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Introduction

Immersions of a surface into a space of constant curvature are traditionally
studied in differential geometry. Some classical problems look for immersions with
special mean curvature. The Bonnet problems are concerned with the existence and
uniqueness of immersed surfaces in R3 with a prescribed metric and mean curvature.
Higher genus surfaces with constant mean curvature are also being studied. The
characterization of Willmore surfaces, which are the critical points of the Willmore
functional

∫
M
H2|df |2, is also under investigation. These problems involve control

over mean curvatures H and are still not completely solved (Abresch et al., 2013).
Quaternionic analysis provides a coordinate-free way to handle these classical

problems (Kamberov et al., 1998; Pedit and Pinkall, 1998). Given a Riemann
surface and a conformal immersion f into R3, the space of conformal immersions
regularly homotopic to f is generically parameterized by the mean curvature half-
density H|df |. For a Riemann sphere, these mean curvature half-densities form a
hyper-surface in the vector space of all half-densities. Instead of point positions,
this method works with geometric quantities directly. It thus has better control
over the mean curvature of conformal immersions to tackle the classical problems
mentioned earlier.

This thesis considers a discrete analogue of the quaternion analysis. The rela-
tion between infinitesimal conformal deformations of triangulated surfaces in Eu-
clidean space and their extrinsic geometry is shown. It is in the spirit of discrete
differential geometry (Bobenko and Suris, 2008), with the aim to look for mathe-
matical structures on triangulated surfaces as rich as in the smooth theory.

Looking for a discrete analogue to the smooth theory is natural. On one hand,
from the results in the smooth theory, one wonders if there are similar techniques
and structures on triangulated surfaces. On the other hand, a discrete theory may
give a hint to phenomena on smooth surfaces by looking at analogous conditions.

There were related works in various directions. Numerical algorithms are
achieved by discretizing equations from the smooth theory at the cost of losing
mathematical structures. Gu and Yau (2003) achieved conformal parametrization
of triangulated surfaces by computing a basis of discrete harmonic functions. Crane
et al. (2011) considered conformal deformations of triangulated surfaces with ex-
trinsic geometry, by discretizing equations from the quaternionic analysis. These
methods lack the notion of conformal equivalence of triangulated surfaces.

Sensible discrete analogues of conformality were defined and found with nice
property as in the smooth theory, which is in the spirit of discrete differential
geometry. Thurston proposed circle packing, by defining circles on vertices of a
triangulated mesh such that neighboring circles tangent to each other (Stephenson,
2005). It was generalized to circle pattern by enabling the circles intersecting. Two
triangular meshes are conformal equivalent if the induced intersection angles of
neighboring circles on edges are equal. Luo (2004) and Springborn et al. (2008)
considered the conformal equivalence of two discrete metric by defining conformal
factors on vertices. In particular, their relations to intrinsic geometry were studied.

v
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The two respective methods found that discrete metrics within a conformal class
are determined by the discrete curvatures on vertices.

Triangulated surfaces in Euclidean space with their extrinsic geometry were
also studied. Bobenko and Schröder (2005) proposed discrete Willmore flow of
triangulated surfaces by considering the intersection angles of neighboring circum-
circles in space, which is Möbius invariant. And hence the Willmore functional
defined is also Möbius invariance, as in the case of the smooth theory.

In this thesis, the approach to relate infinitesimal conformal deformations of
triangulated surfaces with their extrinsic geometry is based on two ingredients. One
is the notion of conformal equivalence of triangular meshes by defining conformal
factors on vertices (Bobenko et al., 2010; Luo, 2004). In this way, any discrete
metric on edges associates a conformal class to the triangulated surface. It is a
better analogue to the smooth theory compared to circle packing (Stephenson,
2005) and circle pattern. In the smooth theory, any immersion of a surface into
Euclidean space induces a conformal structure. However, for triangulated surfaces
in Euclidean space, not every metric is a circle packing metric and circle pattern
could not be naturally induced.

Another ingredient is a dual way to describe the local closedness condition un-
der infinitesimal deformations, i.e., by prescribing the change of each triangular
face and then imposing the closedness conditions on edges. This differs from the
usual way, where changes to edge vectors are first prescribed and then the closed-
ness conditions on faces are imposed. Figure 0.1 and Figure 0.2 illustrate how the
local closedness conditions fail under the two descriptions. Indeed, most formulas
analogous to the smooth theory appear in the dual description.

Figure 0.1. Change of
faces are prescribed and
a common edge splits

Figure 0.2. Change of
edges are prescribed and
a face does not close up

The following statement is a good guideline for the development of this thesis.
It describes the tangent space of the space of all conformal immersions. It holds
both in the sense of the smooth theory (Theorem 2.19) and our discrete theory
(Theorem 3.29).

Claim 1. Suppose f : M → R3 is an immersion of a genus g-surface with the
kernel of Dirac operator Ker D of dimension 4. Then there exists an infinitesimal
conformal deformation of f with a prescribed change of mean curvature half-density
ρ̇ |df | if and only if

∫
M
ρ̇ |df |2 = 0 and ρ̇ is L2-perpendicular to 6g functions de-

pending on the immersion f .

In the smooth theory, the notations in the statement are clear, as studied in
(Pedit and Pinkall, 1998; Richter, 1997). The details are reviewed in Chapter 2.
However, their meaning in the discrete theory is not clear. Therefore, in Chapter
3 we discuss the discrete analogues of the above notations and their connection to
the classical results. Namely, under infinitesimal conformal deformations, we have
Table 1.

This thesis is divided into 4 chapters. Chapter 1 contains background knowl-
edge covering quaternionic linear algebra and discrete differential forms. Hodge
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Smooth Surfaces Triangulated Surfaces

ρ̇|df |2 = ˙(Ht|dft|)|df |

where Ht is the mean curvature of ft

ρ̇i =
∑
ij∈E:i

α̇ij
2
|df(eij)|

where αij is the dihedral angle on the
edge eij∫

M

ρ̇|df |2 =

∫
M

˙(H|df |) = 0
∑
i∈V

ρ̇i =
∑
ij∈E

α̇ij |df(eij)| = 0

(Schläfli Formula)
Table 1. Some analogues between the smooth and our discrete theory

Decomposition Theorem for discrete differential forms would be derived. This
chapter ends with a one-dimensional illustration of infinitesimal conformal defor-
mations of surfaces. We would compare the space of plane curves with fixed length
parametrized by curvature functions in both smooth and discrete cases.

Chapter 2 considers conformal deformations of smooth surfaces via quater-
nionic analysis. We first review their basic results and then focus on infinitesimal
conformal deformations. Constraints of infinitesimal conformal deformations for
High genus surfaces are derived. Most theorems here have a discrete analogue in
the following chapter.

Chapter 3 is the main part of the thesis and focuses on infinitesimal confor-
mal deformations of triangulated surfaces. We first review the definition conformal
equivalence of triangulated surfaces and its nice property compared to the smooth
theory. Then we derive the discrete Dirac operator by considering infinitesimal con-
formal deformations of triangulated surfaces. Constraints of infinitesimal conformal
deformations for High genus surfaces are shown to correspond to the smooth the-
ory nicely. It ends with the derivation of discrete Laplace operator—the cotangent
Laplace formula.

Chapter 4 gives explicit examples for comparison. The choice of conformal
equivalence and discrete notions derived in Chapter 3 is justified by comparing
deformations of smooth and triangulated surfaces. The dimension of the kernel
dim(Ker D) of the discrete Dirac operator is also calculated for several triangulated
surfaces. We present examples with dim(Ker D) = 4 and dim(Ker D) > 4. They
are motivated from the study of the rigidity of polyhedral surfaces.

Most of the results in this thesis are drawn or inspired from the blog “Dis-
crete Spin Geometry”, contributed by the discussions among Keenan Crane, Ulrich
Pinkall, Peter Schroeder and Boris Springborn, in which I learned a lot from their
insightful discussions.





CHAPTER 1

Background

This chapter establishes basic tools to prepare for the following chapters and
illustrates the idea of parameterizing immersions by extrinsic geometric quanti-
ties. Section 1 and 2 would review notions of quaternions and discrete differential
forms. Section 3 studies deformations of planar curves with a fixed length by cur-
vature functions. Both smooth and discrete curves are considered. It serves as a
1-dimensional analogue of conformal deformations of surfaces.

1. Quaternionic Theory

Since we are going to study surfaces immersed in Euclidean space R3 and
identify the Euclidean space as the imaginary part of the space of quaternions
Im(H), we review some notations in the theory of quaternions.

Definition 1.1. The space of quaternions H is a 4-dimensional vector space over
R spanned by 1, i, j, k with multiplicative relations

i2 = j2 = k2 = −1,

ijk = −1.

One can check that H is a non-commutative field. In the following, we define
notations similar to those in complex numbers.

Definition 1.2. The real part and the imaginary part of quaternions are defined
via

Re(H) := SpanR(1),

Im(H) := SpanR(i, j, k) ∼= R3.

Definition 1.3. A conjugation is a linear operator on H such that for any q =
a+ b i+ c j + d k ∈ H where a, b, c, d ∈ R, the conjugation of q is

q = a− b i− c j − d k.
For any two quaternions λ, ν ∈ H, we have a formula for their product

λν = Re(λ) Re(ν)− 〈Im(λ), Im(ν)〉R3

+ Re(λ) Im(ν) + Re(ν) Im(λ) + Im(λ)× Im(ν)

where 〈 , 〉R3 and × are the inner product and the cross product in R3. From this,
we have

λν = νλ,

Re(λν) = Re(νλ).

Definition 1.4. An inner product 〈 , 〉 on H is defined such that for any two
quaternions λ, ν ∈ H,

〈λ, ν〉H := Re(λν)

and the norm | | is defined by

|λ|2 = 〈λ, λ〉H.

1
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eij

i

j

k

left(eij) right(eij) k̃

Figure 1.1. Orientation induced on triangles

From the product formula, the properties of an inner product can be verified
easily. We then look at how a quaternion acts on R3 as a composition of scaling
and rotation.

Lemma 1.5. Let λ ∈ H be arbitrary. We write λ = |λ|(cos α2 − sin α
2 T ) for some

α ∈ R and a unit vector T ∈ S2 ⊂ Im(H). Then, for any vector W ∈ Im(H),

λWλ = |λ|2
(
(W −W⊥) + cosαW⊥ + sinαT ×W⊥

)
where W⊥ is the component of W perpendicular to T .

Proof. We compute directly using the algebraic relations of quaternions. Then

λWλ

=|λ|2(cos
α

2
+ sin

α

2
T )W (cos

α

2
− sin

α

2
T )

=|λ|2
(
W (cos

α

2
+ sin

α

2
T )(cos

α

2
− sin

α

2
T ) + 2 sin

α

2
T ×W (cos

α

2
− sin

α

2
T )
)

=|λ|2(W + 2 sin
α

2
cos

α

2
T ×W − 2 sin2 α

2
W⊥)

=|λ|2(W + sinαT ×W − (1− cosα)W⊥)

=|λ|2(W −W⊥ + cosαW⊥ + sinαT ×W⊥).

�

2. Discrete Differential Forms

The discrete surfaces studied in this thesis are closed oriented triangulated
surfaces. We restrict the review of discrete differential forms to these surfaces in
order to simplify the introduction. General introduction can be found in Desbrun
et al. (2006). This section ends with the Hodge decomposition theorem of discrete
differential forms.

Definition 1.6. A triangulated surface is a connected topological surface, which is
also a simplicial complex. The set of vertices (0-cells), edges (1-cells) and triangles
(2-cells) are denoted as V , E and F .

We denote Ẽ as the set of all oriented edges. If e ∈ Ẽ, then e 6= −e ∈ Ẽ.
In addition, for an oriented surface, its orientation induces an orientation on every
triangle naturally. And we can talk about the left face and the right face of an
oriented edges (Figure 1.1). In the following, all surfaces are assumed to be oriented
and its orientation is fixed.

Definition 1.7. A discrete function (0-form) f on a discrete surface M is a map
f : V → R. The space of discrete functions on M is denoted as Ω0(M).
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A discrete 1-form ω on a discrete surface M is a map ω : Ẽ → R such that for
any edge e ∈ Ẽ, ω(−e) = −ω(e). The space of all discrete 1-forms is written as
Ω1(M).

A discrete 2-form σ on a discrete surface M is a map σ : F → R. The space
of all discrete 2-forms is written as Ω2(M).

Definition 1.8. The derivative of a discrete function f is a 1-form d0f : Ẽ → R
such that for any oriented edges e ∈ Ẽ,

d0f(eij) = f(vj)− f(vi)

where the edge eij is from vertex vi to vj. And so the derivative is a map d0 : Ω0 →
Ω1.

Definition 1.9. The derivative of a 1-form ω is 2-form d1ω : F → R such that for
any oriented face φijk ∈ F ,

d1ω(φijk) = ω(eij) + ω(ejk) + ω(eki)

where the order of (ijk) is compatible with the orientation of the triangle φijk. (Fig.
1.1) And the derivative is a map d1 : Ω1 → Ω2.

Subscripts of the derivatives are omitted whenever the input is clear.

Definition 1.10. We define the closedness of a discrete form. A discrete function
f (a discrete 1-form ω) is closed if f ∈ Ker(d0) (ω ∈ Ker(d1)).

Also, we define the exactness of a discrete form. A discrete 1-form ω (a discrete
2-form σ) is exact if ω ∈ Im(d0) (σ ∈ Im(d1)).

Lemma 1.11. For any discrete function f ∈ Ω0, we have

d1d0f = 0.

Hence, exact 1-forms are closed, i.e. Im d0 ⊂ Ker d1.

The dimension of simplical homology of a closed surface is known to be twice
of its genus from any standard algebraic topology text book (Bredon, 1993).

Theorem 1.12. Suppose M is a closed oriented triangulated surface of genus g.
Then,

dim(Ker d1/ Im d0) = 2g.

To prepare for Hodge decomposition theorem, dual discrete forms are intro-
duced.

Definition 1.13. A dual 0-form σ on a discrete surface M is a map σ : F → R.
The space of all dual 0-forms is written as Ω0(M∗).

A dual 1-form ω on a discrete surface M is a map ω : Ẽ → R such that
for any edge e ∈ Ẽ, ω(−e) = −ω(e). In particular, for dual 1-form ω, we write
ω(∗e) := ω(e) from now on to distinguish it from 1-form. The space of all dual
1-forms is written as Ω1(M∗).

A dual 2-form f on a discrete surface M is a map f : V → R. The space of all
dual 2-forms is written as Ω2(M∗).

The reason for being called dual forms is that we would like to pair them with
discrete differential forms to define a functional.

Lemma 1.14. Notice that Ωi(M∗) and Ω2−i(M) share a common domain for i =
1, 2, 3. We can define their pairing respectively

( , ) :Ω0(M∗)× Ω2(M)→ R
Ω1(M∗)× Ω1(M)→ R
Ω2(M∗)× Ω0(M)→ R
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by summation of their pointwise multiplicative products over F ,E and V respec-
tively. Such products are bilinear and nondegenerate. Hence, we have

Ωi(M∗) ∼= Ω2−i(M)∗.

Similarly, we define the derivative of dual 0-forms and dual 1-forms.

Definition 1.15. The derivative of dual 0-forms and dual 1-forms are defined by

∂0 : Ω0(M∗)→ Ω1(M∗)

f 7→ ∂f(e) = f(left(e))− f(right(e))

where left(e) and right(e) are the left and right faces of the edge e (Fig. 1.1).
Similary, we define

∂1 : Ω1(M∗)→ Ω2(M∗)

ω 7→ ∂ω(vj) =
∑

eij∈Ẽ:j

ω(eij).

Lemma 1.16. For any discrete function f , 1-form ω, dual 1-form ω′ and dual
0-form σ′, we have

(ω′, df) = (∂ω′, f),

(σ′, dω) = (∂σ′, ω).

Proof. By definitions, we have

(ω′, df) =
∑
eij∈E

ω′(eij)(fj − fi)

=
∑
j∈V

(
fj

∑
eij∈E:j

ω′(eij)
)

=(∂ω′, f)

and

(σ′, dω) =
∑

φijk∈F

σ′(φijk)
(
ω(eij) + ω(ejk) + ω(eki)

)
=
∑
eij∈E

ω(eij)
(
σ′(left(eij))− σ′(right(eij))

)
=(∂σ′, ω).

�

Now we want to have identification between discrete forms and discrete dual
forms. Let Ti : Ωi(M) → Ω2−i(M∗) be a symmetric invertible positive definite
linear map. Then, we can define inner products

〈 , 〉 : Ω0(M)× Ω0(M)→ R
f1, f2 7→ (T0f1, f2),

Ω1(M)× Ω1(M)→ R
ω1, ω2 7→ (T1ω1, ω2),

Ω2(M)× Ω0(M)→ R
σ1, σ2 7→ (T2σ1, σ2).

