Freie Universität

Masterarbeit am Institut für Mathematik der Freien Universität Berlin, Arbeitsgruppe Mathematical Geometry Processing

Neighborhood Computation of Point Set Surfaces

Martin Skrodzki
Matrikelnummer: 4707622
martin.skrodzki@fu-berlin.de
Betreuer: Prof. Dr. Konrad Polthier
Eingereicht bei: Prof. Dr. Konrad Polthier

Berlin, 12. Dezember 2014

Eidesstattliche Erklärung

Ich versichere hiermit an Eides Statt, dass diese Arbeit von niemand anderem als meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel wie Berichte, Bücher, Internetseiten oder ähnliches sind im Literaturverzeichnis angegeben, Zitate aus fremden Arbeiten sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungskommission vorgelegt und auch nicht veröffentlicht.

Datum: 12. Dezember 2014

Name: Martin Skrodzki

Unterschrift:

Contents

1 Introduction 1
1.1 Overview 2
1.2 Notation 3
2 Point Cloud Smoothing 5
2.1 Review of the Point Based Model 5
2.1.1 Neighborhoods 6
2.1.2 Tangent Spaces 6
2.1.3 Isotropic Gaussian Fairing 13
2.2 Curvatures of Point Sets 17
2.2.1 Directional Curvatures 17
2.2.2 Weingarten Map 19
2.2.3 Estimation of weights and Principal Curvatures 21
2.3 Anisotropic Mean Curvature Flow 22
3 General idea of neighborhood computation and Kd-Trees 27
3.1 General idea of neighborhood computation 27
3.2 Theory of Kd-Trees 28
3.2.1 Binary Search and linear Range Search 29
3.2.2 Kd-Trees in Dimension d 34
3.2.3 Generalization to finite d-dimensional point sets 37
3.3 Implementations 39
3.3.1 Lexicographical Order 39
3.3.2 Abstract Kd-Tree 40
3.3.3 Sorting 41
3.3.4 Median 42
4 Two more Spatial Data Structures 45
4.1 Quadtree and Octree 45
4.2 R-Tree 47
4.3 Choice of a Data Structure, Curse of Dimensionality 49
5 Nearest Neighbor Search 53
5.1 Nearest Neighbor using PCA 54
5.2 Nearest Neighbor Search using Kd-Trees 56
5.3 Implementation in JavaView 62
5.4 Alternative Pivot Policies for the Kd-Tree 63
6 Median 67
6.1 Randomization 67
6.2 Deterministic Algorithm 68
6.3 Approximation 71
7 The Program 75
7.1 General Procedure 75
7.2 Example 76
7.3 Setting Details 78
8 Computational Results 83
8.1 Building Times and Tree Depths 84
8.2 Kd-Tree vs. PCA 87
8.3 "Middle of most spread Dim." vs. Median 91
8.4 Conclusion from computational results 93
9 Conclusion and Further Research 95
Appendices
Appendix A PCA Nearest Neighbor JavaView Implementation 99
Appendix B PCA Nearest Neighbor JavaView Implementation103
Appendix C Kd-Tree Sorting Class 107
Appendix D Kd-Tree Median Class 113
Appendix E Nearest Neighbor Computation in abstract Kd- Tree 117
Appendix F Implementation of alternative Pivot Rules 121

Chapter 1

Introduction

In this thesis we will present data structures for efficient neighborhood computation of point set surfaces. Given data structures will be tested within a smoothing application implemented in JavaView [Pol+].
During the last years, both 3D scanners and printers became very affordable. Therefore the range of applications got broader. Techniques of 3D printing are now used e.g. in medical applications [Ren+10], [Leu+05] and material sciences [Lam+02]. Furthermore methods from 3D scanning are applied in e.g. face recognition [BF05], traffic accident analysis [Buc+07], as well as in art related or archaeological settings [Lev+00]. A 3D scanner is shown in Figure 1.1.

Figure 1.1: A 3D Scanner and a 3D printer. Picture taken from [Pro].
From the scanning process, a 3D computer model of the scanned object is obtained. This model is given by a set of points representing the original
object. If the scanned objects has e.g reflecting surfaces, or is not lighted correctly, the resulting sample points will be noised. Therefore when scanning perfectly flat objects, the resulting model on the computer might still show a rough structure. To not have the noise interfere in the printing process or in a rendering on the computer, the scanned surfaced is usually smoothed.
A common approach to smoothing techniques is to compute a mesh on the point samples obtained from the scanning process. This mesh is then used to smooth the point set, see e.g. [JDD03], [VMM99]. Although this approach is well studied it has one obvious disadvantage: The first step will always be the computation of a mesh. To overcome this disadvantage, several techniques have been developed which work on a point set only and do not require a mesh. For an overview see [GP11].
Not using a mesh does come with a prize. A mesh already encodes neighborhood information, which we will see to be very important for smoothing procedures. When using a solely point-based technique, neighborhoods are not available a priori. This thesis aims at presenting methods for efficient computation of neighborhoods in the point-based setting.

1.1 Overview

As stated above the main goal of this thesis is to present ways to efficiently compute neighborhoods in point sets. In order to emphasize the importance of neighborhoods within smoothing procedures, in Chapter 2 we will present the general idea of point cloud smoothing. The chapter will be mostly based on [LP05]. For a start tools of differential geometry are presented that are used for smoothing in a continuous setting. In order to apply these tools on the point-based approach, we introduce discrete versions of them. Furthermore the chapter introduces the concept of anisotropic smoothing for feature detection.
Having set the theoretical background of smoothing, in Chapter 3 we will give a first general idea of neighborhood computation in point clouds. This idea will lead us to the need for data structures. The field of computational geometry developed several structures suitable for our purposes. Namely we will present $K d$-Trees and their implementation in Chapter 3, while two more data structures will be presented in Chapter 4. Although we motivated the need for neighborhood computation from 3D applications, our data structures will be able to handle general d-dimensional points. This is mainly to be able to use them in later, higher-dimensional applications as the theory of manifolds.

The general idea of Nearest Neighbor search will be made more explicit in Chapter 5. We give an implementation of nearest neighbor search within the JavaView $[\mathrm{Pol}+]$ framework using $K d$-trees. Since our implementations will make heavy use of the median of a point set, in Chapter 6 we will consider three different algorithms of how to determine the median of an unordered sequence.
All implementations are included in a Java program which will be presented in Chapter 7. This is mainly done since the presented program will be used to obtain the computational results given in Chapter 8. All different strategies given in the previous chapters are then evaluated and advice for practical applications is given. Finally we give a conclusion and suggestions for further research in Chapter 9.
This thesis started as the project "Orthogonal Range Searching" [SS] in the course "Scientific Visualization", given by Konrad Polthier. We will also present results from this project.

