Minimal n-Noids in Hyperbolic and Anti-de Sitter 3-Space

Alexander I. Bobenko, Sebastian Heller, Nicholas Schmitt

Media


Description


We show minimal surfaces in hyperbolic and anti-de Sitter 3-space with the topology of a $n$-punctured sphere by loop group factorization methods. The end behavior of the surfaces is based on the asymptotics of Delaunay-type surfaces, i.e., rotational symmetric minimal cylinders. The minimal surfaces in $\mathrm{H}^3$ extend to Willmore surfaces in the conformal 3-sphere $\mathrm{S}^3=\mathrm{H}^3\cup\mathrm{S}^2\cup\mathrm{H}^3$. [1]

References


  • Alexander I Bobenko, Sebastian Heller, and Nicholas Schmitt.
    Minimal n-Noids in hyperbolic and anti-de Sitter 3-space.
    Proceedings A of Royal Society, July 2019.
    arXiv:1902.07992, doi:10.1098/rspa.2019.0173.

Prof. Dr. Alexander I. Bobenko   +

Projects: A01, A02, C01, B02, Z, CaP, II
University: TU Berlin, Institut für Mathematik, MA 881
Address: Straße des 17. Juni 136, 10623 Berlin, GERMANY
Tel: +49 (30) 314 24655
E-Mail: bobenko[at]math.tu-berlin.de
Website: http://page.math.tu-berlin.de/~bobenko/


Sebastian Heller   +


Dr. Nicholas Schmitt   +

University: TU Berlin
Website: http://page.math.tu-berlin.de/~schmitt/