The inner products defined are symmetric and nondegenerate.
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Example 1. Suppose a triangulated surface is equipped with a length function
defined on edges. Then areas A(φijk) of each triangle can then be defined. We
can take T0,T1 and T2 be diagonal matrices with diagonal entries of the forms∑
φijk∈F :j A(φijk), (cotβk + cotβk̃)/2 where φijk, φik̃j ∈ F and 1/A(φijk) respec-

tively. It is an example for the identifications between i-forms and dual i-forms.

In the following, we assume the identifications Ti are fixed.

Lemma 1.17. Under the inner products on Ωi(M), we have

δ2 := d∗1 = T−11 ∂0T2,

δ1 := d∗0 = T−10 ∂1T1.

Notice that δ1 ◦ δ2 = 0.

Definition 1.18. A harmonic 1-form ω is a 1-form which is closed (i.e. dω = 0)
and co-closed (i.e. δω = 0). The space of harmonic 1-forms is denoted as H1.

Theorem 1.19. (Hodge Decomposition Theorem) Any discrete 1-form can be writ-
ten uniquely as the sum of an exact 1-form, a co-exact 1-form and a harmonic
1-form. That means the space of all discrete 1-forms Ω1 can be decomposed as

Ω1 = dΩ0 ⊕ δΩ2 ⊕H.

Proof. Notice that 〈dω, σ〉 = 〈ω, δσ〉, we then have

Ker d1 ⊂ (δΩ2)⊥.

Given any ω ∈ (δΩ2)⊥, we know ω ∈ Ω1 and dω ∈ Ω2. So, we get

0 = 〈ω, δdω〉 = 〈dω, dω〉.
It implies dω = 0 and ω ∈ Ker d1. Hence Ker d1 = (δΩ2)⊥. Similarly, we also have
Ker δ1 = (dΩ0)⊥.

Since d0Ω0 ⊂ Ker d1 and Ω1 is finite dimensional vector space, we have

Ω1 =δΩ2 ⊕Ker d1

=δΩ2 ⊕
(

Ker d1 ∩ Ω1
)

=δΩ2 ⊕
(

Ker d1 ∩ (d0Ω0 ⊕Ker δ1)
)

=dΩ0 ⊕ δΩ2 ⊕ (Ker d1 ∩Ker δ1)

=dΩ0 ⊕ δΩ2 ⊕H.
�

By the above decomposition and Theorem 1.12, we know the dimension of
harmonic 1-forms.

Corollary 1.20.
dimH1 = dim(Ker d1/ Im d0) = 2g

3. A One-dimensional Analogue

Deformations of plane curve serve as a one-dimensional analogue of infinitesi-
mal conformal transformations. For surfaces in Euclidean space, their metric and
Gaussian curvature are intrinsic information. They are not enough to determine
immersions. Extrinsic information is needed, such as mean curvature. For plane
curves, curvature is extrinsic. This section studies how curvatures determine the
geometry of smooth and discrete curves. It would be analogous to smooth and
triangulated surfaces.

In subsection 3.1, deformations of smooth plane curves are considered. For a
given length L, a smooth closed plane curve γ is uniquely determined by its curva-
ture κ up to an euclidean transformation. Such curvature functions parametrize the
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shape space of smooth closed plane curves. We would like to see how the curvature
functions change under the deformation of γ in order to identify the tangent spaces
of the shape space.

Analogous results in polygons are studied in Subsection 3.2.

3.1. Smooth Plane Curves. We will identify R2 as C in the following. Let
γ : R→ C be a smooth arc-length parametrized closed plane curve with length L.
So, we have γ(s+L) = γ(s) and γ′ = T with |T | = 1. Define the unit normal N of
γ as N := −JT , where J denote the anti-clockwise π

2 -rotation. The curvature κ is
defined by N ′ = κT .

The above definition implies there exist a function α : R→ R such that

T (s) =eiα(s),

N(s) =− ieiα(s),
κ(s) =α′(s).

Denote H as the euclidean vector space of L-periodic C∞ function,M⊂ H as
the subset of H that can be realized as the curvature of some closed curve γ. By
translation and rotation, we can assume γ(0) is the origin and T (0) = 1. So given
κ ∈M , we have

α(s) :=

∫ s

0

κ, (1.1)

T (s) =eiα(s), (1.2)

γ(s) =

∫ s

0

T. (1.3)

Since γ is L-periodic, we have

T (s) =T (s+ L),

γ(s) =γ(s+ L)

and hence ∫ L

0

κ =α(L)− α(0) ∈ 2πZ,∫ L

0

T =γ(L)− γ(0) = 0.

Notice that given κ satisfying the above two equations, we can construct a
closed plane curve by (1.1),(1.2),(1.3) with a prescribed curvature κ.

Lemma 1.21. The space of L-periodic C∞ functions which can be realized as the
curvature of some arc-length parametrized closed curve is

M =

{
κ ∈ H

∣∣∣ ∫ L

0

κ ∈ 2πZ,
∫ L

0

cos(

∫ s

0

κ)ds = 0,

∫ L

0

sin(

∫ s

0

κ)ds = 0

}
.

Hence, we know M =
⋃
n∈ZMn where

Mn :=

{
κ ∈ H

∣∣∣ ∫ L

0

κ = 2πn,

∫ L

0

cos(

∫ s

0

κ)ds = 0,

∫ L

0

sin(

∫ s

0

κ)ds = 0

}
and Mn’s are disjoint.
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Theorem 1.22. Let a positive real number L be fixed. Denote M as the space of
the curvature functions of closed plane curves with length L. ThenM is a manifold
and if γ is a curve with curvature κ ∈M, the tangent space at κ is given by

TκM =

{
κ̇ ∈ H

∣∣∣ ∫ L

0

κ̇ = 0,

∫ L

o

κ̇γ = 0

}

where H is denoted as the space of L-periodic C∞ functions.

Proof. Let κ ∈Mn. Define a function

Fn : H → R3

κ 7→ (

∫ L

0

κ− 2πn,Re(γ(L)), Im(γ(L)))

where γ is given by (1.3). Consider a variation κt ∈ H of κ = κ0. Then, using
equations (1.1),(1.2),(1.3), we have

d

dt

∣∣∣
t=0

γt(L) =

∫ L

0

Ṫ (s)ds

=

∫ L

0

α̇(s)(− sinα(s), cosα(s))

=− J
∫ L

0

α̇(s)T (s))

=− J
∫ L

0

α̇(s)(
d

ds
γ(s))ds

=J

∫ L

0

(
d

ds
α̇(s))γ(s)ds

=J

∫ L

0

κ̇(s)γ(s)ds

=

∫ L

0

κ̇(s)(iγ1(s)− γ2(s))ds.

where γ1 = Re(γ) and γ2 = Im γ. On the other hand,

d

dt

∣∣∣
t=0

∫ L

0

κ− 2πn =

∫ L

0

κ̇.

Hence,

dκFn(κ̇) = (

∫ L

0

κ̇,−
∫ L

0

κ̇(s)γ2(s)ds,

∫ L

0

κ̇(s)γ1(s)ds).

Assume dκF is not surjective. Then there exists constants a1, a2, b ∈ R such
that

0 = a1

∫ L

0

κ̇γ1 + a2

∫ L

0

κ̇γ2 − b
∫ L

0

κ̇ =

∫ L

0

κ̇(a1γ1 + a2γ2 − b)

for any L-periodic function κ̇. It leads to a contradiction that (a1γ1 +a2γ2− b) ≡ 0
and the closed curve γ is contained in a straight line.

Thus, dκFn is surjective and by implicit function theorem we conclude that
M = F−1(0) is a manifold. And the tangent space at κ is Ker(dκFn). �
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3.2. Discrete Plane Curves. We investigate the space of closed polygons
with fixed edge lengths. We start with some notations.

Let (γ0, . . . , γn−1) be a polygon in the complex plane C and consider all indices
module n. Then there are unique real numbers `0, . . . , `n−1 > 0 and unit vectors
T0, . . . , Tn−1 ∈ S1 such that the edge vectors of γ have the form

γj+1 − γj = `jTj .

Definition 1.23. A polygon (γ0, . . . , γn) is regular if

Tj+1 6= −Tj ∀i.
For a regular polygon, there exists unique real numbers κ1, . . . , κn−1 such that

−π < κj < π,

Tj = eiκj Tj−1.

Hence,

αj :=

j∑
k=1

κj ,

Tj =eiαj T0,

γj =γ0 +

j−1∑
k=0

`jTj . (1.4)

Since the index of γ is n-periodic, we have

Ts =Ts+n,

γs =γs+n

and so
n∑
k=1

κ = αn = 2πr for some r ∈ Z,

n−1∑
k=0

`jTj = γn − γ0 = 0.

For a given collection of edge lengths `0, . . . , `n−1 and κ satisfying the above
two equations, there exists a discrete curve γ with κ by the construction of (1.4)
with arbitrary initial direction T0 and initial position γ0. Hence, it is unique up to
rotation and translation.

In the following we assume to have a fixed sequence of edge lengths `0, . . . , `n−1
which can be realized by some regular closed polygon. Denote M ⊂ (−π, π)n as the
set containing all elements which can be realized as the curvature of some regular
closed polygon γ. The above argument implies the closed polygon is unique up to
translation and rotation. In particular, the polygon can be assumed to have γ0 = 0
and T0 = 1. We have

Lemma 1.24.

M =

{
κ ∈ (−π, π)n

∣∣∣ n∑
k=1

κ ∈ 2πZ,
n−1∑
k=0

`jTj = 0

}
.

So, M =
⋃
r∈ZMr where

Mr :=

{
κ ∈ (−π, π)n

∣∣∣ n∑
k=1

κ = 2rπ,

n−1∑
k=0

`jTj = 0

}
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and Mn’s are disjoint.

Theorem 1.25. Suppose a length sequence `0, . . . , `n−1 can be realized by some
regular closed polygon. Denote M as the space of the curvature functions of closed
planar polygons with the fixed length sequence `0, . . . , `n−1. Then M is a manifold
and if γ is a regular closed polygon corresponding to κ ∈ M, the tangent space at
κ is given by

TκM =

{
κ ∈ (−π, π)n

∣∣∣ n−1∑
m=0

κ̇ = 0,

n−1∑
m=0

κ̇mγm = 0

}
.

Proof. Let κ ∈Mr. And γ be the curve with curvature κ, γ0 = 0 and T0 = 1.
Define a function

Fr : (−π, π)n → R3

κ 7→ (

n−1∑
m=0

κ− 2πr,Re(γn), Im(γn)).

Consider a variation κ(t) ∈ (−π, π)n of κ(0) = κ. Then,

d

dt

∣∣∣
t=0

γn(t) =

n−1∑
j=0

`j Ṫj

=

n−1∑
j=0

`j i

j∑
m=1

κ̇m e
i
∑j

k=1 κkT0

=i

n−1∑
m=1

κ̇m

n−1∑
j=m

`je
i
∑j

k=1 κkT0

=i

n−1∑
m=1

κ̇m(γn − γm)

=− i
n−1∑
m=0

κ̇mγm + i

n−1∑
m=0

κ̇mγ0

=− i
n−1∑
m=0

κ̇mγm.

On the other hand,

d

dt

∣∣∣
t=0

n−1∑
m=0

κ− 2πn =

n−1∑
m=0

κ̇.

Hence,

dκFr(κ̇) = (

n−1∑
m=0

κ̇,

n−1∑
m=0

κ̇m Im(γm),−
n−1∑
m=0

κ̇m Re(γm)).

Assume dκFr is not surjective. Then there exists constants a1, a2, b ∈ R such
that

0 = a1

n−1∑
m=0

κ̇m Re(γm) + a2

n−1∑
m=0

κ̇m Im(γm)− b
n−1∑
m=0

κ̇

=

n−1∑
m=0

κ̇m(a1 Re(γm) + a2 Im(γm)− b)

for all κ̇ ∈ (−π, π)n. It leads to the contradiction that the closed regular polygon
γ is contained in a straight line.
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Thus, dκFr is surjective and by implicit function theorem we conclude that
Mr = F−1r (0) is a manifold. And the tangent space at κ is Ker(dκFr). �



CHAPTER 2

Conformal Deformations of Smooth Surfaces

The quaternionic approach provides a coordinate free way to study conformal
immersions regularly homotopic to a given one. Generically, such a space is parame-
terized by the mean curvature half-density H|df | which is related to the eigenvalues
of the quaternionic Dirac Operator D. It is used to study Bonnet problems and
Willmore surfaces (Pedit and Pinkall, 1998; Richter, 1997).

The quaternionic theory applied to differential geometry (Kamberov et al.,
1998) is reviewed in Section 1-3 in order to compare with the discrete analogues.
We derive the quaternionic Dirac operator from an integrability condition and study
its connection to mean curvature half-densities.

Then we focus on infinitesimal conformal deformations and their complement
in the space of all half-densities. Sections 4-6 are a collection of results from the
blog “Discrete Spin Geometry” where Theorem 2.21 in Section 5 is generalized to
surfaces of genus g > 1. In particular, Theorem 2.22 is essential to the derivation
of the discrete Dirac operator in Chapter 3.

1. Spin Transformations

We start with the definition of a complex structure.

Definition 2.1. A Riemann surface is a real two-dimensional manifold M equipped
with an automorphism J ∈ Aut(TM) such that J2 = −1. We call J a complex
structure of M and the tangent spaces of M has the structure of a complex vector
space naturally,

∀z = x+ iy ∈ C and X ∈ TpM, zX := (x+ yJp)X ∈ TpM.

Definition 2.2. The Hodge star operator ∗ is an operator on K-valued 1-form ζ,
where K = R, C or H such that

∗ζ = ζ ◦ J.

With a complex structure, 2-forms can be identified as complex quadratic forms.
It is noticed that for any H-valued 2-form ω : TM → H,

ω
(
(a+ bJ)X, J(a+ bJ)X

)
=(a2 + b2)ω(X, JX)

=|a+ bJ |2ω(X, JX).

So, a 2-forms is identified as a complex quadratic form via

∀X ∈ TM, q(X) = ω(X, JX),

which satisfies

∀X ∈ TM and z ∈ C, q(zX) = |z|2q(X).

Such correspondence is bijective, since for any tangent vectors X and Y ,

ω(X,Y ) =
1

2

(
q(Y ) + q(X)− q(X + JY )

)
.

11
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In particular, the space of real-valued complex quadratic forms on M is denoted as
densities D, which under the above identification are real-valued 2-forms Ω2(M,R).
We then introduce half-densities

D
1
2 = {δ : TM → R|δ(zX) = |z|δ(X) ∀z ∈ C}.

We now focus on immersions of a surface into Euclidean space. In the following,
we identify R3 as ImH. Given an immersion f of a surface M into Euclidean space,
there is an induced metric on M . For any tangent vectors X,Y ∈ TpM ,

f∗gR3(X,Y ) = 〈df(X), df(Y )〉.
Definition 2.3. An immersion f of a Riemann surface is conformal if it satisfies
for any tangent vector X,

〈df(X), df(X)〉 = 〈∗df(X), ∗df(X)〉,
〈df(X), ∗df(X)〉 = 0.

Remark 2.4. If f is a conformal immersion, then |df |2 is a density and |df | is a
half-density.

Definition 2.5. Two Riemannian metrics g and g̃ of M are conformally equivalent
if there exists a real-valued function u : M → R such that

g̃ = eug.

Lemma 2.6. The metrics induced by two conformal immersions f and f̃ are con-
formally equivalent.

Proof. Take u = ln( |df̃(X)|
|df(X)| ). Then,

f̃∗gR3 = euf∗gR3 .

�

Definition 2.7. Given two immersions f and f̃ of a surface M into R3 ∼= ImH, f̃
is a spin transformation of f if there exists a quaternion-valued function λ : M →
H\{0} such that

df̃ = λ̄dfλ. (2.1)

Lemma 2.8. If f is a conformal transformation of a Riemann surface M and f̃
is its spin transformation, then f̃ is also a conformal immersion of M . And the
metrics induced by f and f̃ are conformally equivalent.

Proof. Notice that

〈df̃ , ∗df̃〉 = 〈λ̄dfλ, λ̄ ∗ dfλ〉

= Re(λ̄dfλλ̄ ∗ dfλ)

= |λ|4〈df, ∗df〉
= 0.

Similar calculation gives

〈df̃ , df̃〉 = 〈∗df̃ , ∗df̃〉 = |λ|4〈df, df〉.
�

We then study a necessary condition on λ for the existence of a spin transfor-
mation. Suppose f̃ is a spin transformation of f , then by definition there exists a
H-valued function λ : M → H\{0} such that

df̃ = λ̄dfλ

0 = d(df̃)
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= d(λ̄dfλ)

= dλ̄dfλ− λ̄dfdλ

= λ̄dfdλ− λ̄dfdλ
= −2 Im(λ̄dfdλ).