1.2 Notation

Throughout the thesis we will make use of the following notational conventions.

- For $a \in \mathbb{N}$, by $[a]$ we denote the set $\{1, \ldots, a\}$.
- Any vector v is a column vector. We denote its transpose by v^{T}.
- If not stated otherwise, $\|$.$\| and \langle.,$.$\rangle denote the standard norm and$ scalar product in the ambient Euclidean space.
1.2 Notation

Martin Skrodzki

Chapter 2

Point Cloud Smoothing

To both fix a theoretical basis and suggest practical applications of nearest neighbor search on point sets, in this chapter we will present [LP05]. In our presentation we will generally follow the setup of the paper, but divert from it when it seems beneficial for a deeper understanding of the given concepts. The general outline will be a first review of the point based model in Section 2.1, including the definition of a discrete tangential space and isotropic fairing in the discrete setting. We then in Section 2.2 turn to the curvature(s) of point sets and approximate the notion of directional curvature from differential geometry within the discrete setting. In the last Section 2.3 the computed curvatures are used to define an anisotropic Laplacian for corresponding anisotropic fairing.

2.1 Review of the Point Based Model

Given a smooth surface S we will consider point samples taken from S in a sufficiently dense way to reflect the structure of the surface. In [ABK98] it was proven that from such a point set, the surface can be reconstructed in terms of its topological features and that for increasing sample size, the sampled surface converges to S. We assume that sample points sufficiently close together are distributed nearby the tangent plane of S. Considering Principal Component Analysis e.g. [Han10], it is not surprising that an approximation of the tangent plane of S can be derived from the sample points by the covariance matrix of neighboring points.
At first we present how several objects from differential geometry are translated to the point based model. That is, for any sample point, we need a definition of tangent space at this point. This will be done via a minimum least squares expression on the neighborhood of the point. Using this tan-
gent space, we will be able to transfer the techniques of mean curvature flows from triangulated spaces to point clouds.
The model presented here is very similar to the model used in [Pau+02], where a linear approximation of the tangent plane is done almost in the same way. However, the minimum least square expression is set up slightly different. In [Ale+03] and [Lev04] also linear approximations of a tangent space are computed via a minimum least squares technique. But they use a second step to define an implicit surface from the linear approximations, which will not be done here since the linear approximation is sufficient.
In the following, we assume that a smooth surface S, embedded in \mathbb{R}^{3}, is sampled by n points. The set of samples will be denoted by

$$
\begin{equation*}
P=\left\{p_{\iota} \mid 1 \leq \iota \leq n\right\} \tag{2.1}
\end{equation*}
$$

and we assume that P describes S in the sense, that the density of P is high enough such that all features from S can be recovered from P. In particular, each p_{ι} is given by its three real-valued coordinates.

2.1.1 Neighborhoods

The main idea of the point based model is to perform all computations on neighborhoods induced by the Euclidean notion of vicinity rather than on combinatorial neighborhoods as in meshes. For a fine sample and a small Euclidean neighborhood, both notions will be similar. Different approaches on how to set up the neighborhood are presented in [FR01]. In certain aspects, we will follow their third presented method. In [Pau+02] all points from P are considered in the moving least squares method and are weighted according to their Euclidean distance. The authors introduce the notation $\tilde{N}_{k}\left(p_{\iota}\right)$ for the k nearest neighbors of p_{ι} relative to Euclidean distance.
We will consider an ε - k-neighborhood $N_{k}^{\varepsilon}\left(p_{\iota}\right)$ of a sample point p_{ι}, that is an intersection of the sample points contained in an ε-ball centered at p_{ι} and the k sample points closest to p_{ι}. In particular this means that $N_{k}^{\varepsilon}\left(p_{\iota}\right)$ must not necessarily contain k points. However, in the following we will assume that k does denote the size of the neighborhood. Since the parameters ε and k will be globally set, see Chapter 7, we will use the notation $N_{k}\left(p_{\iota}\right)$ for the neighborhood.

2.1.2 Tangent Spaces

The tangent spaces presented in this section will be approximation to the tangent spaces of the smooth surface S in a twofold sense. First, any tangent
space that we derive from the point set P will be an approximation because of the noise on the point set. Second, our tangent planes will not necessarily contain the point of tangency. However, we will see that our concept of a discrete tangent space still converges to the smooth tangent space on S.
Given a point p_{ι} of the point set and its neighborhood $N_{k}\left(p_{\iota}\right)$, we approximate a tangent space T_{ι} by minimizing

$$
\begin{equation*}
E(n, r)=\sum_{x \in N_{k}\left(p_{\iota}\right)}(\langle x-b, n\rangle-r)^{2}, \tag{2.2}
\end{equation*}
$$

where $b \in \mathbb{R}^{3}$ is any point, n denotes the normal vector of T_{ι} and r is the distance of T_{ι} to b. We would now like to find a certain point b such that (2.2) simplifies. Therefore let

$$
\begin{equation*}
\bar{b}=\sum_{x \in N_{k}\left(p_{\iota}\right)} \frac{x}{k} \tag{2.3}
\end{equation*}
$$

denote the barycenter of the neighborhood $N_{k}\left(p_{\imath}\right)$. Setting $b=\bar{b}$ in (2.2), we see

$$
\begin{aligned}
0 & \leq E(n, r) \\
& =\sum_{x \in N_{k}\left(p_{l}\right)}(\langle x-\bar{b}, n\rangle-r)^{2} \\
& =\sum_{x \in N_{k}\left(p_{t}\right)}\left(\langle x-\bar{b}, n\rangle^{2}-2 r\langle x-\bar{b}, n\rangle+r^{2}\right) \\
& =\sum_{x \in N_{k}\left(p_{t}\right)}\langle x-\bar{b}, n\rangle^{2}-2 r \cdot \sum_{x \in N_{k}\left(p_{t}\right)}\langle x-\bar{b}, n\rangle+\sum_{x \in N_{k}\left(p_{l}\right)} r^{2} \\
& =\sum_{x \in N_{k}\left(p_{t}\right)}\langle x-\bar{b}, n\rangle^{2}-2 r\langle\underbrace{}_{x \in N_{k}\left(p_{t}\right)}(x-\bar{b}), n\rangle+k \cdot r^{2} \\
& =\sum_{x \in N_{k}\left(p_{t}\right)}\langle x-\bar{b}, n\rangle^{2}-2 r\langle\underbrace{\sum_{=k \cdot \bar{b}-k \cdot \bar{b}=0}}_{x \in N_{k}\left(p_{t}\right)} x-\sum_{x \in N_{k}\left(p_{t}\right)} \bar{b}, n\rangle+k \cdot r^{2} \\
& =\sum_{x \in N_{k}\left(p_{t}\right)}\langle x-\bar{b}, n\rangle^{2}+k \cdot r^{2} .
\end{aligned}
$$

