Authors: Benedetti, B. and Lutz, F. H.
Journal: Experimental Mathematics, 23(1):66-94
Date: 2014

There is no triangulation of the torus with vertex degrees 5, 6, ... , 6, 7 and related results: geometric proofs for combinatorial theorems

Authors: Izmestiev, Ivan and Kusner, Robert B. and Rote, Günter and Springborn, Boris and Sullivan, John M.
Journal: Geometriae Dedicata, 166(1):15-29
Date: Oct 2013
DOI: 10.1007/s10711-012-9782-5

Knots in Collapsible and Non-Collapsible Balls

Authors: Benedetti, Bruno and Lutz, Frank H.
Journal: Electronic Journal of Combinatorics, 20, No. 3
Note: Paper P31, 29 pages
Date: Aug 2013

The Hirsch conjecture holds for normal flag complexes

Authors: Adiprasito, Karim Alexander and Benedetti, Bruno
Note: preprint, revised April 2013
Date: Mar 2013

Metric geometry, convexity and collapsibility

Authors: Adiprasito, K. and Benedetti, B.
Date: 2013