Hence, there exists a real valued function ρ : M → R such that

λ̄dfdλ = −ρ|λ|2|df |2

dfdλ = −ρλ|df |2

Dλ := −dfdλ
|df |2

= ρλ.

Definition 2.9. Denote the space of quaternionic functions on M as Γ(M,H). The
differential operator D : Γ(M,H) → Γ(M,H) defined above is called quaternionic
Dirac operator.

We conclude the above calculation by the following lemma.

Theorem 2.10. Given a conformal immersion f : M → Im(H), if a quaternion-

valued function λ : M → H\{0} induces a spin transformation f̃ of f given by

df̃ = λ̄dfλ,

then there exists ρ : M → R such that

Dλ = ρλ. (2.2)

On the other hand, given λ : M → H satisfying (2.2), then λ̄dfλ is a closed 1-form.

The above lemma imposes a necessary condition on λ for the existence of a
spin transformation. In general, it is not sufficient since a closed 1-form may not
be exact. But for simply connected surfaces, a closed 1-form is also exact.

Corollary 2.11. If M is simply connected, the converse of Theorem 2.10 is true,
i.e. a quaternion-valued function λ : M → H\{0} induces a spin transformation of
f if and only if there exists ρ : M → R such that

Dλ = ρλ.

2. Mean Curvature Half-Density

In this section, we look at how geometric quantities change under a spin trans-
formation. And the geometric meaning of ρ|df | as a change of mean curvature
half-density is shown.

Lemma 2.12. Suppose f : M → ImH is a conformal immersion of a Riemann
surface M . We denote its normal vector field as N and its mean curvature as H.
Then, we have

df ∧ dN = 2HN |df |2.

Proof. Denote A as the shape operator of f , which is defined via

dN = df ◦A .

Let X be any unit vector. Then

dfdN(X,JX) =df(X)dN(JX)− df(JX)dN(X)

=df(X)df(A JX)− df(JX)df(AX)

=− 〈X,A JX〉+ 〈JX,AX〉+ (〈JX,A JX〉+ 〈X,AX〉)N
=2HN.
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Hence,

dfdN = 2HN |df |2.
�

Theorem 2.13. Suppose f : M → ImH is a conformal immersion and f̃ is its
spin transformation given by λ : M → H\{0}, which satisfies

Dλ = ρλ.

Then,

|df̃ |2 = |λ|4|df |2,

Ñ = λ−1Nλ,

H̃|df̃ | = H|df |+ ρ|df |.

Proof. Followed from Lemma 2.8, f̃ is a conformal immersion and

|df̃ |2 = |λ|4|df |2.
Let X be any nonzero vector. Then

Ñ =
df̃(X)df̃(JX)

|df̃(X)||df̃(JX)|

=
λ−1df(X)df(JX)λ

|df(X)||df(JX)|
=λ−1Nλ.

Also,

df̃dÑ =λdfλd(λ−1Nλ)

=λdfλ(dλ−1)Nλ+ λdfdNλ+ λdfNdλ

=− λdfdλλ−1Nλ+ 2HλNλ|df |2 − λNdfdλ
=2(ρ+H)|df |2λNλ

=2(ρ+H)|df |2|λ|2Ñ .
On the other hand,

df̃dÑ = 2H̃Ñ |df̃ |2.
Hence, equating the above two equations, we have

H̃|df̃ |2 =(H + ρ)|λ|2|df |2

H̃|df̃ | =H|df |+ ρ|df |.
�

Hence, we call H|df | the mean curvature half-density of f and ρ|df | the change
of mean curvature half-density corresponding to the spin transformation given by
λ.

3. The Quaternionic Dirac Operator

Properties of the quaternionic Dirac operator D are reviewed here in order to
compare with the discrete Dirac operator in Chapter 3.

Lemma 2.14. Suppose M is a closed Riemann surface. Then the quaternionic
Dirac operator D : Γ(M,H) → Γ(M,H) is elliptic and self adjoint with respect to
L2 product. Hence,

C∞(M,H) = Ker(D)⊕ Im(D).
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Proof. We first show that it is self adjoint. Let λ1, λ2 ∈ C∞(M,H).∫
M

〈Dλ1, λ2〉|df |2 =Re
( ∫

M

(−dfdλ1)λ2
)

=Re
( ∫

M

dfλ1dλ2
)

=−Re
( ∫

M

λ1dλ2df
)

=−Re
( ∫

M

λ1dfdλ2
)

=

∫
M

〈λ1,Dλ2〉|df |2.

We then show that it is elliptic. The definition of ellipticity and hence the
decomposition is referred to Lax (2002). Let x ∈ M , ζ ∈ T ∗xM and h ∈ C∞(M,R)
such that h(x) = 0 and dh = ζ. Suppose λ ∈ C∞(M,H). Then the principal
symbol of D at ζ is given by

σ1(D, ζ) · λ(0) := D(hλ)|x

=− df ∧ ζ
|df |2

λ(0).

For ζ 6= 0, we have σ1(D, ζ) = −df∧ζ|df |2 6= 0 since f : M → Im(H) is an immersion.

Hence it is elliptic.
�

An observation from the definition of the quaternionic Dirac operator leads to
the following.

Corollary 2.15. Constant quaternion-valued functions are in the kernel of D.
Hence

dim(Ker D) ≥ 4.

4. Infinitesimal Conformal Deformations

Starting from this section, we look at infinitesimal conformal deformations,
which is the focus of this thesis.

Suppose a 1-parameter family of spin transformations of f : M → R3 is given
by λt with λ(0) ≡ 1. Then there exists a 1-parameter family of R-valued functions
ρt : M → R with ρt=0 ≡ 0 such that

Dλt = ρtλt.

From the derivation of the Dirac operator D, the above condition is equivalent
to λtdfλt being a closed 1-form. Differentiating both sides with respect to t and
evaluating at t = 0, we get

D λ̇ = ρ̇λt=0 + ρt=0λ̇

= ρ̇

which implies that Im(2dfλ̇) is a closed 1-form.

Theorem 2.16. Under the infinitesimal conformal deformation given by λ̇ : M →
H satisfying D λ̇ = ρ̇, we have ∫

M

ρ̇|df |2 = 0.
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Proof. ∫
M

ρ̇|df |2 =

∫
M

D λ̇|df |2

=

∫
M

df ∧ dλ̇

= 0.

�

The above lemma is a necessary condition for infinitesimal conformal deforma-
tions. It is not sufficient in general. But for surfaces with genus 0, it is sufficient,
since a closed 1-form implies its exactness.

Corollary 2.17. Suppose f : S2 → R3 is an immersion of the sphere S2 with
dim(Ker(D)) = 4. Given any ρ̇ : M → R, then there exists an infinitesimal confor-

mal deformation given by λ̇ satisfying D λ̇ = ρ̇ if and only if
∫
M
ρ̇|df |2 = 0

Proof. One direction of the statement is proved in the previous lemma. We
proceed with another direction. The assumption dim(Ker(D)) = 4 implies Ker(D)
consists of constants quaternion-valued functions.

∫
M
ρ̇|df |2 = 0 implies ρ̇ is L2

perpendicular to Ker(D). By the decomposition in Lemma 2.14, we know ρ̇ ∈ Im D.

Hence, there exists λ̇ : M → H such that D λ̇ = ρ̇. From the derivation of the Dirac

operator, it implies ( ˙λdfλ) is a closed 1-form. For surfaces with genus 0, it implies
exactness. �

5. Infinitesimal Conformal Deformations of High Genus Surfaces

For high genus surfaces, H-valued functions λ̇ satisfying D λ̇ = ρ̇ may not
preserve the exactness of df . To ensure the exactness, there are other constraints.
We first look at restrictions on ρ̇.

The condition D λ̇ = ρ̇ implies the 1-form Im(df
˙̇
λ) is closed. If β1, . . . , β2g is a

basis for harmonic 1-forms, then

Im(dfλ̇)

is exact if and only if

0 =

∫
M

∗βi ∧ Im dfλ̇ = Im

∫
M

∗βi ∧ dfλ̇

for i = 1, . . . , 2g. If X, JX ∈ TpM form an orthonormal basis, then

(∗βi ∧ df)(X, JX) = βi(JX)df(JX) + βi(X)df(X)

= df(βi(X)X + βi(JX)df(JX)) =: df(Yi).

The vector field Yi is the harmonic vector field corresponding to the harmonic
1-form βi. By denoting the R3-valued functions as yi = df(Yi), we have

∗βi ∧ df = yi|df |2

and the exactness condition becomes

Im

∫
M

yiλ̇|df |2 = 0 ∀i = 1, 2, . . . , 2g.

We have

Lemma 2.18. ∫
M

yi|df |2 = 0.

Proof. Notice that yi|df |2 = ∗βi ∧ df is a exact 2-form, its integral over the
whole surface M hence is zero. �
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If the kernel of D is of dimension 4, then there exist quaternion-valued functions
µi : M → H satisfying

Dµi = yi.

The exactness conditions become equivalent to say that for all constant quaternions
a ∈ ImH and for i = 1, 2, . . . , 2g,

0 = Re

(∫
M

yiλ̇a

)
= Re

(∫
M

yiaλ̇

)
=

∫
M

〈yia, λ̇〉

=

∫
M

〈Dµia, λ̇〉

=

∫
M

〈µia,D λ̇〉

=

∫
M

〈µia, ρ̇〉

= −
∫
M

〈µi, a〉ρ̇.

The following theorem describes the tangent space of conformal immersions.

Theorem 2.19. Suppose M is a closed Riemann surface of genus g and f : M →
R3 is a conformal immersion with dim(Ker D) = 4. Let a function λ̇ : M → H
satisfy Dλ̇ = ρ̇ for some real valued function ρ̇. Then, there is an infinitesimal
conformal deformation given by λ̇, i.e. Im(df λ̇) is exact, if and only if ρ̇ is L2-
orthogonal to all three imaginary components of each of the 2g functions µi and the
constant function 1.

Hence, the vector space

{ρ̇ ∈ C∞(M)|
∫
M

ρ̇ =

∫
M

〈µl, i〉ρ̇ =

∫
M

〈µl, j〉ρ̇ =

∫
M

〈µl, k〉ρ̇ = 0 for l = 1, . . . , 2g}

is the space of all nontrivial infinitesimal conformal deformations of f , i.e. up to
Euclidean transformations.

These 6g + 1 equations are not necessary linearly independent over R. For
special surfaces, they are indeed linearly dependent.

Definition 2.20. An immersion f : M → R3 is isothermal if there exists a Im(H)-
valued closed 1-form τ such that

df ∧ τ = 0.

If the immersion f is isothermal and N is denoted as the gauss map of f ,
then locally there exists an immersion f∗ which is −N -conformal. A more detailed
discussion can be found in Kamberov et al. (1998); Richter (1997). If an immersion
has dim(Ker(D)) = 4, being isothermal is equivalent to those 6g+1 equations being
linearly dependent.

Theorem 2.21. Suppose M is a closed Riemann surface of genus g and f : M →
R3 is a conformal immersion with dim(Ker D) = 4. The tangent space of all confor-
mal immersions at f is of co-dimension less than or equal to 6g+1. The inequality
is strict if and only if the immersion f is isothermal.

Proof. Let a1, b1, a2, . . . , bg be a canonical basis of homology and ω1, . . . , ω2g

be a basis of harmonic 1-forms such that
∫
aj
ωi =

∫
bj
ωg+i = δij and

∫
aj
ωg+i =
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bj
ωi = 0. The condition dim(Ker D) = 4 implies there exists µi : M → H such

that −df ∧ dµi = df ∧ ωi.
Suppose the 6g+1 functions, which are the three imaginary components of each

µi and the constant function 1, are linearly dependent. Then there exists constants
v1, v2, . . . , v2g ∈ Im(H) and c ∈ R such that they are not all zero and

〈µ1, v1〉+ 〈µ2, v2〉+ · · ·+ 〈µ2g, v2g〉 = c.

With out loss of generality, we assume c = 0 since we can replace some µi by
µ̃i := µi − cvi

〈vi,vi〉 if vi is not zero. Hence,

Re

2g∑
i=1

µivi ≡ 0.

Taking exterior derivative,

Re

2g∑
i=1

dµivi ≡ 0.

Since ωi is real,

Re

2g∑
i=1

(dµi + ωi)vi ≡ 0.

Then, τ :=
∑

(dµi + ωi)vi is a closed Im(H)-valued 1-form. And

df ∧ τ =

2g∑
i=1

df ∧ (dµi + ωi)vi = 0.

Thus f is isothermal.

On the contrary, suppose there exists a closed Im(H)-valued 1-form τ satisfying
df ∧τ = 0. Define Ai :=

∫
ai
τ and Bi :=

∫
bi
τ . Hence, τ−

∑g
i=1Aiωi−

∑g
i=1Biωg+i

is an exact Im(H)-valued 1-form. It implies there exists µ : M → ImH such that

dµ = τ −
g∑
i=1

Aiωi −
g∑
i=1

Biωg+i.

Then,

D(µ−
2g∑
i=1

Aiµi −
2g∑
i=1

Biµg+i)

=−
df ∧

(
τ −

∑2g
i=1Ai(ωi + dµi)−

∑2g
i=1Bi(ωg+i + dµg+i)

)
|df |2

=0.

Since dim(Ker D) = 4, there exist a constant c ∈ H such that

µ−
2g∑
i=1

Aiµi −
2g∑
i=1

Biµg+i ≡ c.

It implies

Re(

2g∑
i=1

Aiµi +

2g∑
i=1

Biµg+i) = Re(

2g∑
i=1

Aiµi +

2g∑
i=1

Biµg+i − µ) ≡ Re(c).

Thus, the 6g+1 functions are linearly dependent over R. �
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Instead of ρ̇, we have more general exactness condition on λ̇ in terms of geo-
metric quantities, without assuming dim(Ker D) = 4. The following theorem has
its discrete counterpart in terms of discrete differential forms (Theorem 3.9) and is
crucial for the discrete Dirac operator.

Theorem 2.22. (Vector Valued Schläfli Formula) Suppose an infinitesimal con-

formal deformation of f : M → R3 is given by λ̇ = 1
2 (u̇− w). Then the 1-form

N ×
(
df ◦ (u̇A+ Ȧ)

)
− ∗du̇N

is exact, where A : TM → TM is the shape operator of f defined via dN = df ◦A.

Proof. In the following, we use Cartan’s moving frames. Details for the tech-
niques can be found in Ivey and Landsberg (2003).

For any point x0 ∈M , there exists an adapted orthonormal frame (e1, e2, e3) on
a neighborhood U of x0, where e3 = N is the unit normal. We then lift f : U → R3

to F : U → ASO(3) locally by

F (x) =

(
1 0 0 0
f e1 e2 e3

)
∈ ASO(3).

Write Mauer Cartan form as

ω = F−1dF =


0 0 0 0
ω1 0 ω1

2 ω1
3

ω2 ω2
1 0 ω2

3

0 ω3
1 ω3

2 0

 .

From equations dF = Fω and 〈ei, ej〉 = δij , we get

df = ω1e1 + ω2e2,

dei =
∑

ωji ej ,

ωji = −ωij .
Taking exterior derivative of the first two equations yields

0 = d(df) = (dω1 + ω2 ∧ ω1
2)e1 + (dω2 + ω1 ∧ ω2

1)e2,

0 = d(dei) =
∑
k

(dωki +
∑
j

ωji ∧ ω
k
j )ek.

It implies Cartan’s structure equations:

dω1 = ω1
2 ∧ ω2,

dω2 = ω2
1 ∧ ω1,

dωki =
∑
j

ωkj ∧ ω
j
i .

We now consider an infinitesimal conformal deformation given by λ̇ and write

λ̇ =
1

2
(u̇− w).

Then,

Ḟ =

(
0 0 0 0

ḟ w × e1 w × e2 w × e3

)
.

And

dḞ =

(
0 0 0 0

dḟ dw × e1 + w × de1 dw × e2 + w × de2 dw × e3 + w × de3

)
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On the other hand,

dḞ =Ḟω + Fω̇

=

(
0 0 0 0

w × df w × de1 w × de2 w × de3

)
+

(
0 0 0 0

ω̇1e1 + ω̇2e2 ω̇2
1e2 + ω̇3

1e3 ω̇1
2e1 + ω̇3

2e3 ω̇1
3e1 + ω̇2

3e2

)
.

Since dḟ = u̇df + w × df , comparing two expression of dḞ gives

u̇df = u̇(ω1e1 + ω2e2) = ω̇1e1 + ω̇2e2,

dw × e1 = ω̇2
1e2 + ω̇3

1e3,

dw × e2 = ω̇1
2e1 + ω̇3

2e3,

dw × e3 = ω̇1
3e1 + ω̇2

3e2.

Notice that the shape operator A : TM → TM is defined via

dN = df ◦A.