Since the first summands do not depend on r, to minimize the expression $E(n, r)$ is to set $r=0$. That is, the barycenter \bar{b} of $N_{k}\left(p_{\iota}\right)$ is necessarily a point in any minimizing plane. Therefore we can alter the minimum least
square expression (2.2) to the following

$$
\begin{equation*}
E(n):=\sum_{x \in N_{k}\left(p_{\iota}\right)}\langle x-\bar{b}, n\rangle^{2} . \tag{2.4}
\end{equation*}
$$

Compare this to the usual definition of a tangent plane, e.g. [Bär10]

Definition 1. Let $S \subset \mathbb{R}^{3}$ be a regular surface, $p \in S$, then

$$
\begin{equation*}
T_{p} S=\left\{T \in \mathbb{R}^{3} \mid \exists \varepsilon>0, \gamma:(-\varepsilon, \varepsilon) \rightarrow S, \gamma \in \mathcal{C}^{\infty}, \gamma(0)=p, \gamma^{\prime}(0)=T\right\} \tag{2.5}
\end{equation*}
$$

is called the tangential plane of S in p.

For the sake of simplicity in the smooth case the tangential plane is usually seen to be placed at the point p, i.e. one considers the affine tangential plane $T_{p} S+p$, see Figure 2.1.

Figure 2.1: The affine tangential plane $T_{p} S+p$ on a regular surface S according to Definition 1.

Now compare Figure 2.1, showing a smooth tangent plane at $p \in S$, to Figure 2.2 , showing a discrete approximation of a tangent plane at $p_{\iota} \in P$. The most notable difference here is that the point p_{ι} does not lie in the tangent plane T_{ι}, but the barycenter \bar{b} of the neighborhood $N_{k}\left(p_{\iota}\right)$ does.
If we consider the limit of the sample density δ (see Section 2.2.3) and the
number of neighbors k both to infinity, then for every γ as in Definition 1 and for every $\epsilon>0$, there are a necessary density δ and a k such that P contains two points p_{1} and p_{2} that have distance less than ϵ to the endpoints of γ. Therefore, in the limit, the tangential plane as defined via (2.4) coincides with the tangential plane from Definition 1.

Figure 2.2: Given a point p_{ι} and its neighborhood $N_{4}(p)=\left\{x_{1}, \ldots, x_{4}\right\}$ with the corresponding barycenter \bar{b}. The tangent plane T_{ι} given by (2.4) includes \bar{b} and has normal vector n. The points x_{2} and x_{4} lie below the plane, while x_{1}, x_{3}, and in particular p_{ι} lie above the plane.

Following [Han10], we define the covariance matrix of a given set of points to be the following.

Definition 2. Given k vectors x_{1}, \ldots, x_{k} of dimension d by $x_{i}=$ $\left(x_{i 1}, \ldots, x_{i d}\right)^{T}$ and their arithmetic mean $\bar{x}=\sum_{i=1}^{k} \frac{x_{i}}{k}$ with $\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{d}\right)^{T}$, the empirical covariance of the j th and ℓ th coordinate is given by

$$
\begin{equation*}
s_{j \ell}:=\sum_{i=1}^{k}\left(x_{i j}-\bar{x}_{j}\right)\left(x_{i \ell}-\bar{x}_{\ell}\right) . \tag{2.6}
\end{equation*}
$$

The matrix $S=\left(s_{j \ell}\right)_{j, \ell \in[d]}$ is called the empirical variance-covariance matrix.

Since we will not deal with any other sort of covariance here, we will just refer to this construction by covariance matrix. As stated in [Han10], the
covariance matrix can be computed using the following identity.

Lemma 1. Given k vectors x_{1}, \ldots, x_{k} of dimension d by $x_{i}=\left(x_{i 1}, \ldots, x_{i d}\right)^{T}$ and their arithmetic mean $\bar{x}=\sum_{i=1}^{k} \frac{x_{i}}{k}$ with $\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{d}\right)^{T}$, the following identity holds

$$
\begin{equation*}
\left(s_{j \ell}\right)_{j, \ell \in[d]}=\sum_{i=1}^{k}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T} . \tag{2.7}
\end{equation*}
$$

Proof. Expanding one of the summands of the statement, we obtain

$$
\begin{aligned}
\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T} & =\left(\begin{array}{c}
x_{i 1}-\bar{x}_{1} \\
\vdots \\
x_{i d}-\bar{x}_{d}
\end{array}\right) \cdot\left(x_{i 1}-\bar{x}_{1}, \ldots, x_{i d}-\bar{x}_{d}\right)^{T} \\
& =\left(\begin{array}{ccc}
\left(x_{i 1}-\bar{x}_{1}\right)\left(x_{i 1}-\bar{x}_{1}\right) & \ldots & \left(x_{i 1}-\bar{x}_{1}\right)\left(x_{i d}-\bar{x}_{d}\right) \\
\vdots & \ddots & \vdots \\
\left(x_{i d}-\bar{x}_{d}\right)\left(x_{i 1}-\bar{x}_{1}\right) & \ldots & \left(x_{i d}-\bar{x}_{d}\right)\left(x_{i d}-\bar{x}_{d}\right)
\end{array}\right)
\end{aligned}
$$

Summing up these matrices and considering the entry in column j and row ℓ it is

$$
\left(\sum_{i=1}^{k}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}\right)_{j \ell}=\sum_{i=1}^{k}\left(x_{i j}-\bar{x}_{j}\right)\left(x_{i \ell}-\bar{x}_{\ell}\right)=s_{j \ell} .
$$

Now given $N_{k}\left(p_{\iota}\right)=\left\{x_{1}, \ldots, x_{k}\right\}$ the neighborhood of p_{ι} and its barycenter \bar{b}, utilizing Lemma 1 , we denote

$$
\begin{equation*}
M_{\iota}:=\sum_{i=1}^{k}\left(x_{i}-\bar{b}\right)\left(x_{i}-\bar{b}\right)^{T} \tag{2.8}
\end{equation*}
$$

the covariance matrix of p_{ι}.

