A Reflectionless Discrete Perfectly Matched Layer

Albert Chern


Perfectly Matched Layer (PML) is a widely adopted non-reflecting boundary treatment for wave simulations. Reducing numerical reflections from a discretized PML has been a long lasting challenge. A new discrete PML for the multi-dimensional scalar wave equation which produces no numerical reflection at all is presented here. The reflectionless discrete PML is discovered through a straightforward derivation using Discrete Complex Analysis. The resulting PML takes an easily-implementable finite difference form with compact stencil. In practice, the discrete waves are damped exponentially in the PML, and the error due to domain truncation is maintained at machine zero by a moderately thick PML. The numerical stability of the proposed PML is also demonstrated.
Code and a video can be found at http://page.math.tu-berlin.de/~chern/projects/DiscretePML/ .

Supplement materials

Dr. Albert Chern   +

Projects: A05, C07
University: TU Berlin
E-Mail: chern[at]math.tu-berlin.de