It implies locally,

ω1
3e1 + ω2

3e2 = (ω1e1 + ω2e2) ◦A.

Since ėi = w × ei, differentiating both sides,

ω̇1
3e1 + ω̇2

3e2 = (ω̇1e1 + ω̇2e2) ◦A+ (ω1e1 + ω2e2) ◦ Ȧ

= u̇df ◦A+ df ◦ Ȧ.

Hence, the tangential part of dw can be expressed as

dw//= e3 × (ω̇1
3e1 + ω̇2

3e2)

= e3 ×
(
df ◦ (u̇A+ Ȧ)

)
.

We are left with the normal component of dw. From the structure equations,

dω1 = ω1
2 ∧ ω2.

Differentiating both sides,

du̇ ∧ ω1 + u̇dω1 = dω̇1 = ω̇1
2 ∧ ω2 + ω1

2 ∧ u̇ ω2

Since u̇ ω1
2 ∧ ω2 = u̇dω1,

du̇ ∧ ω1 = ω̇1
2 ∧ ω2.

Similarly, differentiating the second structure equation dω2 = ω2
1 ∧ ω1 get

du̇ ∧ ω2 = ω̇2
1 ∧ ω1

= −ω̇1
2 ∧ ω1.

Since du̇, ω̇2
1 ∈ span{ω1, ω2}, the above two equations imply

ω̇2
1 = −∗du̇.

Hence,

〈dw, e3〉 = 〈dw⊥, e3〉 = 〈dw⊥ × e1, e3 × e1〉
= 〈ω̇2

1e2 + ω̇3
1e3, e2〉 = ω̇2

1 = −∗du̇.

Thus,

dw = N ×
(
df ◦ (u̇A+ Ȧ)

)
− ∗du̇N

is an exact 1-form. �
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Given an exact 1-form and a closed 1-form, we get an exact 2-form via their
wedge product. Its integration over the surface thus vanishes. So we have the
following corollaries. The first one is the smooth analog of scalar Schläfli Formula.

Corollary 2.23. Under an infinitesimal conformal deformation,∫
M

Ḣ + u̇H|df |2 = 0.

Proof. Suppose an infinitesimal conformal deformation is given by λ̇ = 1
2 (u̇−

w). Let X be a unit tangent vector.

df ∧ dw(X, JX) =dfN ∧ df ◦ (u̇A+ Ȧ)− ∗du̇N)(X, JX)

=− df(JX)df(u̇AJX + ȦJX)− df(X)df(u̇AX + ȦX)

+ df(X)du̇N + df(JX)du̇(JX)N

=〈u̇AJX + ȦJX, JX〉+ 〈u̇AX + ȦX,X〉+
(
〈u̇AJXȦJX,X〉

− 〈u̇AX + ȦX, JX〉
)
N − df(JX)du̇(X) + df(X)du̇(JX)

=2u̇H + 2Ḣ + df ∧ du̇(X,JX).

We recover the Dirac operator and the integrability condition.

D λ̇|df |2 = −df ∧ d(
u̇

2
− w

2
) = (u̇H + Ḣ)|df |2.

Hence, ∫
M

Ḣ + u̇H|df |2 =

∫
M

−df ∧ d(
u̇

2
− w

2
) = 0.

�

Remark 2.24. It is an important observation that the quaternionic Dirac operator
and the integrability condition is recovered by wedging df with the exact 1-form in
vector valued Schläfli formula. This procedure will be taken to get the discrete Dirac
operator in Chapter 3.

Corollary 2.25. Under an infinitesimal conformal deformation,∫
M

K̇ + 2u̇K|df |2 = 0,

which is the infinitesimal version of Gauss Bonnet theorem.

Proof. Let X be a unit tangent vector.

Re(dw ∧ dN(X, JX)) = Re
(
(Ndf(u̇AX + ȦX)− ∗du̇(X)N)dN(JX)

− (Ndf(u̇AJX + ȦJX)− ∗du̇(JX)N)dN(X)
)

=− 〈u̇JAX + JȦX,AJX〉+ 〈u̇JAJX + JȦJX,AX〉
=− u̇(〈JAX,AJX〉+ 〈AJX, JAX〉)

− (〈JȦX,AJX〉+ 〈ȦJX, JAX〉)

=− 2u̇K − K̇.

Hence, ∫
M

K̇ + 2u̇K|df |2 = −Re(
∫
M

dw ∧ df) = 0.

�
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6. Vector Analysis of the Quaternionic Dirac Operator

We decompose a given λ : M → H into the form λ = g + df(Y ) + hN , where
g, h are real-valued functions, Y is a tangent vector field and N is the normal vector
field on M . We want to study Dλ under this decomposition.

Take a unit tangent vector X on M in the following. We first consider the
action of the Dirac operator on the scalar component.

−df ∧ dg(X, JX) = −df(X)dg(JX) + df(JX)dg(X)

= Ndf(dg(X)X + dg(JX)JX)

= Ndf(grad g).

Then we consider the normal component.

−df ∧ d(hN)(X, JX) =
(
(−df ∧ dh)N − hdf ∧ dN

)
(X, JX)

= Ndf(gradh)N − h
(
df(X)dN(JX)− df(JX)dN(X)

)
= df(gradh)− 2hHN.

Finally we look at the tangential component. Notice that for an immersed
surface in Euclidean space, the induced Levi-Civita connection is as follows: for
any tangent vector field Y and tangent vector Z,

df(∇ZY ) = d(df(Y ))(Z)− 〈d(df(Y ))(Z), N〉N
= d(df(Y ))(Z) + 〈df(Y ), df(AZ)〉N
= d(df(Y ))(Z) + 〈Y,AZ〉N

where A is the self-adjoint shape operator of the immersion f . And we recall the
definition of curl and divergent operator of a tangent vector field Y :

div(Y ) : = 〈X,∇XY 〉+ 〈X,∇XY 〉,
curl(Y ) : = 〈JX,∇XY 〉 − 〈X,∇JXY 〉

= −〈X,∇XJY 〉 − 〈JX,∇JXJY 〉
= −div(JY ).

Then,

−df ∧ d(df(Y ))(X, JX) =− df(X)
(
df(∇JXY )− 〈Y,AJX〉N

)
+ df(JX)

(
df(∇XY )− 〈Y,AX〉N

)
=〈X,∇JXY 〉 − 〈JX,∇XY 〉 − 〈JX,∇JXY 〉N

+ 〈−X,∇XY 〉N − 〈AY, JX〉df(JX)− 〈AY,X〉df(X)

=− curlY − (div Y )N − df(AY ).

The above calculation is concluded with the following theorem.

Theorem 2.26. Given an immersion f : M → R3 and a H-valued function
λ = g + df(Y ) + hN , where g,df(Y ) and hN are its scalar, tangential and nor-
mal components. Then

Dλ = − curlY + df(J grad g −AY + gradh)−
(
(div Y ) + 2hH

)
N.

From the above formula, we can express Laplace operator in terms of the quater-
nion Dirac operator D. This expression has its analogue in the discrete theory
(Theorem 3.33).

Corollary 2.27. For any real valued function g : M → R,

Re(D2 g) = −div(grad g) =: ∆g.
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We can write the formula of the discrete Dirac operator into a matrix form.

D

 g
Y
hN

 =

 0 − curl 0
J grad −A grad

0 −div −2H

 g
Y
hN

 .

And so we have formula for D2.

Corollary 2.28.

D2 =

 ∆ curl ◦A 0
−A J grad −J grad ◦ curl +A2 − grad ◦div −A grad−2 grad ◦H

0 div ◦A +2H div ∆ + 4H2

 .





CHAPTER 3

Conformal Deformations of Triangulated Surfaces

In the previous chapter, it was shown that two immersions related under a spin
transformation are conformally equivalent. In order to discuss the discretized case,
we need a notion of conformal equivalence of triangulated surfaces. In section 1,
conformal equivalence of triangular meshes is reviewed.

With this notation, we consider infinitesimal conformal deformations of trian-
gulated surfaces, by prescribing changes to triangles in sections 2 and 3. These
results are collected from the blog “Discrete Spin Geometry”.

In sections 4 and 5, the discrete analogues of the results from the previous
chapter are derived and shown to have nice properties. The discrete theory also
establishes a connection with the classical result—the Schläfli Formula.

1. Conformal Equivalence of Triangulated Surfaces

This section reviews the definition of the conformal equivalence of triangu-
lated surfaces introduced in Luo (2004) and applied to conformal parametrization
(Springborn et al., 2008). It enjoys important properties as in the smooth case.
Given an immersion into Euclidean space, a conformal structure is induced on the
abstract triangulated surface. A Möbius transformation of a given immersion pro-
duces a new immersion conformally equivalent to the original one. Further study of
this conformal equivalence notion and its connection to complete hyperbolic metric
on punctured surfaces and circle packing theory are discussed in Bobenko et al.
(2010).

Definition 3.1. A discrete metric on a triangulated surface M is a length function
l : E → R>0 such that the triangle inequality is satisfied for all triangles (ijk) ∈ T .

Definition 3.2. An (almost) immersion of a triangulated surface M into R3 is a
continuous map f : M → R3 such that

(1) f is piecewise linear on each triangle;
(2) the image of each triangle of M under f is a non-degenerate triangle in

Euclidean space and
(3) the images of any two neighboring triangles intersect only at their common

edge.

Remark 3.3. From the definition, an immersion of a triangulated surface M is
uniquely determined by its values on vertices. And dihedral angles α ∈ (−π, π) are
well defined on edges.

Given an immersion f of a triangulated surface M into R3, a discrete metric l
is induced on M by

∀eij ∈ E, lij = |fj − fi|.

Definition 3.4. (Luo, 2004) Two discrete metric l and l̃ on M are discretely
conformally equivalent if there exists u : V → R, assigning numbers ui to vertices
vi, such that

l̃ij = e
ui+uj

2 lij . (3.1)

25
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Two immersions f and f̃ are conformally equivalent if their induced discrete metrics
are conformally equivalent.

Remark 3.5. The defined notion indeed satisfies the conditions for being an equiv-
alence relation, i.e. reflexivity, symmetry and transitivity. It defines equivalence
class on discrete metric.

Theorem 3.6. Suppose f : M → R3 is an immersion of a triangulated surface M .
Then for any Möbius transformation φ of R3, the two immersions f and φ ◦ f are
discretely conformally equivalent.

Proof. Möbius transformations can be generated by translation, scaling and
inversion under the unit sphere S2. The conformal equivalence holds obviously
under scaling and translation. By transitivity of the equivalence relation, it suffices
to show the case where φ is the inversion under the unit sphere S2, which follows
from

|| fi
|fi|2

− fj
|fj |2

||2 =
1

|fi|2
+

1

|fj |2
− 2

|fi|2|fj |2
〈fi, fj〉

=
1

|fi|2|fj |2
||fi − fj ||2.

�

To prepare for the following sections, we make a remark.

Remark 3.7. Given an immersion of a triangulated surface into R3, we want to
find conformally equivalent surfaces with prescribed mean curvature half-density, as
analogous to the smooth theory. To avoid inputting more variables than the degree
of freedom of available immersions, we need a clue for the domain to define the
mean curvature half-density, by heuristic counting on the dimension of freedom.

For a triangulated surface in R3 of genus g with V vertices, the degree of freedom
is 3V − 7 up to rigid transformations and scaling. Each length function is in some
conformal class. By the definition of discrete conformal equivalence, the dimension
of conformal class is E−V = 2V −6+6g. The dimension of the space of immersed
triangulated surfaces in a given conformal class is (3V −7)− (E−V ) = V −1−6g.
In particular, for surfaces with genus g = 0, we have (3V − 7)− (E − V ) = V − 1.

2. Infinitesimal Conformal Deformations and the Discrete Dirac
Operator

We are going to look at infinitesimal conformal deformations of triangulated
surfaces and derive the discrete Dirac operator, as an analogue in the smooth case
given by λ̇ under the integrability condition: Dλ̇ = ρ̇. In the smooth theory, by
considering Cartan’s moving frames, we get an exact 1-form (Theorem 2.22). By
wedging it with df , we again get the integrability condition and the quaternionic
Dirac operator (Remark 2.24). We proceed the same way for triangulated surfaces.
By prescribing changes to triangles, we get a co-exact discrete 1-form (Theorem
3.9). And we have integrability condition in terms of the discrete Dirac operator
by wedging it with df (Lemma 3.16).

On a triangulated surface f , we have frames (T,N, T ×N) on oriented edges.

Given a H-valued function λ defined on oriented edges, new frames (T̃ , Ñ , T̃ × Ñ)
can be obtained by multiplying with quaternions on oriented edges e ⊂ φ ∈ F :

(T̃e, Ñφ, T̃e × Ñe) = λ−1e (Te, Nφ, Te ×Nφ)λe.

For these frames coming from a new discrete surface f̃ determined by

df̃ = λdfλ,
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the quaternion function λ necessarily satisfies three conditions:

(1) For any pair of oriented edges (e,−e), the stretch-rotations given by y 7→
λ̄±eyλ±e take df(e) to the same vector df̃(e).

(2) For all oriented edges in the same face φ, the rotation y 7→ λ−1e yλe takes
the face normal Nφ to the same unit vector.

(3) For any face φ consists of oriented edges (e1, e2, e3), the closedness condi-
tion 0 = λe1df(e1)λe1 + λe2df(e2)λe2 + λe3df(e3)λe3 is satisfied.

Now we consider the three conditions under infinitesimal conformal transfor-
mations. Suppose a 1-parameter family of spin transformations of f is given by λ(t)
with λ(0) = 1. We are going to differentiate the equations given in the conditions
with respect to t and evaluate them at t = 0.

We first use an Ansatz to uniquely split λ̇e into scalar, tangential and normal
components

λ̇e :=
σe
2
− ωe

2
Nφ −

Ye
2
. (3.2)

Consider the change of the normal vector Nφ, where e ⊂ φ ∈ F ,

˙(λ−1e Nφλe) =
˙(λeNφλe
|λe|2

)
= λ̇eNφ +Nφλ̇e − (λ̇e + λ̇e)Nφ

= Nφλ̇e − λ̇eNφ
= Ye ×Nφ.

Thus, the condition (2) implies for any face φ consists of oriented edges (e1, e2, e3),

Yφ := Ye1 = Ye2 = Ye3 .

From condition (3), we have

Im
(
df(e1)λ̇e1 + df(e2)λ̇e2 + df(e3)λ̇e3

)
= 0.

Notice that

Re(df(e1)λ̇e1 + df(e2)λ̇e2 + df(e3)λ̇e3) = 〈df(e1) + df(e2) + df(e3),
Yφ
2
〉 = 0.

Hence,

df(e1)λ̇e1 + df(e2)λ̇e2 + df(e3)λ̇e3 = 0.

By substituting Ansatz (3.2),

df(e1)(σe1 − ωe1Nφ) + df(e2)(σe2 − ωe2Nφ) + df(e3)(σe3 − ωe3Nφ) = 0. (3.3)

Note that we have the following equalities for e1, e2, e3 ⊂ φ,

0 = 〈Nφdf(ei), df(ei)〉,
2 Area(φ) = 〈Nφdf(ei), df(ei+1)〉,

〈Nφdf(ei), Nφdf(ei)〉 = 〈df(ei), df(ei)〉.

Since df(e1) ∈ span{Nφdf(e2), Nφdf(e3)}, from the above equalities

df(e1) =
〈df(e1), df(e3)〉
〈Nφdf(e2), df(e3)〉

Nφdf(e2) +
〈df(e1), df(e2)〉
〈Nφdf(e3), df(e2)〉

Nφdf(e3)

=
〈df(e1), df(e3)〉
〈Nφdf(e3), df(e1)〉

Nφdf(e2) +
〈df(e1), df(e2)〉
〈Nφdf(e2), df(e1)〉

Nφdf(e3)

= cot(β3)Nφdf(e3)− cot(β2)Nφdf(e2).

Similarly, by cyclic permutation, we also have

df(e2) = cot(β1)Nφdf(e1)− cot(β3)Nφdf(e3),
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df(e3) = cot(β2)Nφdf(e2)− cot(β1)Nφdf(e1).

Substituting them into (3.3),

0 = σ1
(

cot(β3)Nφdf(e3)− cot(β2)Nφdf(e2)
)

+ ω1Nφdf(e1)

+ σ2
(
cot(β1)Nφdf(e1)− cot(β3)Nφdf(e3)

)
+ ω2Nφdf(e2)

+ σ3
(
cot(β2)Nφdf(e2)− cot(β1)Nφdf(e1)

)
+ ω3Nφdf(e3)

=
(
ω1 + cotβ1(σ2 − σ3)

)
Nφdf(e1)

+
(
ω2 + cotβ2(σ3 − σ1)

)
Nφdf(e2)

+
(
ω3 + cotβ3(σ1 − σ2)

)
Nφdf(e3).