Theorem 1. Considering the minimum least squares expression (2.4) and the covariance matrix M_{i} of p_{ι} as given in (2.8), the following identity holds:

$$
\begin{equation*}
E(n)=n^{T} \cdot M_{\iota} \cdot n . \tag{2.9}
\end{equation*}
$$

In other words Theorem 1 states that any minimal vector n of $E(n)$ is also a minimum of the quadratic form $n^{T} \cdot M_{\iota} \cdot n$.

Proof. In our application we will only need the theorem in its three-dimensional application. However, we will prove it for the d-dimensional case here. In the proof we will use the following short-hand notation

$$
s(i, u, k):=\frac{(k-1) x_{i u}}{k}-\sum_{j \in[k \backslash \backslash i\}} \frac{x_{j u}}{k}=x_{i u}-\bar{b}_{u} .
$$

Using this and denoting $N_{k}\left(p_{\iota}\right)=\left\{x_{1}, \ldots, x_{k}\right\}$ as well as $n=\left(n_{1}, \ldots, n_{d}\right)^{T}$, we can establish

$$
\begin{aligned}
E(n) & =\sum_{x \in N_{k}\left(p_{u}\right)}\langle x-\bar{b}, n\rangle^{2} \\
& =\sum_{i=1}^{k}\left\langle x_{i}-\bar{b}, n\right\rangle^{2} \\
& =\sum_{i=1}^{k}\left\langle\frac{(k-1) x_{i}}{k}-\sum_{j \in[k] \backslash i\}} \frac{x_{j}}{k}, n\right\rangle^{2} \\
& =\sum_{i=1}^{k}\left\langle\left(\begin{array}{c}
s(i, 1, k) \\
\vdots \\
s(i, d, k)
\end{array}\right),\left(\begin{array}{c}
n_{1} \\
\vdots \\
n_{d}
\end{array}\right)\right\rangle^{2} \\
& =\sum_{i=1}^{k}\left(\sum_{\ell=1}^{d} s(i, \ell, k) \cdot n_{\ell}\right)^{2} \\
& =\sum_{i=1}^{k} \sum_{u, v \in[d]} s(i, u, k) \cdot n_{u} \cdot s(i, v, k) \cdot n_{v} \\
& =\sum_{u, v \in[d]} n_{u} \cdot n_{v} \cdot \sum_{i=1}^{k} s(i, u, k) \cdot s(i, v, k) \\
& =\sum_{u \in[d]} n_{u} \cdot \sum_{v \in[d]} n_{v} \sum_{i=1}^{k} s(i, u, k) \cdot s(i, v, k) \\
& =n^{T} \cdot\left(\begin{array}{c}
\sum_{v \in[d]} n_{v} \sum_{i=1}^{k} s(i, 1, k) \cdot s(i, v, k) \\
\vdots \\
\sum_{v \in[d]} n_{v} \sum_{i=1}^{k} s(i, d, k) \cdot s(i, v, k)
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =n^{T} \cdot\left(\begin{array}{ccc}
\sum_{i=1}^{k} s(i, 1, k) \cdot s(i, 1, k) & \ldots & \sum_{i=1}^{k} s(i, 1, k) \cdot s(i, d, k) \\
\vdots & \ddots & \vdots \\
\sum_{i=1}^{k} s(i, d, k) \cdot s(i, 1, k) & \ldots & \sum_{i=1}^{k} s(i, d, k) \cdot s(i, d, k)
\end{array}\right) \cdot n \\
& =n^{T} \cdot\left(\begin{array}{ccc}
\sum_{i=1}^{k}\left(x_{i 1}-\bar{b}_{1}\right)\left(x_{i 1}-\bar{b}_{1}\right) & \ldots & \sum_{i=1}^{k}\left(x_{i d}-\bar{b}_{d}\right)\left(x_{i 1}-\bar{b}_{1}\right) \\
\vdots & \ddots & \vdots \\
\sum_{i=1}^{k}\left(x_{i 1}-\bar{b}_{1}\right)\left(x_{i d}-\bar{b}_{d}\right) & \ldots & \sum_{i=1}^{k}\left(x_{i d}-\bar{b}_{d}\right)\left(x_{i d}-\bar{b}_{d}\right)
\end{array}\right) \cdot n \\
& =n^{T} \cdot M_{\iota} \cdot n .
\end{aligned}
$$

We now want to use the equality established by Theorem 1 to find an alternative way of computing a minimum to expression (2.4). The following lemma provides us with the necessary tools.

Lemma 2. Given a real, symmetric matrix $A \in \mathbb{R}^{d \times d}$, with smallest eigenvalue λ_{0}, then

$$
\min _{n^{T} n=1} n^{T} A n=\lambda_{0}
$$

Proof. As for Theorem 1, we only need the three-dimensional case of this lemma in our setting. Nonetheless, we prove its d-dimensional version.
Let $A=U D U^{T}$ be the eigendecomposition of the matrix A, with D a diagonal matrix having the eigenvalues of A as entries. We get

$$
\begin{array}{rlrl}
\min _{n^{T} n=1} n^{T} A n & =\min _{u^{T} u=1} u^{T} D u & =\min _{u^{T} u=1} u^{T} \cdot\left(\begin{array}{c}
\lambda_{1} u_{1} \\
\vdots \\
\lambda_{d} u_{d}
\end{array}\right) \\
& =\min _{u^{T} u=1} \sum_{i=1}^{d} \lambda_{i} \cdot u_{i}^{2} & & \geq \min _{u^{T} u=1} \sum_{i=1}^{d} \lambda_{0} \cdot u_{i}^{2} \\
& =\lambda_{0} \cdot \min _{u^{T} u=1} \sum_{i=1}^{d} u_{i}^{2} & & =\lambda_{0} \cdot \min _{u^{T} u=1} u^{T} u
\end{array} \quad=\lambda_{0} .
$$

since λ_{0} is the smallest eigenvalue of A. Picking $n=v_{0}$ a unit-length eigenvector to the eigenvalue λ_{0}, we establish

$$
\min _{n^{T} n=1} n^{T} A n=v_{o}^{T} A v_{0}=\lambda_{0} v_{0}^{T} v_{0}=\lambda_{0} .
$$

Using Lemma 1 in the following we denote:

$$
\begin{equation*}
n_{\iota}:=\text { unit length eigenvector to the smallest eigenvalue of } M_{\iota} \text {. } \tag{2.10}
\end{equation*}
$$

It will define the approximation of the tangent space at p_{ι}.
Both [Ale +03$]$ and [Lev04] at this point introduce some higher order projection. They also approximate a tangent plane by a minimum least squares equation, but then approximate the smooth surface S by polynomials that are iteratively refined. We will not get into this here, since for our purposes the initial approximation of the tangent plane is sufficient.

