Discrete Conformal Maps

Alexander I. Bobenko, Stefan Sechelmann, Boris Springborn


The notion of discrete conformal equivalence for polyhedral surfaces is based on a simple definition:
Two polyhedral surfaces are discretely conformally equivalent if the edge lengths are related by scale factors assigned to the vertices. It leads to a surprisingly rich theory.

The notion of discrete conformal equivalence is extended from triangulated surfaces to polyhedral surfaces with faces that are inscribed in circles.


  • A. I. Bobenko, S. Sechelmann, and B. Springborn.
    Discrete conformal maps: Boundary value problems, circle domains, Fuchsian and Schottky uniformization.
    In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.

Prof. Dr. Alexander I. Bobenko   +

Projects: A01, A02, C01, B02, Z, CaP, II
University: TU Berlin, Institut für Mathematik, MA 881
Address: Straße des 17. Juni 136, 10623 Berlin, GERMANY
Tel: +49 (30) 314 24655
E-Mail: bobenko[at]math.tu-berlin.de
Website: http://page.math.tu-berlin.de/~bobenko/

Dr. Stefan Sechelmann   +

Projects: A01
University: TU Berlin
E-Mail: sechel[at]math.tu-berlin.de

Prof. Dr. Boris Springborn   +

Projects: A01, A11
University: TU Berlin
E-Mail: springb[at]math.TU-Berlin.DE
Website: http://page.math.tu-berlin.de/~springb/