Since Nφdf(e1),Nφdf(e2) and Nφdf(e3) span an affine plane and

Nφdf(e1) +Nφdf(e2) +Nφdf(e3) = 0,

there exists unique ωφ such that

ωφ = ω1 + cotβ1(σ2 − σ3) = ω2 + cotβ2(σ3 − σ1) = ω3 + cotβ3(σ1 − σ2).

Rewriting the formula, we get

ωe1 = ωϕ − cotβ1(σe2 − σe3),

ωe2 = ωϕ − cotβ2(σe3 − σe1),

ωe3 = ωϕ − cotβ3(σe1 − σe2),

where βi is the angle of the triangle φ at the vertex i opposite to the edge ei.
For a conformal deformation, by the definition of the conformal equivalence,

the scaling is the average of some real-valued function u defined on vertices, which
is uniquely determined by σ on edges,

σe1 =
u̇2 + u̇3

2
,

σe2 =
u̇3 + u̇1

2
,

σe3 =
u̇1 + u̇2

2
.

So,

ωe1 = ωϕ −
cotβ1

2
(u̇3 − u̇2),

ωe2 = ωϕ −
cotβ2

2
(u̇1 − u̇3),

ωe3 = ωϕ −
cotβ3

2
(u̇2 − u̇1).

Hence, the conditions (2) and (3) imply under a conformal deformation, there exist
a unique scalar function u̇i defined on vertices, ωφ on faces and a vector valued
function Yφ ∈ R3 with Yφ ⊥ Nφ defined on faces such that

λ̇ei =
u̇j + u̇k

4
− 1

2
(ωϕ −

cotβi
2

(u̇k − u̇j))Nϕ −
Yϕ
2
.

We then define on each face and each vertex new variables

Zϕ = −(
ωϕNϕ

2
+
Yϕ
2

) ∈ R3,

ui =
u̇i
2
.



2. INFINITESIMAL CONFORMAL DEFORMATIONS AND THE DISCRETE DIRAC OPERATOR29

Rewrite λ̇ei as

λ̇ei =
uj + uk

2
+ Zϕ +

cotβi
2

(uk − uj)Nϕ.

We now study the first condition. Differentiating the equation given in the
condition (1) yields

λ̇edf(e) + df(e)λ̇e = λ̇−edf(e) + df(e)λ̇−e

Im
(
df(e)λ̇e

)
= Im

(
df(e)λ̇−e

)
Re(λ̇e)df(e) + df(e)× Im(λ̇e) = Re(λ̇−e)df(e) + df(e)× Im(λ̇−e)

It implies

Re(λ̇e) = Re(λ̇−e)

Im(λ̇e)− Im(λ̇−e)//df(e)

Hence, on every oriented edge e, there exists unique real number α̇e with α̇e = α̇−e
such that

λ̇−e = λ̇e −
α̇e
2
Te.

Lemma 3.8. If the immersed surface deforms according to λ̇, then α̇e in the above
equation is the change of the dihedral angle at the edge e.

Proof. Suppose eij ∈ E and (ijk), (jik̃) ∈ F are neighboring triangles. De-
note α as the dihedral angle on eij .

sinα = 〈Nijk ×Njik̃, Teij 〉

Differentiating both sides,

α̇ cosα =〈Ṅijk ×Njik̃ +Nijk × Ṅjik̃, Teij 〉

=〈
(
Nijk × Im(2λ̇eij )

)
×Njik̃ +Nijk ×

(
Njik̃ × Im(2λ̇eji)

)
, Teij 〉

=
〈

Im(2λ̇eij )〈Njik̃, Nijk〉 −Nijk〈Njik̃, Im(2λ̇eij )〉

+Nijk̃〈Njik, Im(2λ̇eji)〉 − Im(2λ̇eji)〈Njik̃, Nijk〉, Teij
〉

= cosα〈Im(2λ̇eij )− Im(2λ̇eji), Teij 〉.

Since we know

Re(λ̇e) = Re(λ̇−e),

Im(λ̇e)− Im(λ̇−e)//df(e),

we have

λ̇eij − λ̇eji =
α̇

2
Teij .

�

The condition (1) then becomes

Zϕ̃jik̃
− Zϕijk

= (uj − ui)(
cotβk

2
Nϕijk

+
cotβk̃

2
Nϕjik̃

)−
α̇eij

2
Teij . (3.4)

This formula is analogous to the vector-valued Schläfli formula in the smooth
theory (Theorem 2.22). We first formulate it here as a theorem and study this
co-exact 1-form further in Section 4.
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Theorem 3.9. Suppose an infinitesimal conformal deformation of an immersed
triangulated surface M is given by (u, Z) ∈ RV+3F . Then, the discrete 1-form on
each edge eij given by

du(eij)(
cotβk

2
Nϕijk

+
cotβk̃

2
Nϕik̃j

)−
α̇eij

2
Teij

is co-exact, where βi is the interior angle of triangle (ijk) at vertex i and α̇eij is
the change of dihedral angle on edge (ij).

We proceed to derive the discrete Dirac operator by multiplying both sides
by df as in the smooth case (Remark 2.24) . In the following, we write dZ(∗e) :=

Z(left(e))−Z(right(e)) and df(∗e) := ( cot β
2 Nϕ+ cot β̃

2 Nϕ̃)df(e), which is the vector
from circumcenter of the right face of the edge e to that of the left face under the
immersion f . We rewrite Equation (3.4) as

−dZ(∗eij) = du(eij)(
cotβk

2
Nϕijk

+
cotβk̃

2
Nϕjik̃

)−
α̇eij

2
Teij .

We multiply both sides by df(eij) via an inner product and a cross product

〈df(e), dZ(∗e)〉 =
α̇e
2
|df(e)|, (3.5)

−df(e)× dZ(∗e) + df(∗e)du(e) = 0. (3.6)

The following theorem concludes the above derivation.

Theorem 3.10. Denote RV+3F as the space of pairs (u, Z), where u is a real valued
function defined on vertices and Z is a R3-valued function on faces. Suppose an
infinitesimal conformal deformation of f : M → R3 is given by ḟ . Then, there
exists unique (u, Z) ∈ RV+3F such that for any face φ = (ijk)

λ̇ejk =
uj + uk

2
+ Zφ +

cotβi
2

(uk − uj)Nφ. (3.7)

and for any edge e ∈ Ẽ

− df(e)× dZ(∗e) + df(∗e)du(e) = 0. (3.8)

It relates to ḟ via

dḟ(e) = 2 Im(df(e)λ̇e) = 2 Im(df(e)λ̇−e).

Motivated by Remark 3.7, we define ρ̇ : V → R as

ρ̇i :=
∑
ij∈E:i

〈df(eij), dZ(∗eij)〉.

We then further have

ρ̇i =
∑
ij∈E:i

α̇eij
2
|df(eij)|.

Corollary 3.11. Suppose f : M → R3 is an immersion of a simply connected
closed triangulated surface. Given (u, Z) ∈ RV+3F satisfying (3.8) and λ̇ in the

form of (3.7), then there exists an infinitesimal conformal deformation of f, ḟ :
M → R3 such that

dḟ = 2 Im(df(e)λ̇e)

Proof. Note that since (u, Z) ∈ RV+3F satisfying (3.8) implies

Im
(
df(e)λ̇e

)
= Im

(
df(e)λ̇−e

)
.
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Hence, the change of edge vector df(e) is well defined by λ̇. And λ̇ is of the form
(3.7) implies

Im
(
df(e1)λ̇e1 + df(e2)λ̇e2 + df(e3)λ̇e3

)
= 0.

So, 2 Im(df(e)λ̇e) is a closed discrete 1-form. For genus 0 surface, a closed 1-form is

exact. Thus, there exists an infinitesimal conformal deformation of f , ḟ : M → R3

such that
dḟ = 2 Im(df(e)λ̇e),

which is also conformal since

Re
(
λ̇ejk

)
=
uj + uk

2
.

�

Remark 3.12. In the above theorem, λ̇ given by the formula (3.7) should be re-
garded as having its real part u on vertices and its imaginary part Z on faces.

In order to define the discrete Dirac operator, we need some notations.

Definition 3.13. Denote RV+2E as the space of pairs (α,W ), where α is a real
valued function defined on vertices and W is R3-valued function on (unoriented)
edges such that on every edge e, We is perpendicular to df(e).

For a general pair (u, Z) ∈ RV+3F , as before,

ρ̇i :=
∑
ij∈E
〈df(eij), dZ(∗eij)〉

is a scalar valued discrete 2-form on vertices and

Ue := −df(e)× dZ(∗e) + df(∗e)du(e)

is a vector valued function on edges, which are regarded as discrete 2-forms on
edges.

Given a 2 form,we can define a functional on functions by multiplying them
together and then take the integration over the surface.

Definition 3.14. (ρ̇, U) in above formula define a linear functional on RV+2E by

((ρ̇, U), (α,W ))H =
∑
i

ρ̇iαi +
∑
ij

〈Uij ,Wij〉 ∀(α,W ) ∈ RV+2E .

Hence, (ρ̇, U) can be identified as an element in (RV+2E)∗.

We now define the quaternion Dirac operator in the discrete analogue.

Definition 3.15. The discrete Dirac operator is a linear map D : RV+3F →
(RV+2E)∗, (u, Z) 7→ (ρ̇, U) where

ρ̇i =
∑
ij∈E:i

〈df(eij), dZ(∗eij)〉,

Ue = −df(e)× dZ(∗e) + df(∗e)du(e).

In particular, the image of D is regarded as a H-valued function with its real part
Re(D) = ρ̇ on vertices and imaginary part Im(D) = U on edges.

We rewrite the necessary condition (3.8) for conformal deformations in terms
of D from Theorem (3.10).

Lemma 3.16. If (u, Z) ∈ RV+3F gives an infinitesimal conformal deformation of
f : M → R3 , it satisfies

Im D(u, Z) = 0.

Remark 3.17. The pairing ( , )H is motivated by the formula

〈λ1, λ2〉H = Re(λ1) Re(λ2) + 〈Im(λ1), Im(λ2)〉R3 .
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Remark 3.18. The image of D should be identified as in (RV+2E)∗. Given two
smooth real functions λ1, λ2 on M, an area 2-form dA is necessary in order to
define their inner product by

∫
M
λ1λ2 dA. The same should hold on triangulated

surfaces. Area elements at vertices and edges are necessary to weight the products
in RV+2E. Since the image of D is a discrete 2-form, it already incorporate area
elements. Hence it can be naturally paired up with elements in RV+2E without
weighted by area elements, thus defining an element in (RV+2E)∗.

We look at a consequence of the above derivation.

Corollary 3.19. (Scalar Schläfli Formula) Suppose a conformal immersion f :
M → R3 is under an infinitesimal conformal deformation, then the changes of
dihedral angles satisfies ∑

i∈V
ρ̇i =

∑
e∈E

α̇e|df(e)| = 0.

Proof. Since the infinitesimal conformal deformation is given by some λ̇, its
corresponding (u, Z) satisfies∑

ij∈E:i

α̇ij
2
|df(eij)| = (Re D(u, Z))i

=
∑
ij∈E:i

〈df(eij), dZ(∗eij)〉.

Hence, ∑
ij∈E

α̇ij |df(eij)| =
∑
i

∑
ij∈E:i

α̇ij
2
|df(eij)|

=
∑
ij∈E
〈df(eij), dZ(∗eij)〉.

Notice that since the summand in the right hand side is an exact discrete 2-form,
the sum is zero. We get ∑

e

α̇e|df(e)| = 0.

�

Remark 3.20. Scalar Schläfli Formula holds for general deformations. (See Pak

(2010)) One can notice that the crucial point is
α̇ij

2 |df(eij)| = 〈df(eij), dZ(∗eij)〉.
Observing the derivation of such condition, it does not involve any conformality
assumption.

As in the smooth theory, we are interested in the dimension of Ker(D). An
observation from the definition of D leads to the following.

Corollary 3.21. The kernel of D contains constant functions (u, Z) ∈ RV+3F

where u is constant on all vertices and Z is constant on all faces. Hence,

dim
(

Ker(D)
)
≥ 4.

3. Adjoint of the Discrete Dirac Operator

The quaternionic Dirac operator in the smooth theory is self-adjoint. Although
the domain and the target space of the discrete Dirac operator D : RV+3F →
(RV+2E)∗ are different and so not self-adjoint, D and its adjoint still share nice
properties and consequences as in the smooth case. We are now going to derive the
adjoint of D, D∗ : RV+2E → (RV+3F )∗, with respect to ( , )H
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In the following, let (u, Z) ∈ RV+3F and (α,W ) ∈ RV+2E . By definition, D∗

satisfies (
(u, z),D∗(α,W )

)
H =

(
D(u, z), (α,W )

)
H.

In particular, consider the following,

((u, z),D∗(α, 0))H =(D(u, z), (α, 0))H

=
∑
i

αi
∑
ij∈E
〈df(eij), dZ(∗eij)〉

=
∑
ijk∈F

〈αidf(eij) + αjdf(ejk) + αkdf(eki), Zijk〉

−
∑
ijk∈F

〈αjdf(eji) + αkdf(ekj) + αidf(eik), Zijk〉

=−
∑
ijk∈F

〈αidf(ejk) + αjdf(eki) + αkdf(eij), Zijk〉,

((u, 0),D∗(0,W ))H =(D(u, 0), (0,W ))H

=
∑
ij∈E
〈df(∗eij)du(eij),Wij〉

=−
∑
i∈V

∑
ij∈E:i

ui〈df(∗eij),Wij〉,

((0, Z),D∗(0,W ))H =(D(0, Z), (0,W ))H

=
∑
ij∈E
〈−df(eij)× dZ(∗eij),Wij〉

=
∑
ij∈E
−〈dZ(∗eij),Wij × df(eij)〉

=
∑
ijk∈F

−〈Zijk,Wij × df(eij) +Wjk × df(ejk) +Wki × df(eki)〉

By the linearity of D∗, we have

Lemma 3.22. The adjoint D∗ of the discrete Dirac operator D is the map D∗ :
RV+2E → (RV+3F )∗(

u
W

)
7→

 i 7→ −
∑
ij∈E〈df(∗eij),Wij〉

ij 7→ df(eij)×Wij + df(ejk)×Wjk + df(eki)×Wki

−
(
αidf(ejk) + αjdf(eki) + αkdf(eij)

)
 .

In the following, given any vector U on edge e, write U⊥ as the component of
U orthogonal to df(e).

Lemma 3.23. The kernel of D∗ contains constant functions in the sense of the
proof and

dim(Ker D∗) ≥ 4.

Proof. Let α be a constant real valued function on vertices, W be a constant
R3-vector on edges. Then (α,W⊥) ∈ RV+2E and(

Re D∗(α,W⊥)
)
i

=−
∑
ij∈E
〈df(∗eij),W⊥ij 〉

=−
∑
ij∈E
〈df(∗eij),Wij〉

=0,(
Im D∗(α,W⊥)

)
ijk

=df(eij)×W⊥ij + df(ejk)×W⊥jk + df(eki)×W⊥ki
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−
(
αidf(ejk) + αjdf(eki) + αkdf(eij)

)
=df(eij)×Wij + df(ejk)×Wjk + df(eki)×Wki

−
(
αidf(ejk) + αjdf(eki) + αkdf(eij)

)
=0.

Suppose given a constant vector W as above with W⊥ ≡ 0, it implies We is
parallel to df(e) for every edge e. Since {df(e)|e ∈ E} span at least two dimension
subspace of R3, it implies W ≡ 0. Hence, the kernel of D* contains constant
functions in the above sense and its dimension is at least 4. �

Lemma 3.24. Denote Ker Da ⊂ (RV+3F )∗ as the annihilator of Ker D, i.e. the
set of linear functionals on RV+3F which vanish on Ker D. Similarly, we have
(Ker D∗)a. Then

Im D∗ = (Ker D)a , Im D = (Ker D∗)a,

and

dim(Ker D) = dim(Ker D∗).

Proof. Notice that

((u, z), D∗(α,W ))H = (D(u, z), (α,W ))H.

We have

Im D∗ ⊆ (Ker D)a , Im D ⊆ (Ker D∗)a.

It implies

dim(Im D∗) ≤ dim((Ker D)a) = V + 3F − dim(Ker D)

= V + 2E − dim(Ker D)

= dim(Im D)

and

dim(Im D) ≤ dim((Ker D∗)a) = V + 2E − dim(Ker D∗)

= V + 3F − dim(Ker D∗)

= dim(Im D∗).

Hence all the equalities hold and the claim is proved. �

Lemma 3.25. Suppose dim(Ker D∗) = 4, then for all ρ̇ ∈ RV and U ∈ R2E,∑
i∈V

ρ̇ = 0 and
∑
e∈E

Ue = 0⇔ (ρ̇, U) ∈ Im D .