2.1.3 Isotropic Gaussian Fairing

We will now present the method of isotropic Gaussian fairing using the Laplacian. As in Differential Geometry, the Laplacian will be thought of as the composition of the div and the ∇ operator. While these can be defined continuously, here we will have to work with their discrete analogues, just as we did in Section 2.1.2 concerning tangent spaces.
If we consider a sample point p_{ι}, its neighborhood $N_{k}\left(p_{\iota}\right)=\left\{x_{1}, \ldots, x_{k}\right\}$, and a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, then the discrete version $\left.(\nabla)\right|_{p_{\imath}}$ of the gradient, for $c_{\iota j}:=p_{\iota}-x_{j}$, is given by

$$
\begin{equation*}
\left.\left(\nabla_{x_{j}}\right)\right|_{p_{\iota}}(f)=\left(f\left(p_{\iota}\right)-f\left(x_{j}\right)\right) c_{\iota j} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.(\nabla)\right|_{p_{\iota}}(f)=\sum_{j=1}^{k}\left(f\left(p_{\iota}\right)-f\left(x_{j}\right)\right) c_{\iota j} . \tag{2.12}
\end{equation*}
$$

By introducing a factor $1 / k$, expression (2.12) would become independent of the size of the neighborhood of p_{ι}. Just as the regular gradient

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad\left(u_{1}, \ldots, u_{n}\right) \mapsto f\left(u_{1}, \ldots, u_{n}\right), \quad \nabla f=\left(\begin{array}{c}
\frac{\partial f}{\partial u_{1}} \tag{2.13}\\
\vdots \\
\frac{\partial f}{\partial u_{n}}
\end{array}\right)
$$

the discrete version as given in (2.12) points in the (approximated) direction of largest increase of the function. We will illustrate this concept of the $\left.\left(\nabla_{x_{j}}\right)\right|_{p_{\imath}}$ on a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ in the Figure 2.3.
The div operator at p_{ι} with neighborhood $N_{k}\left(p_{\iota}\right)=\left\{x_{1}, \ldots, x_{k}\right\}$ will be interpreted in the following way. Consider the space \mathbb{R}^{k}, where each x_{j} is

Figure 2.3: On the left the usual smooth ∇ in red on a smooth surface S. On the right the approximation $\left.(\nabla)\right|_{p_{\imath}}$ in red on a point set.
identified with an element e_{j} of an orthonormal basis. Any vector $\tilde{v} \in \mathbb{R}^{k}$ can be mapped to \mathbb{R}^{3} by

$$
\begin{equation*}
\pi: \tilde{v}=\sum_{j=1}^{k} v_{j} e_{j} \mapsto \sum_{j=1}^{k} v_{j} c_{\iota j}=v \tag{2.14}
\end{equation*}
$$

with $c_{\iota j}=p_{\iota}-x_{j}$ as above. Then the divergence div $\left.\right|_{p_{\iota}}$ at p_{ι} in direction v is given by

$$
\begin{equation*}
\left.\operatorname{div} v\right|_{p_{\iota}}=\sum_{j=1}^{k}\left\langle\tilde{v}, e_{j}\right\rangle_{\mathbb{R}^{k}}=\sum_{j=1}^{k} v_{j}, \tag{2.15}
\end{equation*}
$$

where the inner product $\langle., .\rangle_{\mathbb{R}^{k}}$ is the euclidean inner product on \mathbb{R}^{k}, where the $c_{i j}$ are identified with an orthonormal basis. Note that div is only welldefined on the space \mathbb{R}^{k}, where \tilde{v} can be uniquely decomposed in a linear composition of the e_{j}. Since the map π is in general neither injective nor surjective div is in \mathbb{R}^{3} only defined on the image of π and is in general not well-defined in \mathbb{R}^{3}. In fact, as soon as $\left|N_{k}\left(p_{\iota}\right)\right| \geq 4$, the decomposition of v into the $c_{\iota j}$ is not unique any more. However, note that the discrete gradient as defined in (2.12) is by definition in the image of π and hence the div operator can be applied to it. Now compare this to the usual definition of div, given as

$$
F=\left(F_{1}, \ldots, F_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad\left(u_{1}, \ldots, u_{n}\right) \mapsto F_{i}\left(u_{1}, \ldots, u_{n}\right) \forall i=1, \ldots, n
$$

$$
\operatorname{div} F=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} F_{i} .
$$

A common interpretation of the div operator is that it measures the outgoing flow at a point. That is, $\operatorname{div} F$ is the sum of flows in the directions x_{i}. In a certain sense the discrete operator $\left.\operatorname{div} v\right|_{p_{\imath}}$ also measures the outgoing flow, but the flow in a direction v, which needs to be approximated by the information provided with the neighborhood. See Figure 2.4 for an illustration.

Figure 2.4: On the left a vector field $F:(x, y) \mapsto(2 x, 2 y)$, with $\operatorname{div} F=$ $2+2=4$. In the middle a vector field $G:(x, y) \mapsto(-y, x)$ with $\operatorname{div} G=0$. On the right a point p_{ι} and a vector v that is expressed in terms of the neighborhood of p_{ι}, defining the divergence, i.e. the flow of p_{ι} in direction v.

