Discrete Parametrized Surface Theory in $\mathbb{R}^3$

Tim Hoffmann, Andrew O'Shea Sageman-Furnas, Max Wardetzky

Media


Description


A discrete surface theory in $\mathbb{R}^3$ that unites the most prevalent versions of discrete special parametrizations is introduced here. The theory encapsulates a large class of discrete surfaces given by a Lax representation and, in particular, the one-parameter associated families of constant curvature surfaces. Our theory is not restricted to integrable geometries, but extends to a general surface theory.

References


  • Tim Hoffmann, Andrew O. Sageman-Furnas, and Max Wardetzky.
    A Discrete Parametrized Surface Theory in $\mathbb R^3$.
    International Mathematics Research Notices, 2017(14):4217–4258, 2017.
    arXiv:1412.7293, doi:10.1093/imrn/rnw015.

Prof. Dr. Tim Hoffmann   +

Projects: A02
University: TU München
E-Mail: hoffmant[at]ma.tum.de
Website: http://www-m10.ma.tum.de/bin/view/Lehrstuhl/TimHoffmann


Dr. Andrew O'Shea Sageman-Furnas   +

Projects: C01
University: TU Berlin
E-Mail: aosafu[at]math.tu-berlin.de