Proof. Suppose there exists (u, Z) ∈ RV+3F such that D(u, Z) = (ρ̇, U).
Since the image of D(u, Z) is exact 2-form, its summation over the surface is zero.
Hence ∑

i∈V
ρ̇ = 0 and

∑
e∈E

Ue = 0.

For another direction, the assumption dim(Ker D∗) = 4 implies Ker D∗ consists
of exactly constants function. Therefore,∑

i∈V
ρ̇ = 0 and

∑
e∈E

Ue = 0

implies (ρ̇, U) ∈ (Ker D∗)a = Im D. �
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Given (u, Z) ∈ RV+3F with D(u, Z) = (ρ̇, 0), we define W ∈ R2E as

λ̇ejk =
uj + uk

2
+ Zϕ +

cotβi
2

(uk − uj)Nϕ =:
uj + uk

2
+
Wjk

2
.

Then,

We −W−e = 2(λ̇e − λ̇−e)//df(e).

Hence, W⊥e = W⊥−e and W⊥ ∈ R2E is well defined.

Theorem 3.26. Given (u, Z) ∈ RV+3F with D(u, Z) = (ρ̇, 0), Then,

(u,W⊥) ∈ RV+2E

and

D∗(u,W⊥) = (ρ̇, 0).

The converse is also true. Given (u,W ) ∈ RV+2E with D∗(u,W ) = (ρ̇, 0),
there exists unique (u, Z) ∈ RV+3F such that for any edge e ⊂ φ ∈ F ,

We

2
= (Zϕ +

cotβi
2

(u̇k − u̇j)Nϕ)⊥.

The element (u, Z) defined as above satisfies

D(u, Z) = (ρ̇, 0).

Hence, the solutions of Im D(u, Z) = 0 correspond one-to-one to the solutions of
Im D(u,W ) = 0.

Proof. Given (u, Z) ∈ RV+3F with (D(u, Z)) = (ρ̇, 0), from formula (3.7) we
define W on edges via

λ̇ejk =
uj + uk

2
+ Zϕ +

cotβi
2

(uk − uj)Nϕ =:
uj + uk

2
+
Wjk

2

The assumption Im(D(u, Z)) = 0 implies

(u,W⊥) ∈ RV+2E .

Recall that the construction of λ̇ satisfies

0 = Im(df(eij)λ̇eij + df(ejk)λ̇ejk + df(eki)λ̇eki
)

=df(eij)×
Wij

2
+ df(ejk)× Wjk

2
+ df(eki)×

Wki

2

+
ui + uj

2
df(eij) +

uj + uk
2

df(ejk) +
uk + ui

2
df(eki)

=df(eij)×
Wij

2
+ df(ejk)× Wjk

2
+ df(eki)×

Wki

2

− ui
2
df(ejk)− uj

2
df(eki)−

uk
2
df(eij).

Hence,

Im D∗((u,W⊥)) ≡ 0.

We now want to compute Re D∗((u,W⊥)). Notice that

Wji −Wij = 2(λ̇ji − λ̇ij) = −α̇ijTeij .

Also, in a triangle ijk ∈ F ,

Wij

2
− Wki

2
=
(cotβk

2
(uj − ui)−

cotβj
2

(uk − uj)
)
Nijk.

So,

〈Wij −Wki, df(φi,ijk)〉 = 0
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where df(φi,ijk) denote the vector from vertex i to the circumcenter of triangle
(ijk) under the image of f . Summing it around a vertex i,

0 =
∑

ijk∈F :i

〈Wij −Wki, df(φi,ijk)〉

=
∑
ij∈E:i

〈Wij , df(φi,ijk)〉 − 〈Wji, df(φi,ijk̃)〉

=
∑
ij∈E:i

〈Wij , df(φi,ijk)− df(φi,ijk̃)〉+ 〈Wij −Wji, df(φi,ijk̃)〉

=
∑
ij∈E:i

〈Wij , df(∗eij)〉+ 〈α̇ijTeij , df(φi,ijk̃)〉.

Hence,

(Re D∗((u,W⊥)))i = −
∑
ij∈E:i

〈Wij , df(∗eij)〉

=
∑
ij∈E:i

〈α̇ijTeij ,
df(eij)

2
+

cotβk̃
2

df(eij)×Nijk̃〉

=
∑
ij∈E:i

α̇

2
|df(eij)|

= ρ̇i.

For the converse, since Im D∗(u,W⊥) = 0,the existence and uniqueness of (u, Z)
with Im D(u, Z) = 0 is ensured by Theorem (3.10). And from the first part of the
theorem, we have

Re D(u, Z) = Re D∗(u,W⊥).

�

Remark 3.27. The above result should be expected since the quaternion Dirac
operator in the smooth theory is self adjoint.

Remark 3.28. With the theorem, one could calculate under an infinitesimal con-

formal deformation ρ̇i =
∑
ij∈E:i

α̇ij

2 |df(e)| directly by λ̇ defined on edges, without

representing it as (u, Z) ∈ RV+3F .

4. Infinitesimal Conformal Deformations of High Genus Surfaces

In Remark 3.7, we have heuristic argument that the dimension of immersed
triangulated surfaces in a given conformal class is (3V −7)− (E−V ) = V −1−6g.
The following shows its orthogonal complement in the space of R-valued functions
on vertices.

In the following, we implicitly use an identification between discrete 1-forms
and dual 1-forms in order to apply Hodge decomposition theorem (1.19). The result
turns out to be independent of the identification used.

Theorem 3.29. Suppose f : M → R3 is an immersion of a triangulated surface M
of genus g with dim(Ker D) = 4 and ω1, . . . , ω2g form a basis of harmonic 1-forms.
Let ẽ1 := (1, 0, 0),ẽ2 = (0, 1, 0),ẽ3 = (0, 0, 1).

Then for all k = 1, 2, . . . , 2g and l = 1, 2, 3, there exists (ukl, Zkl) ∈ RV+3F

such that

D(ukl, Zkl) =

(
i 7→

∑
ij∈E:i〈ẽl, ωk(∗eij)df(eij)〉

ij 7→ ωk(∗eij)ẽl × df(eij)

)
.
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And given (u, Z) ∈ RV+3F with D(u, Z) = (ρ̇, 0), we have

2 Im(dfλ̇) is exact⇔
∑
i∈V

ρ̇iukl,i = 0 ∀k = 1, 2, . . . , 2g and l = 1, 2, 3,

where λ̇ is given by the formula (3.7).
Hence, combined with Lemma 3.25, the vector space

{ρ̇ ∈ RV |
∑

ρ̇ = 0,
∑

ρ̇ukl = 0 ∀k = 1, 2, . . . , 2g and l = 1, 2, 3}

is the space of all nontrivial infinitesimal conformal deformations of f , i.e. up to
Euclidean transformations.

Proof. Since ωk is a harmonic 1-form and hence co-closed,∑
i∈V

∑
ij∈E:i

〈ẽl, ωk(∗eij)df(eij)〉 =2
∑
ij∈E
〈ẽl, ωk(∗eij)df(eij)〉

=2
∑
j∈V
〈
∑
ij∈E:j

ωk(∗eij)ẽl, fj〉

=0.

On the other hand,∑
ij∈E

ωk(∗eij)ẽl × df(eij) =
∑
j∈V

( ∑
ij∈E:j

ωk(∗eij)
)
ẽl × fj

)
=0.

By Lemma (3.25), the sums being zero imply the existence of (ukl, Zkl) as claimed.
Given (u, Z) ∈ RV+3F with D(u, Z) = (ρ̇, 0), define (u,W⊥) ∈ RV+2E as

previously via

λ̇ejk =
uj + uk

2
+ Zϕ +

cotβi
2

(uk − uj)Nϕ =:
uj + uk

2
+
Wjk

2
.

The condition Im(D(u, Z)) = 0 implies 2 Im(dfλ̇) is a closed discrete 1-form. By
Hodge decomposition theorem (1.19), we have

2 Im(dfλ̇) is exact⇔
∑
e∈E

2 Im(dfλ̇)ωk(∗e) = 0 ∀k = 1, 2, 3, . . . , 2g

⇔
∑
e∈E
〈ẽl, 2 Im(dfλ̇)ωk(∗e)〉 = 0 ∀k = 1, 2, 3, . . . , 2g, l = 1, 2, 3.

Then, for all k = 1, 2, 3, . . . , 2g, l = 1, 2, 3

0 =
∑
e∈E
〈ẽl, 2 Im(dfλ̇)ωk(∗e)〉

=
∑
ij∈E
〈ẽl, ωk(∗eij)

(
df(eij)×Weij + (ui + uj)df(eij)

)
〉

=
∑
i∈V

∑
ij∈E:i

〈ẽl, ωk(∗eij)df(eij)〉ui +
∑
ij∈E
〈ωk(∗eij)ẽl × df(eij),Wij〉

= (D(ukl, Zkl), (u,W ))H

= ((ukl, Zkl),D
∗(u,W ))H

= ((ukl, Zkl), (ρ̇, 0))H

=
∑
i∈V

ρ̇iukl,i.

�
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These 6g equations and the constant function 1 are not always linearly inde-
pendent. As in the smooth theory (Theorem 2.21), their linearly dependence is
equivalent to the existence of some special closed 1-form. The proof for the discrete
case is the same as in the smooth case. The only difference is that the representation
of quaternion functions (u, Z) ∈ RV+3F here is only R-linear instead of H-linear.
It makes the computation complicated.

Theorem 3.30. Suppose M is a closed triangulated surface with genus g and f is
an immersion with dim(Ker D) = 4. Then the 6g equations ukl in Theorem 3.29
and the constant function 1 defined on vertices are R-linearly dependent if and only
if there exist a R3-valued co-closed discrete 1-form τ such that

df(eij)× τ(∗eij) = 0 ∀eij ∈ E,∑
ij∈E:i

〈df(eij), τ(∗eij)〉 = 0 ∀i ∈ V.

Proof. Suppose there exists a R3-valued co-closed discrete 1-form τ such that

df(eij)× τ(∗eij) = 0 ∀eij ∈ E,∑
ij∈E:i

〈df(eij), τ(∗eij)〉 = 0 ∀i ∈ V.

The co-closed 1-form can be integrated over dual graph of the triangulation. Denote
a1, b1, a2, b2, . . . , ag, bg be closed cycles on the dual graph representing a canonical
basis of its homology and let ω1, ω2, . . . , ω2g be a basis of discrete harmonic 1-forms
such that

∑
aj
ωi =

∑
bj
ωg+i = δij and

∑
aj
ωg+i =

∑
bj
ωi = 0. Define constant

R3 vectors Ai :=
∑
ai
τ and Bi :=

∑
bi
τ . Then,

τ −
g∑
k=1

Akωk −Bkωg+k

is a R3-valued co-exact dual 1-form. And hence there exists a dual 0-form µ such
that du = τ −

∑2g
k=1Akωk −Bkωk. Then we have on any edge eij

df(eij)× du(∗eij) = −
g∑
k=1

df(eij)×Akωk(∗eij) + df(eij)×Bkωg+k(∗eij)

and on any vertex i∑
ij∈E:i

〈df(eij), du(∗eij)〉 =
∑
ij∈E:i

g∑
k=1

〈df(eij), Ak〉ωk(∗eij) + 〈df(eij), Bk〉ωg+k(∗eij).

Hence, by writing Ak = (A1
k, A

2
k, A

3
k) and Bk = (B1

k, B
2
k, B

3
k), we have

D
(
(0, u)−

g∑
k=1

3∑
l=1

Alk(ukl, Zkl)−
g∑
k=1

3∑
l=1

Blk(u(g+k)l, Z(g+k)l)
)

= 0.

Since dim Ker D = 4, there exists (c0, c) ∈ R1+3 such that

(0, u)−
g∑
k=1

3∑
l=1

Alk(ukl, Zkl)−
g∑
k=1

3∑
l=1

Blk(u(g+k)l, Z(g+k)l) ≡ (c0, c).

It implies
g∑
k=1

3∑
l=1

Alkukl +

g∑
k=1

3∑
l=1

Blku(g+k)l ≡ −c0.

Hence, the 6g + 1 equations are R-linearly dependent.
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We now prove another direction. Suppose there exists constants Alk, B
l
k, c ∈ R

such that
g∑
k=1

3∑
l=1

Alkukl +

g∑
k=1

3∑
l=1

Blku(g+k)l ≡ c.

Without loss of generality, we assume c = 0. Then we define

(0, Z) :=

g∑
k=1

3∑
l=1

Alk(ukl, Zkl) +

g∑
k=1

3∑
l=1

Blk(u(g+k)l, Z(g+k)l) ∈ RV+3F

and a R3-valued dual 1-form

τ = dZ −
g∑
k=1

Akωk −Bkωg+k.

Since τ is a linearly combination of co-closed dual 1-forms, τ is also co-closed. In
addition, on any edge eij and vertex i,

df(eij)× τ(∗eij) =df(eij)× dZ(∗eij)

−
g∑
k=1

df(eij)×Akωk(∗eij) + df(eij)×Bkωg+k(∗eij)

=− Im(D(0, Z)) + Im
(

D
( g∑
k=1

3∑
l=1

Alk(ukl, Zkl)

+

g∑
k=1

3∑
l=1

Blk(u(g+k)l, Z(g+k)l)
))

=0

and∑
ij∈E:i

〈df(eij), τ(∗eij)〉 =
∑
ij∈E:i

(
〈df(eij), dZ(∗eij)〉

−
g∑
k=1

〈df(eij), Ak〉ωk(∗eij) + 〈df(eij), Bk〉ωg+k(∗eij)
)

= Re(D(0, Z))− Re
(

D
( g∑
k=1

3∑
l=1

Alk(ukl, Zkl)

+

g∑
k=1

3∑
l=1

Blk(u(g+k)l, Z(g+k)l)
))

=0.

�

Generally, similar to the smooth case, we have conditions on λ̇ to ensure the
closedness and exactness of the discrete 1-form 2 Im(dfλ̇). We start with the closed-
ness condition. It is a special case of vector-valued Schläfli formula in Souam and
Schlenker (2008) by considering infinitesimal deformations of closed polygons.

Corollary 3.31. Suppose (u, Z) ∈ RV+3F satisfies Im D(u, Z) = 0. Then,

0 =
∑

ijk∈F :i

β̇i,ijkNijk − α̇eijTeij

where βi,ijk is the face angle of triangle (ijk) at vertex i and αeij is the dihedral
angle at the edge eij.
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Proof. For any vertex i, summing Zϕ̃ − Zϕ over all the edges starting at it,

0 =
∑
ij∈E:i

(uj − ui)(
cotβk,ijk

2
Nijk +

cotβk̃,ik̃j
2

Nik̃j)− α̇eijTeij

=
∑

ijk∈F :i

((uj − ui)
cotβk,ijk

2
+ (uk − ui)

cotβj,ijk
2

)Nijk − α̇eijTeij .

From previous calculation,

σeij =
ui + uj

2

and

β̇i = ωki − ωij
= − cotβj(σij − σjk) + cotβk(σjk − σki)

= (uk − ui)
cotβj

2
+ (uj − ui)

cotβk
2

.

Hence, ∑
ijk∈E:i

β̇i,ijkNijk − α̇eijTeij = 0.

�

We now investigate the exactness condition. Suppose we have an oriented
triangulated surface. A closed discrete curve on the dual surface M∗ is called a
triangle strip.

Corollary 3.32. Suppose we have an oriented triangulated surface f : M → R3

with arbitrary genus. Given (u, Z) ∈ RV+3F with Im D(u, Z) = 0, we have λ̇ on
oriented edges which describes changes of edge vector. Then, such a variation of
edge vectors gives rise to an infinitesimal deformation of the surface, i.e.

2 Im(dfλ̇) is exact

if and only if for any triangle strip (See Figure 3.1)

2n∑
i=1

˙̀
i,i+1Ti,i+1 =

∑
i

γi ×
( ∑

ijk∈F :(ijk) is
between Ti−1,i and
Ti,i+1 in the strip

β̇ijk,iNijk −
∑

ij∈E:(ij) is
between left face of
Ti−1,i and Ti,i+1

in the strip

α̇ijTij
)
.

Proof. Consider triangle strip S on M with ∂S = C1 ∪ C2 where C1, C2 are
closed discrete curves. Consider a zic-zac closed curve γ with vertices γ1, γ2, . . . , γ2n
as in Figure 3.1,

Notice that

γi+1 − γi = `i,i+1Ti,i+1

˙(
γi+1 − γi

)
= ˙̀

i,i+1Ti,i+1 + `i,i+1Ti,i+1 × Im(λTi,i+1
)

= l̇i,i+1Ti,i+1 + (γi+1 − γi)× Im(λTi,i+1).