As stated above, we now define the Laplace operator Δ to be the composition of the ∇ operator as defined in (2.12) and the div operator as defined in (2.15) and obtain the isotropic Laplacian $\left.\Delta\right|_{p_{\iota}}$ to be

$$
\begin{equation*}
\left.\Delta\right|_{p_{\iota}} f=\sum_{x_{j} \in N_{k}\left(p_{\iota}\right)}\left(f\left(p_{\iota}\right)-f\left(x_{j}\right)\right) \tag{2.16}
\end{equation*}
$$

As mentioned above, the discrete ∇ as given in (2.12) could be given a factor $1 / \mid N_{k}\left(p_{\imath}\right)$. If we did introduce this factor, we would arrive at the discrete Laplacian as given in [Des+99] by

$$
\left.\Delta\right|_{p_{\iota}}=\frac{1}{\left|N_{k}\left(p_{\iota}\right)\right|} \sum_{x_{j} \in N_{\iota}} x_{j}-p_{\iota}
$$

However, this is the same operator as given in [Pau+02] for the choice of $\omega_{j}=1$ for all $x_{j} \in N_{k}\left(p_{\iota}\right)$ and $\omega_{j}=0$ otherwise, which by the authors is called the uniform umbrella:

$$
\left.\Delta\right|_{p_{\iota}}=\frac{1}{\Omega} \sum_{x_{j} \in N_{\iota}} \omega_{j}\left(p_{\iota}-x_{j}\right), \quad \Omega=\sum_{x_{j} \in N_{\iota}} \omega_{j} .
$$

Using the same weights as given above, [Her12] also defines the Laplacian as an umbrella operator in this way. We see that there are several ways to set up a discrete Laplacian and that the term umbrella operator is used in several different ways across literature. For this thesis we will use the discrete Laplacian as defined in (2.16).
In [Des+99], the authors present a diffusion process to reduce noise on meshed surfaces. It arises from minimizing the functional of the total curvature of a surface S which in the smooth setting is given by

$$
E(S)=\int_{S} \kappa_{1}^{2}+\kappa_{2}^{2} d S
$$

where κ_{1}, κ_{2} are the principal curvatures of S. We will show how to compute κ_{1} and κ_{2} in our discrete setting in Section 2.2. Nevertheless, we follow [Des+99] in considering a different functional, namely

$$
E_{\text {membrane }}(X)=\frac{1}{2} \int_{\Omega} X_{u_{1}}^{2}+X_{u_{2}}^{2} d u_{1} d u_{2}
$$

where X denotes a mesh parametrized over Ω. The corresponding variational derivative is

$$
L(X)=X_{u_{1} u_{1}}+X_{u_{2} u_{2}}
$$

which is the Laplacian. Therefore the diffusion process to eliminate noise is for a given surface S described by the following PDE

$$
\begin{equation*}
\frac{\partial S}{\partial t}=\lambda \Delta S \tag{2.17}
\end{equation*}
$$

It can be solved using explicit Euler integration which gives the following iterative formula

$$
\begin{equation*}
S^{n+1}=(I d+\lambda \partial t \Delta) S^{n} \tag{2.18}
\end{equation*}
$$

Using this formula the smoothness of the surface can be controlled by the scale parameter λ, the number of iterations and the size of the local neighborhood used in the approximation of Δ. Following [Pau+02], it is recommended in [LP05] to compute the neighborhood of a point p_{ι} only in the first step and cache it for the following iterations. This not only improves efficiency, but also prevents clustering effects which might arise by tangential drift of sample points.

2.2 Curvatures of Point Sets

We will now present the notions of directional curvature and the Weingarten Map and give approximations of both within the point set setting. The Weingarten map, or shape operator, encodes curvature information of a surface. By approximating the curvature at a point p_{ι} we will be able to detect features of the original model, present in the point cloud, that are not to be smoothed by our process, e.g. corners or edges.

2.2.1 Directional Curvatures

In Section 2.1.2 we defined a discrete tangent space. Using this definition, we can also approximate the notion of directional curvature from differential geometry. Let $S \subset \mathbb{R}^{3}$ be an orientable regular surface with a smooth unit normal field N and let $p \in S$. Let $T \in T_{p} S$ be any unit length vector in the tangent space at $p, \gamma:(-\epsilon, \epsilon) \rightarrow S$ be a curve parametrized by arc length with $\gamma(0)=p$ and $\gamma^{\prime}(0)=T$. Then the directional curvature $\kappa_{p}(T)$ is defined by $\gamma^{\prime \prime}(0)=\kappa_{p}(T) N$.
If we expand $\gamma(s)$ into a Laurent series at 0 up to second order, we obtain

$$
\begin{aligned}
\gamma(s) & =\gamma(0)+\gamma^{\prime}(0) \cdot s+\frac{1}{2} \gamma^{\prime \prime}(0) s^{2}+\mathcal{O}\left(s^{3}\right) \\
& =p+T \cdot s+\frac{1}{2} \kappa_{p}(T) N s^{2}+\mathcal{O}\left(s^{3}\right)
\end{aligned}
$$

Now we have the equivalences

$$
\begin{aligned}
& \gamma(s)=p+T \cdot s+\frac{1}{2} \kappa_{p}(T) N s^{2}+\mathcal{O}\left(s^{3}\right) \\
\Leftrightarrow & \gamma(s)-p=T \cdot s+\frac{1}{2} \kappa_{p}(T) N s^{2}+\mathcal{O}\left(s^{3}\right) \\
\Leftrightarrow & N^{T}(\gamma(s)-p)=\underbrace{N^{T} T}_{=0} \cdot s+\frac{1}{2} \kappa_{p}(T) \underbrace{N^{T} N}_{=1} s^{2}+\mathcal{O}\left(s^{3}\right) \\
\Leftrightarrow & 2 N^{T}(\gamma(s)-p)=\kappa_{p}(T) s^{2}+\mathcal{O}\left(s^{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \gamma(s)=p+T \cdot s+\frac{1}{2} \kappa_{p}(T) N s^{2}+\mathcal{O}\left(s^{3}\right) \\
\Leftrightarrow & \gamma(s)-p=T \cdot s+\frac{1}{2} \kappa_{p}(T) N s^{2}+\mathcal{O}\left(s^{3}\right) \\
\Leftrightarrow & \langle\gamma(s)-p, \gamma(s)-p\rangle=\left\langle T \cdot s+\frac{1}{2} \kappa_{p}(T) N s^{2}+\mathcal{O}\left(s^{3}\right), T \cdot s+\frac{1}{2} \kappa_{p}(T) N s^{2}+\mathcal{O}\left(s^{3}\right)\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow\|\gamma(s)-p\|^{2}=s^{2} \cdot \underbrace{T^{T} T}_{=1}+s \kappa_{p}(T) \underbrace{\langle T, N\rangle}_{=0}+\frac{1}{4} \kappa_{p}^{2}(T) \underbrace{N^{T} N}_{=1} s^{4}+\mathcal{O}\left(s^{3}\right) \\
& \Leftrightarrow\|\gamma(s)-p\|^{2}=s^{2}+\mathcal{O}\left(s^{3}\right) .
\end{aligned}
$$

