DGD-Calendar 2023

Oliver Gross, Carl O. R. Lutz



The central goal of the SFB/Transregio 109 is to pursue research on the discretization of differential geometry and dynamics. The common idea of our research in geometry and dynamics is to find and investigate discrete models that exhibit properties and structures characteristic of the corresponding smooth geometric objects and dynamical processes.

The SFB/Transregio 109 brings together scientists from the fields of geometry, dynamics and applications, to join forces in tackling the numerous problems raised by the challenge of discretizing their respective disciplines.

This calendar aims to present recent research in a visually appealing manner. In doing so we hope to foster further interdisciplinary collaborations. But first and foremost we wish to give experts and interested amateurs alike a possibility to enjoy with us the beauty of geometry.


  • Felix Dellinger.
    Discrete Isothermic Nets Based on Checkerboard Patterns.
    preprint, 2022.
  • Alexander I. Bobenko, Carl O. R. Lutz, Helmut Pottmann, and Jan Techter.
    Non-Euclidean Laguerre geometry and in circular nets. SpringerBriefs.
    Springer, 2021.
    URL: https://link.springer.com/book/10.1007/978-3-030-81847-0, arXiv:2009.00978.
  • Caigui Jiang, Hui Wang, Victor Ceballos Inza, Felix Dellinger, Florian Rist, Johannes Wallner, and Helmut Pottmann.
    Using isometries for computational design and fabrication.
    ACM Trans. Graph., 40(4):42:1 – 42:12, 2021.
    URL: https://doi.org/10.1145/3450626.3459839.
  • Alexander I. Bobenko, Tim Hoffmann, and Andrew O. Sageman-Furnas.
    Compact Bonnet Pairs: isometric tori with the same curvatures.
    preprint, 2021.
  • Hui Wang and Helmut Pottmann.
    Characteristic parameterizations of surfaces with a constant ratio of principal curvatures.
    Comp. Aided Geom. Design, 2022.
    URL: https://doi.org/10.1016/j.cagd.2022.102074.
  • Marcel Padilla, Oliver Gross, Felix Knöppel, Albert Chern, Ulrich Pinkall, and Peter Schröder.
    Filament based plasma.
    ACM Trans. Graph., 41(4):153:1 – 153:14, 2022.
    URL: https://doi.org/10.1145/3528223.3530102.
  • Carl O. R. Lutz.
    Canonical Tessellations of Decorated Hyperbolic Surfaces.
    preprint, 2022.
  • Stephen T. Hyde and Myfanwy Evans.
    Symmetric tangled Platonic polyhedra.
    P. Natl. Acad. Sci. U.S.A., 119(1):e2110345118, 2022.
    URL: https://doi.org/10.1073%2Fpnas.2110345118.

Oliver Gross   +

Projects: C07
University: TU Berlin
E-Mail: ogross[at]math.tu-berlin.de

Carl O. R. Lutz   +

Projects: A01
University: TU Berlin, Institut für Mathematik, MA 883
Address: Straße des 17. Juni 136, 10623 Berlin, GERMANY
Tel: +49 30 31429426
E-Mail: clutz[at]math.tu-berlin.de
Website: https://page.math.tu-berlin.de/~clutz/