The curve C1 remaining closed is equivalent to

0 =

n∑
i=1

˙(
γ2i+1 − γ2i−1

)
=

n∑
i=1

˙(
γ2i+1 − γ2i + γ2i − γ2i−1

)
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`1,2T1,2

`2,3T2,3

`3,4T3,4

`4,5T4,5

`5,6T5,6

γ1

γ3C1

C2

γ5

γ2

γ4

γ6

Figure 3.1. A triangle strip

=

2n∑
i=1

˙(
γi+1 − γi

)
=

2n∑
i=1

˙̀
i,i+1Ti,i+1 +

∑
i

γi ×
(

Im(λTi−1,i
)− Im(λTi,i+1

)
)

=

2n∑
i=1

˙̀
i,i+1Ti,i+1 −

∑
i

γi × (
∑

ijk∈F :(ijk) is
between Ti−1,i and
Ti,i+1 in the strip

β̇ijk,iNijk −
∑

ij∈E:(ij) is
between left face of
Ti−1,i and Ti,i+1

in the strip

α̇ijTij)

�

5. Vector Analysis of the Discrete Dirac Operator

In the smooth theory, Re(D2) on real valued functions is the Laplace operator
as shown in Corollary 2.27. The same form is considered for the discrete Dirac
operator. It coincides up to a positive constant with the cotangent Laplace operator,
which is a famous discretized Laplace operator on triangulated surfaces introduced
by Pinkall and Polthier (1993).

Theorem 3.33. For any real-valued function defined on vertices α : V → R, the
real part of D 1

A D∗(α, 0) on vertices is given by

(D
1

A
D∗(α, 0))i = −2

∑
ij∈E:i

(cotβk + cotβk̃)(αj − αi)

and the imaginary part on edges is given by

(D
1

A
D∗(α, 0))ij = 2(αj − αi)(Nijk −Nik̃j),

where A : F → R+ is the area of the corresponding triangle under the immersion
and (ijk), (ijk̃) ∈ F are faces sharing an edge (ij).

Proof. We first consider the real part on vertices.

D∗(α, 0)ijk =−
(
αidf(ejk) + αjdf(eki) + αkdf(eij)

)



42 3. CONFORMAL DEFORMATIONS OF TRIANGULATED SURFACES

i

j

k
k̃

Figure 3.2. Two neighboring triangles containing edge eij

(D
1

A
D∗(α, 0))i =

∑
ij∈E:i

〈−df(eij),
1

Ajik̃
D∗(α, 0)jik̃ −

1

Ajik
D∗(α, 0)ijk〉

=
∑
ij∈E:i

〈df(eij),
αk̃df(eji) + αjdf(eik̃) + αidf(ek̃j)

Ajik̃

− αidf(ejk) + αjdf(eki) + αkdf(eij)

Aijk
〉,

where Aijk is the area of triangle (ijk). Notice that

coefficient of αj =
〈df(eij), df(eik̃)〉

Aijk̃
+
〈df(eij), df(eik)〉

Aijk

−
〈df(eik̃), df(eik̃)〉

Aijk̃
− 〈df(eik), df(eik)〉

Aijk

=
〈df(eij)− df(eik̃), df(eik̃)〉

Aijk̃
− 〈df(eik), df(eij)− df(eik)〉

Aijk

=
〈df(ek̃j), df(eik̃)〉

Aijk̃
+
〈df(eik), df(ekj)〉

Aijk

=− 2(cotβk̃ + cotβk)

and coefficient of αi =
∑

ijk∈F :i

〈df(eij),−df(ejk)〉+ 〈df(eik), df(ejk)〉
Aijk

=
∑

ijk∈F :i

2(cotβj + cotβk)

=
∑
ij∈E:i

2(cotβk + cotβk̃).

Hence, the real part has formula

(D
1

A
D∗(α, 0))i = −2

∑
ij∈E:i

(cotβk + cotβk̃)(αj − αi).

Now we consider the imaginary part on edges.

(D
1

A
D∗(α, 0))ij =df(eij)×

(
− αidf(ejk) + αjdf(eki) + αkdf(eij)

Aijk

+
αk̃df(eji) + αjdf(eik̃) + αidf(ek̃j)

Ajik̃

)
=− df(eij)×

(αidf(ejk) + αjdf(eki)+

Aijk
+
αjdf(eik̃) + αidf(ek̃j)

Ajik̃

)
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=
−αi|df(eij)||df(ejk)| sinβj + αj |df(eki)||df(eij)| sinβi

Aijk
Nijk

+
−αj |df(eij)||df(eik̃)| sin β̃i + αi|df(eij)||df(ejk̃)| sin β̃j

Ajik̃
Nik̃j

=2(αj − αi)(Nijk −Nik̃j).
�

Remark 3.34. The formula above should be compared with that in the smooth case.
That is, given an immersion f , for any real valued function g : M → R, we have
D2 g = ∆g − df(A J grad g), where A is the shape operator of f .

Remark 3.35. One may wonder if there is a formula of D 1
A D∗ on the other

components. Instead, it is not clear since there is no natural choice for the tangential
and normal component of a vector living on an edge. On the other hand, the formula
of Re(D∗ 1

A D(u, 0)) is also not clear, since there is no natural choice for the area
A of an edge.





CHAPTER 4

Examples

This chapter considers various examples. Section 1-2 compares infinitesimal
conformal deformations of the unit sphere S2 in the smooth case and the discrete
case. It shows that convex triangulated surfaces with vertices on the unit sphere
behave similar to the smooth unit sphere under infinitesimal conformal deforma-
tions. It serves a positive evidence that the definition of conformal equivalence
of triangulated surfaces makes sense. It is a result from the blog “Discrete Spin
Geometry”.

Section 3 considers double inversions in the smooth and the discrete case. The
explicit formula for ρ̇ in two cases have very nice correspondence. It justifies the
definition of ρ̇ in Theorem 3.10.

Section 4 is concerned with the kernel of the discrete Dirac operator. In the
smooth theory, those conformal immersions of a surface with the dimension of ker-
nel larger than 4 are singular points of the shape space under the parametrization
by mean curvature half-density. These immersions include constant mean curva-
ture immersions and constrained Willmore surfaces. Considering the kernel of the
discrete Dirac operator would give hints to their discrete analogue. Both examples
of surfaces with dim(Ker(D)) = 4 and dim(Ker(D)) > 4 are given.

1. Infinitesimal Conformal deformations of Smooth Spheres

In order to compare with conformal deformations of a discrete round sphere,
we need to know the case for a smooth round sphere. Let f : S2 → R3 be the
standard smooth unit sphere.

Theorem 4.1. Up to infinitesimal rotations and translations, the infinitesimal con-
formal deformations of the unit sphere are infinitesimal normal deformations.

Proof. We first consider an infinitesimal normal variation in the form

ḟ = vN

where v is some arbitrary real-valued function on S2. For the unit sphere, the shape
operator A : TS2 → TS2 is an identity operator. Then for any vector X,Y ∈ TS2,

˙〈df(X), df(Y )〉 =〈dḟ(X), df(Y )〉+ 〈df(X), dḟ(Y )〉
=〈vdN(X), df(Y )〉+ 〈dv(X)N, df(Y )〉

+ 〈df(X), vdN(Y )〉+ 〈df(X), dv(Y )N〉
=〈vdf(AX), df(Y )〉+ 〈df(X), vdf(AY )〉
=2v〈df(X), df(Y )〉.

Hence, all infinitesimal normal deformations are conformal. And there exist λ̇ such
that

dvN + vdf = dḟ = ˙(λdfλ) = 2(gdf − df(Y )× df − hN × df),

45



46 4. EXAMPLES

where λ̇ = g + df(Y ) + hN is decomposed into scalar, tangential and normal com-
ponents. Since for any tangent vector X ∈ TS2

df(Y )× df(X) = 〈Y,−JX〉N = 〈JY,X〉N,

comparing the coefficients yields

g =
v

2
,

Y =
1

2
J grad v,

h = 0.

It is observed that given any function g, there exists an infinitesimal normal
variation with prescribed real part of λ̇. It implies the infinitesimal deformations
with g ≡ 0 a complementary subspace to normal variations. Suppose an infinites-
imal conformal deformation is given by λ̇ = g + df(Y ) + hN . Then there exists
ρ̇ : S2 → R such that

D λ̇ =ρ̇.

From Theorem 2.26, it is equivalent to

− curlY =ρ̇,

Y =J grad g + gradh,

2h =− div Y.

The condition g ≡ 0 implies Y = gradh and hence

∆h = −2h.

So, h is a spherical harmonic function and is of the form

h = 〈a, f〉

for some constant vector a ∈ R3. The equation Y = gradh implies Y is tangential
projection of the constant vector a. Hence,

λ̇ = a,

which gives a trivial infinitesimal conformal deformation. �

Remark 4.2. It is known that Möbius transformations are conformal transforma-
tions of the ambient space. They are generated by translations, rotations, scalings
and the inversion under the unit sphere. The infinitesimal transformations of the
unit sphere generated by inversions should be included in the above lemma. Infini-
tesimal conformal deformations via double inversions (Section 3) are in the forms

ḟ = −faf = −a||f ||2 + 2f〈a, f〉

where a is a constant vector. For the unit sphere, we have ||f || = 1. And so we get

ḟ = −faf = −a+ 2f〈a, f〉.

Hence, the infinitesimal conformal deformations via double inversions are compo-
sition of a translation and a normal deformation.
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2. Conformal Deformations of Discrete Round Sphere

Let f : M → R3 be a triangulated surface circumscribed on the unit sphere S2.
Consider a ”normal deformation”’ of the form

ḟi = νifi.

Notice that

df(eij) = fj − fi.

Differentiating both sides yields

dḟ(eij) = ḟj − ḟi
= νjfj − νifi

=
νi + νj

2
df(eij) + (νj − νi)

fi + fj
2

.

Since |fi| = |fj | = 1, we have

˙|df(eij)|
|df(eij)|

=
〈 ˙|df(eij)|, |df(eij)|〉
〈|df(eij)|, |df(eij)|〉

=
νi + νj

2
.

Hence, the normal variation is always conformal. Denote fφ as the circumcenter of
the face φ = (ijk). Then,

fφ = cos ρφNφ

where
cos ρφ = 〈fi, Nφ〉 = 〈fj , Nφ〉 = 〈fk, Nφ〉.

By elementary geometry,

fi + fj
2

= fφ +
cotβk

2
df(eij)×Nφ.

Then,

dḟ(eij) =
νi + νj

2
df(eij) + (νj − νi)(cos ρφNφ +

cotβk
2

df(eij)×Nφ).

Note that

(N grad g)φ =
1

2Aφ
(gidf(ejk) + gjdf(eki) + gkdf(eij)),

(N grad g)φ × df(eij) = (gj − gi)Nφ.
So,

dḟ(eij) =
νi + νj

2
df(eij) +

(
cos ρφNφ(grad v)φ − (νj − νi)

cotβk
2

Nφ
)
× df(eij).

On the other hand, since the deformation is conformal, there exists unique functions

g : V → R,
ω : F → R,
Y : F → ImH and Yφ⊥Nφ

such that on any oriented edge eij , we have

λ̇eij =
gi + gj

2
− ωφNφ

2
− Yφ

2
+

cotβk
2

(gj − gi)Nϕ × df(eij)

and so

dḟ(eij) = λ̄eijdf(eij) + df(eij)λeij

= (gi + gj)df(eij) + ((ωφ − cotβk(gj − gi))Nϕ + Yφ)× df(eij).
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Comparing the two expression of dḟ(eij), we have

gi =
νi
2

Yφ = cos ρφNφ × grad vφ

ωφ = 0.

Notice that any conformal deformation is given by some (u, Z) ∈ RV+3F . Con-
sider the normal deformation given by u on vertices as above, we get (u, Y ) ∈
RV+3F . Then, the λ̇ induced by (0, Z − Y ) is again an infinitesimal conformal
deformation of the surface, which is even an infinitesimal rigid deformation, since
it leaves edge lengths fixed. Here we recall a theorem which implies for convex
triangulated surfaces the only rigid deformations are Euclidean transformations. A
detailed discussion can be found in Pak (2010).

Theorem 4.3. (Dehn’s Theorem on Infinitesimal Rigidity of Convex Polytopes)
Every simplicial convex polytope in R3 is infinitesimally rigid.

Thus, as an analogue to the case of conformal deformations of the smooth
sphere, we have

Theorem 4.4. For a convex triangulated surface circumscribed in the unit sphere,
infinitesimal normal deformations are the only infinitesimal conformal deformations
up to infinitesimal rotations and translations.

3. Double Inversions

In this section, infinitesimal deformations of smooth surfaces and triangulated
surfaces under double inversions are compared. It demonstrates the nice relation
of ρ̇ between smooth and triangulated surfaces. The example in the smooth case is
considered in Crane (2013).

Suppose we have 1-parameter family of inversions given ct ∈ R3 with c0 = 0
and ċ0 =: a. A mapping f : M → R3 transforms under double inversion via

f 7→ (f̄−1 − ct)
−1

=

f
||f ||2 − ct
|| f
||f ||2 − ct||2

.

We differentiate both sides with respect to t and set t = 0 and get

ḟ =
|| f
||f ||2 − ct||

2(−a)− ( f
||f ||2 − ct)2〈−a,

f
||f ||2 − ct〉

|| f
||f ||2 − ct||4

∣∣∣
t=0

=− a||f ||2 + 2f〈a, f〉.

We can write the result into products of H-valued functions.

ḟ =− a||f ||2 + 2f〈a, f〉
=a||f ||2 − 2a||f ||2 + 2f〈a, f〉
=− (af + 2f × a)f

=− faf.

Assume the mapping f : M → R3 is a smooth immersion. Then taking exterior
derivative of both sides yields

dḟ = −dfaf − fadf.

Since for a 1-parameter family of spin transformations satisfying dft = λ̄tdfλt with
λ0 = 1, we have at t = 0 the formula

dḟ = ˙̄λdf + dfλ̇.
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Comparing it with the previous equation, we get

λ̇ = −af.

We decompose a into tangential and normal components by denoting a =: b +
〈a,N〉N . Then, for any tangent vector X,

−df ∧ dλ̇(X, JX) =df ∧ adf(X, JX)

=df(X)aNdf(X) + df(X)Nadf(X)

=df(X)(bN +Nb− 2〈a,N〉)df(X)

=2〈N, a〉|df(X)|2.

Hence,

ρ̇ = D λ̇ = 2〈N, a〉.
We compare it with the deformation of triangulated surfaces under double

inversions.
For the change of an edge,

ḟj − ḟi =− a(||fj ||2 − ||fi||2) + 2(fj〈a, fj〉 − fi〈a, fi〉)
=〈a, fj + fi〉(fj − fi)− a(||fj ||2 − ||fi||2) + fj〈a, fj〉 − fi〈a, fi〉+ fi〈a, fj〉
− fj〈a, fi〉

=〈a, fj + fi〉(fj − fi) + (fi + fj)〈a, fj − fi〉 − a〈fj − fi, fj + fi〉
=〈a, fj + fi〉(fj − fi) + (fj − fi)×

(
(fi + fj)× a

)
.

Hence, the deformation is conformal with conformal factors on vertices ui := 〈a, fi〉.
Defining on unoriented edges Wij = (fi + fj) × a, we have (u,W⊥) ∈ RV+2E and
the corresponding quaternionic function on oriented edges are given by

λ̇ij =
〈a, fi〉+ 〈a, fj〉

2
+

(fi + fj)

2
× a.

Then, we know Im(D∗(u,W )) = 0 since the deformation is locally closed. We
calculate ρ̇ = Re(D∗(u,W )). We use the property that

∑
ij∈E:i df(∗eij) = 0.

ρ̇i =
∑
ij∈E:i

−〈df(∗eij), (fi + fj)× a〉

=
∑
ij∈E:i

−〈df(∗eij), (fj − fi)× a〉+ 2
∑
ij∈E:i

〈df(∗eij), fi × a〉

=
∑
ij∈E:i

−〈a, df(∗eij)× df(eij)〉+ 0

=
∑
ij∈E:i

−〈a,
(
(
cotβk

2
Nφijk

+
cotβk̃

2
Nφik̃j

)× df(eij)
)
× df(eij)〉

=
∑
ij∈E:i

〈a, (cotβk
2

Nφijk
+

cotβk̃
2

Nφik̃j
)|df(eij)|2〉

=
∑

ijk∈F :i

〈a, (cotβk
2
|df(eij)|2 +

cotβj
2
|df(eik)|2)Nφijk

〉

=2
∑

ijk∈F :i

Aijk,i〈a,Nφijk
〉

where Aijk,i = cot βk

4 |df(eij)|2 +
cot βj

4 |df(eik)|2 is the shaded area of the triangle
(ijk) shown in Figure 4.1.
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i

j

k

O

Figure 4.1. Aijk,i is the area of the shaded portion and O is the circumcenter.