From the last two equalities we get by division

$$
\frac{2 N^{T}(\gamma(s)-p)}{\|\gamma(s)-p\|^{2}}=\kappa_{p}(T)+\mathcal{O}(s)
$$

which by taking the limit $s \rightarrow 0$ can be transfered into the following formula for the directional curvature

$$
\begin{equation*}
\kappa_{p}(T)=\lim _{s \rightarrow 0} \frac{2\langle N(p), \gamma(s)-p\rangle}{\|\gamma(s)-p\|^{2}} . \tag{2.19}
\end{equation*}
$$

Since we defined a tangent space in Section 2.1.2 and a normal by (2.10) at each point p_{ι} of the point set, we can now define the directional curvature $\kappa_{\iota j}$ at p_{ι} in direction $x_{j} \in N_{k}\left(p_{\iota}\right)$ by

$$
\begin{equation*}
\kappa_{\iota j}:=\frac{2\left\langle n_{\iota}, x_{j}-p_{\iota}\right\rangle}{\left\|x_{j}-p_{\iota}\right\|^{2}} . \tag{2.20}
\end{equation*}
$$

Note that in the smooth setting the direction curvature κ_{p} has the following property.

Theorem 2. The directional curvature κ_{p} is a quadratic form and thereby satisfies the identity

$$
\kappa_{p}(T)=\binom{t_{1}}{t_{2}}^{T}\left(\begin{array}{cc}
\kappa_{p}^{11} & \kappa_{p}^{12} \tag{2.21}\\
\kappa_{p}^{21} & \kappa_{p}^{22}
\end{array}\right)\binom{t_{1}}{t_{2}}
$$

where $T=t_{1} T_{1}+t_{2} T_{2}$ is a tangent vector to S at $p,\left\{T_{1}, T_{2}\right\}$ is an orthonormal basis of the tangent space to S at $p, \kappa_{p}^{11}=\kappa_{p}\left(T_{1}\right), \kappa_{p}^{22}=\kappa_{p}\left(T_{2}\right)$, and $\kappa_{p}^{12}=$ κ_{p}^{21}.

The vectors $\left\{T_{1}, T_{2}\right\}$ are called principal curvature directions of S if $\kappa_{p}^{12}=$ $\kappa_{p}^{21}=0$. The corresponding directional curvatures are the principal curvatures which in the following will be denoted by κ_{p}^{1} and κ_{p}^{2} instead of κ_{p}^{11} and κ_{p}^{22}. For a proof of this theorem see for example [Tho79].

2.2.2 Weingarten Map

We will now divert from [LP05] and follow the approach of [Tau95] to compute a point set estimation of the Weingarten map. In differential geometry, the Weingarten map, or the shape operator is a linear map $W_{p}: T_{p} S \rightarrow T_{p} S$ defined by

$$
W_{p}(T)=-\nabla_{p} N(T)
$$

where $N($.$) is the Gauss-map and T \in T_{p} S$ some tangential vector. The actual estimate of the Weingarten map will be given in the next section. At first we will derive an alternative version of the Weingarten map by writing it in terms of an integral. Therefore we extend (2.21) to non-tangential direction. Adding the normal vector N to the orthonormal basis $\left\{T_{1}, T_{2}\right\}$ of \mathbb{R}^{2}, we obtain an orthonormal basis $\left\{N, T_{1}, T_{2}\right\}$ of \mathbb{R}^{3}. The extension of (2.21) is now given by

$$
\kappa_{p}(T)=\left(\begin{array}{c}
n \tag{2.22}\\
t_{1} \\
t_{2}
\end{array}\right)^{T}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \kappa_{p}^{1} & 0 \\
0 & 0 & \kappa_{p}^{2}
\end{array}\right)\left(\begin{array}{c}
n \\
t_{1} \\
t_{2}
\end{array}\right)
$$

where $T=n N+t_{1} T_{1}+t_{2} T_{2}$ is an arbitrary vector in \mathbb{R}^{3}.
Ultimately we want to approximate the Weingarten map using the point set. To do this, we will first write it as an integral, which can later be approximated by a sum. For $-\pi \leq \theta \leq \pi$ let T_{θ} be a unit length tangent vector

$$
T_{\theta}=\cos (\theta) T_{1}+\sin (\theta) T_{2},
$$

with $\left\{T_{1}, T_{2}\right\}$ the orthonormal principal curvature directions of S at p. We define the symmetric matrix

$$
\begin{equation*}
W_{p}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \kappa_{p}\left(T_{\theta}\right) T_{\theta} T_{\theta}^{T} d \theta \tag{2.23}
\end{equation*}
$$

Since the normal vector N is orthogonal to T_{θ}, we see that N is an eigenvector of W_{p} associated to the eigenvalue 0 . Using the fact that $\left\{T_{1}, T_{2}, N\right\}$ is an orthonormal basis of \mathbb{R}^{3}, we can factorize W_{p} as

$$
W_{p}=T_{12}\left(\begin{array}{cc}
w_{p}^{11} & w_{p}^{12} \\
w_{p}^{21} & w_{p}^{22}
\end{array}\right) T_{12}^{T},
$$

where $T_{12}=\left[T_{1}, T_{2}\right]$ is the 3×2 matrix constructed by concatenating the column vectors T_{1} and T_{2} and $w_{p}^{12}=w_{p}^{21}$ because of the symmetry of W_{p}.

