Bubble Rings and Ink Chandeliers
Albert Chern, Felix Knöppel, Marcel Padilla, Ulrich Pinkall, Peter SchröderMedia
Description
Using variable thickness, viscous vortex filaments various phenomena as underwater bubble rings or the intricate “chandeliers” formed by ink dropping into fluid can be realistically modeled.
Treating the evolution of such filaments as an instance of Newtonian dynamics on a Riemannian configuration manifold classical work in the dynamics of vortex filaments can be extended through inclusion of viscous drag forces.
The latter must be accounted for in low Reynolds number flows where they lead to significant variations in filament thickness and form an essential part of the observed dynamics.
Both, the underlying theory and associated practical numerical algorithms are provided by the authors of [1]. Supplement material can be found on the project page https://www3.math.tu-berlin.de/geometrie/wp_padilla/on_bubble_rings_and_ink_chandeliers/ .
References
-
Marcel Padilla, Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder.
On Bubble Rings and Ink Chandeliers.
ACM Trans. Graph. 38, 4, Article 129, July 2019.
doi:10.1145/3306346.3322962.