Theorem 4.5. Consider the infinitesimal double inversions generated by

f 7→ (f̄−1 − ct)
−1

=

f
||f ||2 − ct
|| f
||f ||2 − ct||2

.

where c0 = 0, ċ = a. Then, for an immersed smooth surface f : M → R3, we have

ρ̇ = D λ̇ = 2〈N, a〉

where ρ|df | is the change of mean curvature half density.
On the other hand, for an immersed triangulated surface f : M → R3, we have

ρ̇ = 2
∑

ijk∈F :i

Aijk,i〈a,Nφijk
〉.

4. Examples about the Kernel of the Discrete Dirac Operator

We further look at deformations of the unit sphere in order to find examples of
surfaces with dim(Ker D) = 4 and dim(Ker D) > 4.

We firstly consider the case ρ̇ ≡ 0 under a normal deformation. As in section 2,
a normal deformation is determined by ν : V → R and we have the corresponding
element (g, Z) ∈ RV+3F , where

gi =
νi
2
,

Zijk :=− (
ωijkNijk

2
+
Yijk

2
),

=− 1

2
cos ρijkNijk × (gradν),

=− 1

2
cos ρijk

1

2Aijk

(
νidf(ejk) + νjdf(eki) + νkdf(eij)

)
.

We can then calculate ρ̇ under the ”normal deformation”’.

ρ̇i := Re
(

D(g, Z)
)

=
∑
ij∈E:i

〈df(eij), dZ(∗eij)〉

=
1

2

∑
ij∈E:i

〈df(eij),
cos ρijk
2Aijk

(
νidf(ejk) + νjdf(eki) + νkdf(eij)

)
−

cos ρijk̃
2Aijk̃

(
νidf(ejk̃) + νjdf(ek̃i) + νk̃df(eij)

)
〉
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=
∑

ijk∈F :i

cos ρijk
4Aijk

〈df(eij)− df(eik), νidf(ejk) + νjdf(eki) + νkdf(eij)〉

=
∑

ijk∈F :i

cos ρijk
4Aijk

〈df(ekj), νidf(ejk) + νjdf(eki) + νkdf(eij)〉

=
∑

ijk∈F :i

cos ρijk
2

(−νi
|df(ejk)|2

2Aijk
+ νj cotβk + νk cotβj)

=
∑

ijk∈F :i

cos ρijk
2

(
− νi
|df(ejk)|(|df(eij)| cosβj + |df(eik)| cosβk)

2Aijk

+ νj cotβk + νk cotβj
)

=
∑

ijk∈F :i

cos ρijk
2

((νj − νi) cotβk + (νk − νi) cotβj)

=
∑
ij∈E;i

(νj − νi)(
cos ρijk cotβk

2
+

cos ρijk̃ cotβk̃
2

).

Theorem 4.6. Suppose the coefficients
cos ρijk cot βk

2 +
cos ρijk̃ cot βk̃

2 are positive on
every edge. Then the only normal deformation with ρ̇ ≡ 0 is constant scaling, i.e.
ν ≡ constant.

Proof. Suppose ν is not constant, then exist some vertex i ∈ V such that

νi ≥ νj ∀j ∈ V and ij ∈ E

and the inequality is strict for at least one neighboring vertex. Hence,

ρ̇i =
∑
ij

(νi − νj)(
cos ρijk cotβk

2
+

cos ρijk̃ cotβk̃
2

)

> 0

which contradicts that ρ̇ vanishes identically. Hence ν is constant. �

Now we calculate ρ̇ under a rigid deformation.

Theorem 4.7. Given a triangulated surface circumscribed in the unit sphere f :

M → S2. Suppose a rigid deformation is given by (0, aij Tij × fi+fj
2 + hij

fi+fj
2 ) ∈

RV+2E.Then, ρ̇ vanishes identically, i.e. for all vertices i,

ρ̇i = Re
(

D∗(0, aijTij ×
fi + fj

2
+ hij

fi + fj
2

)
)
i

= 0.

Proof. Suppose a rigid deformation is given by (0, aij Tij× fi+fj
2 +hij

fi+fj
2 ) ∈

RV+2E . Notice that

aijTij ×
fi + fj

2
+ hij

fi + fj
2

= ajiTji ×
fi + fj

2
+ hji

fi + fj
2

.

Thus,

aij = −aji , hij = hji.

Also, on a face φ = (ijk),

(Im D∗(0, hij
fi + fj

2
))φ

=− hij(df(eij)× fφ −
cotβk

2
|df(eij)|2Nφ)

− hjk(df(ejk)× fφ −
cotβi

2
|df(ejk)|2Nφ)
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− hki(df(eki)× fφ −
cotβj

2
|df(eki)|2Nφ)

=
(
hij

cotβk
2
|df(eij)|2 + hjk

cotβi
2
|df(ejk)|2 + hki

cotβj
2
|df(eki)|2

)
Nφ

− cos ρφ
(
hijdf(eij) + hjkdf(ejk) + hkidf(eki)

)
×Nφ

and

Im D∗(0, aijTij ×
fi + fj

2
)φ

=− (−aij |df(eij)|
fi + fj

2
− ajk|df(ejk)|fj + fk

2
− aki|df(eki)|

fk + fi
2

)

=(aij |df(eij)|+ ajk|df(ejk)|+ aki|df(eki)|) cos ρφNφ

+ aij |df(eij)|
cotβk

2
df(eij)×Nφ

+ ajk|df(ejk)|cotβi
2

df(ejk)×Nφ

+ aki|df(eki)|
cotβj

2
df(eki)×Nφ.

Since (0, aij Tij × fi+fj
2 + hij

fi+fj
2 ) gives an infinitesimal conformal deformation,

we have

0 = Im D∗(0, aijTij ×
fi + fj

2
+ hij

fi + fj
2

) (4.1)

=
(
aij |df(eij)|

cotβk
2
− hij cos ρφ

)
df(eij)×Nφ

+
(
ajk|df(ejk)|cotβi

2
− hjk cos ρφ

)
df(ejk)×Nφ

+
(
aki|df(eki)|

cotβj
2
− hki cos ρφ

)
df(eki)×Nφ

+
(
(aij |df(eij)|+ ajk|df(ejk)|+ aki|df(eki)|) cos ρφ

+ hij
cotβk

2
|df(eij)|2 + hjk

cotβi
2
|df(ejk)|2 + hki

cotβj
2
|df(eki)|2

)
Nφ.

Since df(eij),df(ejk) and df(eki) span an affine plane and df(eij)+df(ejk)+df(eki) =
0, for each face φ, there exists ωφ ∈ R such that

ωφ =aij |df(eij)|
cotβk

2
− hij cos ρφ

=ajk|df(ejk)|cotβi
2
− hjk cos ρφ

=aki|df(eki)|
cotβj

2
− hki cos ρφ.

We now then calculate the real part of D∗.

Re(D∗(0, aijTij ×
fi + fj

2
+ hij

fi + fj
2

))i

=−
∑
ij∈E:i

〈aijTij ×
fi + fj

2
+ hij

fi + fj
2

, df(∗eij)〉

=
∑
ij∈E:i

〈aijTij ×
fi + fj

2
+ hij

fi + fj
2

,
cotβk

2
df(eij)×Nφ +

cotβk̃
2

df(eij)×Nφ)〉

=
∑
ij∈E:i

〈aij
fi + fj

2
,

cotβk
2
|df(eij)|Nφ +

cotβk̃
2
|df(eij)|Nφ̃)〉
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+ 〈hij
fi + fj

2
,

cotβk
2

df(eij)×Nφ +
cotβk̃

2
df(eij)×Nφ̃)〉

=
∑
ij∈E:i

aij |df(eij)|(
cotβk

2
cos ρijk +

cotβk̃
2

cos ρijk̃)

+ hij |df(eij)|2
(
(
cotβk

2
)2 − (

cotβk̃
2

)2
)

=
∑
ij∈E:i

aij |df(eij)|
cotβk

2
cos ρijk − aji|df(eij)|

cotβk̃
2

cos ρijk̃

+ hij |df(eij)|2((
cotβk

2
)2 − (

cotβk̃
2

)2)

=
∑
ij∈E:i

(ωijk cos ρijk + hij cos2 ρijk)− (ωijk̃ cos ρijk̃ + hij cos2 ρijk̃)

+ hij |df(eij)|2((
cotβk

2
)2 − (

cotβk̃
2

)2)

=
∑
ij∈E:i

(ωijk cos ρijk + hij |
fi + fj

2
|2)− (ωijk̃ cos ρijk̃ + hij |

fi + fj
2
|2)

=0.

In particular from theorem 3.26, we have on all vertices

∑
ij∈E:i

α̇ij
2
|df(eij)| = ρ̇i = Re

(
D∗(0, aijTij ×

fi + fj
2

+ hij
fi + fj

2
)
)
i

=0.

�

Example 2. A regular octahedron can be circumscribed in a sphere and is con-
vex. By Theorem 4.4, normal deformations are the only conformal deformations.
And constant scaling is the only normal deformations having ρ̇ identically zero by
Theorem 4.6. Thus, it has dim(Ker D) = 4.

E

A

B
D

C

F

b
aa

b

B A

DC

Figure 4.2. Biscard’s octahedron and its top view

Example 3. Bricard’s octahedron is a flexible almost immersed octahedron which
can be circumscribed in a sphere. Its infinitesimal rigid deformation gives ρ̇ identi-
cally zero by Theorem 4.7. Hence, dim(Ker D) > 4.

Remark 4.8. In general, ρ̇ is not identically zero for rigid deformations. The
following flexible torus is discussed in Pak (2010), which gives a counterexample
here.

Example 4. Consider an immersed torus, consisting of 4 identical rhombi and 4
identical tubes connecting the rhombi as in Figure 4.3.
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l1

l2

A = (x+ a, 0, 0)

A′ = (a, 0, z)

A′′

B

B′

B′′

C

C ′

D

D′ = (0, b, z)

b
a

z

x

Figure 4.3. Flexible Torus

We claim that the torus is flexible. By symmetry, we can focus on the defor-
mations of the tube ABCDA′B′C ′D′ and have

cos∠AA′B′ =
〈(−a,−b, 0), (x, 0, z)〉

l1l2
=
−ax
l1l2

,

cos∠BB′C ′ =
〈(−a, b, 0), (x, 0, z)〉

l1l2
=
−ax
l1l2

.

In addition with symmetries, we get

β := ∠AA′B′ = ∠BB′C ′ = ∠CC ′D′ = ∠DD′D′

and so the four parallelograms are isometric. The configuration of the torus is
given by 4 parameters: x, z, a, b. And we have three constraints under isometric
deformations,

a2 + b2 = l1
2,

x2 + z2 = l2
2,

−ax
l1l2

= cosβ,

where the right hand sides are constants. We can then express z, a, b in terms of a
free variable x. Hence the torus is flexible. By adding diagonals AB′, CB′, AD′, CD′

on each tube, we get a flexible triangulated torus.
We now show that ρ̇ is not identically zero under some rigid deformation.

Suppose x = x(t). We have

NABA′B′ =
(−a,−b, 0)× (x, 0,−z)

l1l2 sinβ
=

(bz,−az, bx)

l1l2 sinβ
,

NADA′D′ =
(a,−b, 0)× (x, 0,−z)

l1l2 sinβ
=

(bz, az, bx)

l1l2 sinβ
,

NABA′′B′′ =
(x, 0, z)× (−a,−b, 0)

l1l2 sinβ
=

(bz,−az,−bx)

l1l2 sinβ
,

NADA′′D′′ =
(−a, b, 0)× (x, 0, z)

l1l2 sinβ
=

(bz, az,−bx)

l1l2 sinβ
.

Notice that

(l1l2 sinβ)2 = b2z2 + a2z2 + b2x2.
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Figure 4.4. A regular octahedron with a new vertex

We then have

cosαAA′ = 〈NADA′D′ , NABA′B′〉 = 1− 2a2z2

(l1l2 sinβ)2
,

sinαAA′ = |NADA′D′ ×NABA′B′ | =
2abzl2

(l1l2 sinβ)2
,

cosαAB = 〈NABA′B′ , NABA′′B′′〉 = 1− 2b2x2

(l1l2 sinβ)2
,

sinαAB = |NABA′B′ ×NABA′′B′′ | =
2bxzl1

(l1l2 sinβ)2
.

Hence,

α̇AA′ =
˙(cosαAA′)

sinαAA′
=
−2(ȧz + aż)

bl2
,

α̇AB =
˙(cosαAB)

sinαAB
=
−2(ḃx+ bẋ)

zl1
.

Differentiating the constants, we have identities

ȧa+ ḃb = 0,

ẋx+ żz = 0,

ȧx+ ẋa = 0.

Thus,

ρ̇A =
α̇ABl1

2
+
α̇AA′ l2

2
+
α̇ADl1

2
+
α̇AA′′ l2

2

=− 2(
ḃx+ bẋ

z
+
ȧz + aż

b
)

=
−2ẋ

bzx
(xl1

2 − al22),

which is not zero generally.

One may wonder if there is any relation between infinitesimal rigidity and
dim(Ker D).

Example 5. Consider choosing a triangle of a regular octahedron and adding new
edges connecting its circumcenter with the three vertices of the triangle. This gives
a new triangulated surface as shown in Figure 4.4, which is continuously rigid but
not infinitesimal rigid. This surface has dim(Ker D) = 4, which is explained as
follows:

The new vertex can only moves orthogonal to the triangle. ρ̇ > 0 if the vertex
moving outward and ρ̇ < 0 if the vertex moving inward. So to have ρ̇ = 0 on the
vertex, it has to stay on the triangle. Hence, to consider the conformal deformation
with ρ̇ ≡ 0, one can ignore the new vertex. Thus, the dimension of Ker D is same
as without the new vertex.
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Figure 4.5. Jessen’s orthogonal icosahedron

Example 6. Jessen’s orthogonal icosahedron is obtained from a regular icosahedron
by flipping 6 edges symmetrically (Goldberg, 1978; Jessen, 1967). Its vertices are
the same as the regular icosahedron and hence can be circumscribed in a sphere. It
is continuously rigid but not infinitesimal rigid. Its infinitesimal rigid deformation
gives ρ̇ identically zero by Theorem 4.7. Hence, dim(Ker D) > 4.



APPENDIX A

Zusammenfassung

Diese Arbeit behandelt eine diskretisierte Version von Quaternischer Analysis.
Wir beschreiben die Beziehung zwischen infinitesimalem konformen Verformungen
der triangulierten Flächen im euklidischen Raum und ihrer extrinsische Geometrie.
Die Arbeit folgt dem Ziel der diskreten Differentialgeometrie (Bobenko and Suris,
2008), um mathematische Strukturen von triangulierten Flächen ähnlich wie in der
glatten Theorie zu suchen.

Diese Arbeit ist in 4 Kapitel unterteilt. Kapitel 1 enthält Hintergrundwissen
über quaternionische lineare Algebra und diskrete Differentialformen. Die Hodge
Zerlegung für diskrete Differentialformen wird hergeleitet. Dieses Kapitel endet mit
einer eindimensionalen Darstellung der infinitesimalem konformen Verformungen
von Oberflächen. Wir vergleichen den Raum der ebenen Kurven mit fester Länge,
im glatten wie im diskreten Fall parametrisiert durch Krümmungfunktionen.

Kapitel 2 behandelt konforme Deformationen von glatten Oberflächen mithilfe
quaternionischer Analysis. Wir fassen die grundlegenden Ergebnisse zusammen
und konzentrieren uns auf infinitesimale konforme Verformungen. Bedingungen für
infinitesimale konforme Deformationen für Oberflächen von höherem Geschlecht
abgeleitet werden. Die meisten Sätze haben hier ein diskretes Analogen im folgen-
den Kapitel.

Kapitel 3 ist der wichtigste Teil der Arbeit und konzentriert sich auf infinites-
imale konforme Deformationen von triangulierten Flächen. Wir untersuchen den
Begriff konformer Äquivalenz von triangulierte Flächen und seine Eigenschaften im
Vergleich zu der glatten Theorie. Dann leiten wir den diskreten Dirac-Operator. Be-
dingungen für infinitesimale konforme Deformationen für Oberflächen von höherem
Geschlecht werden gezeigt. Es endet mit der Herleitung des diskreten Laplace-
Operators bzw. der Kotangens Laplace Formel.

Kapitel 4 gibt explizite Beispiele zum Vergleich. Die Wahl des Begriffs der
konformen Äquivalenz und diskreten Definition in Kapitel 3 wird durch den Ver-
gleich von glatten und diskretes Theorie gerechtfertigt. Die Dimension des Kerns
des diskreten Dirac Operators wird auch für einige Triangulierte Flächen berechnet.
Wir präsentieren Beispiele mit dim(Ker D) = 4 und dim(Ker D) > 4. Sie werden
aus dem Studium der Steifigkeit der polyedrischen Flächen motiviert.
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