Furthermore, by plugging T_{θ} into (2.22) we obtain

$$
\begin{align*}
\kappa_{p}\left(T_{\theta}\right) & =\left(\begin{array}{c}
0 \\
\cos (\theta) \\
\sin (\theta)
\end{array}\right)^{T}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \kappa_{p}^{1} & 0 \\
0 & 0 & \kappa_{p}^{2}
\end{array}\right)\left(\begin{array}{c}
0 \\
\cos (\theta) \\
\sin (\theta)
\end{array}\right) \\
& =\kappa_{p}^{1} \cos (\theta)^{2}+\kappa_{p}^{2} \sin (\theta)^{2} \tag{2.24}
\end{align*}
$$

the Euler formula. Using the decomposition of W_{p} and the Euler formula we can now compute

$$
\begin{aligned}
w_{p}^{12}= & \left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{cc}
w_{p}^{11} & w_{p}^{12} \\
w_{p}^{21} & w_{p}^{22}
\end{array}\right)\binom{0}{1} \\
= & T_{1}^{T} T_{12}\left(\begin{array}{cc}
w_{p}^{11} & w_{p}^{12} \\
w_{p}^{21} & w_{p}^{22}
\end{array}\right) T_{12}^{T} T_{2} \\
= & T_{1}^{T} W_{p} T_{2} \\
= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} \kappa_{p}\left(T_{\theta}\right) T_{1}^{T} T_{\theta} T_{\theta}^{T} T_{2} d \theta \\
= & \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\kappa_{p}^{1} \cos ^{2}(\theta)+\kappa_{p}^{2} \sin ^{2}(\theta)\right) \cdot T_{1}^{T}\left(\cos (\theta) T_{1}+\sin (\theta) T_{2}\right) \\
& \cdot\left(\cos (\theta) T_{1}^{T}+\sin (\theta) T_{2}^{T}\right) T_{2} d \theta \\
= & \frac{\kappa_{p}^{1}}{2 \pi} \int_{-\pi}^{\pi} \cos ^{3}(\theta) \sin (\theta) d \theta+\frac{\kappa_{p}^{2}}{2 \pi} \int_{-\pi}^{\pi} \cos (\theta) \sin ^{3}(\theta) d \theta=0
\end{aligned}
$$

where both integrals in the last step are 0 , because the integrands are pointsymmetric with respect to the origin. But this means that the the other two eigenvectors of W_{p}, apart from N, are the two principal curvature directions T_{1} and T_{2}. However, the corresponding eigenvalues are not κ_{p}^{1} and κ_{p}^{2}, but:

$$
\begin{aligned}
w_{p}^{11} & =\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{cc}
w_{p}^{11} & w_{p}^{12} \\
w_{p}^{21} & w_{p}^{22}
\end{array}\right)\binom{1}{0} \\
= & T_{1}^{T} T_{12}\left(\begin{array}{cc}
w_{p}^{11} & w_{p}^{12} \\
w_{p}^{21} & w_{p}^{22}
\end{array}\right) T_{12}^{T} T_{1} \\
= & T_{1}^{T} W_{p} T_{1} \\
= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} \kappa_{p}\left(T_{\theta}\right) T_{1}^{T} T_{\theta} T_{\theta}^{T} T_{1} d \theta \\
= & \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\kappa_{p}^{1} \cos ^{2}(\theta)+\kappa_{p}^{2} \sin ^{2}(\theta)\right) \cdot T_{1}^{T}\left(\cos (\theta) T_{1}+\sin (\theta) T_{2}\right) \\
& \cdot\left(\cos (\theta) T_{1}^{T}+\sin (\theta) T_{2}^{T}\right) T_{1} d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\kappa_{p}^{1}}{2 \pi} \int_{-\pi}^{\pi} \cos ^{4}(\theta) d \theta+\frac{\kappa_{p}^{2}}{2 \pi} \int_{-\pi}^{\pi} \cos ^{2}(\theta) \sin ^{2}(\theta) d \theta \\
& =\frac{3}{8} \kappa_{p}^{1}+\frac{1}{8} \kappa_{p}^{2}
\end{aligned}
$$

Using a similar computation we find

$$
w_{p}^{22}=T_{2}^{T} W_{p} T_{2}=\frac{1}{8} \kappa_{p}^{1}+\frac{3}{8} \kappa_{p}^{2}
$$

To summarize, given a matrix W_{p} as in (2.23), we obtain the principal curvatures at p as functions of the nonzero eigenvalues of W_{p} by

$$
\begin{align*}
\kappa_{p}^{1} & =3 w_{p}^{11}-w_{p}^{22} \\
\kappa_{p}^{2} & =3 w_{p}^{22}-w_{p}^{11} \tag{2.25}
\end{align*}
$$

Note that all computations in this section have been performed in the smooth setting. In the next section we will give an estimate of the Weingarten map within the discrete setting.

2.2.3 Estimation of weights and Principal Curvatures

We now translate the integral formula (2.23) into the discrete setting of a point set. For each point $p_{\iota} \in P$ we approximate the matrix W_{ι} with a weighted sum over the neighborhood $N_{k}\left(p_{\iota}\right)$:

$$
\begin{equation*}
W_{\iota}=\frac{1}{\left|N_{k}\left(p_{\iota}\right)\right|} \sum_{x_{j} \in N_{k}\left(p_{\iota}\right)} \omega_{\iota j} \kappa_{\iota j} T_{\iota j} T_{\iota j}^{T}, \tag{2.26}
\end{equation*}
$$

where for each neighbor x_{j} of p_{ι} we define $T_{\iota j}$ to be the normalized tangential part of the vector $c_{\iota j}=p_{\iota}-x_{j}$, that is we project $c_{\iota j}$ onto the tangent plane $\left\langle n_{\iota}\right\rangle^{\perp}$ and normalize by

$$
T_{\iota j}=\frac{\left(I-n_{\iota} n_{\iota}^{T}\right) c_{\iota j}}{\left\|\left(I-n_{\iota} n_{\iota}^{T}\right) c_{\iota j}\right\|}
$$

Last the weights $\omega_{\iota j}$ have to be determined in such a way that (2.26) approximates (2.23) correctly.
This will be done by considering the tangential parts of the covariance matrix M_{ι} as defined in (2.8). Just as for the Weingarten map, we express the covariance matrix in terms of an integral

$$
M_{\iota}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \delta_{\theta} T_{\theta} T_{\theta}^{T} d \theta
$$

where $\delta_{\theta}=\delta_{1} \cos (\theta)^{2}+\delta_{2} \sin (\theta)^{2}$ is a quadratic form to estimate the density of the point set in direction T_{θ}. By performing similar computations as above we can determine values δ_{1} and δ_{2} in terms of the two largest eigenvalues of M_{ι}. That is, since we defined n_{ι} to be the eigenvector to the smallest eigenvalue. Utilizing the values δ_{1}, δ_{2} we can define the density in direction $p_{\iota}-x_{j}$ in terms of the two largest eigenvectors v_{1} and v_{2} of M_{ι} to be

$$
\begin{equation*}
\delta_{\iota j}:=\delta_{1}\left\langle T_{\iota j}, v_{1}\right\rangle+\delta_{2}\left\langle T_{\iota j}, v_{2}\right\rangle . \tag{2.27}
\end{equation*}
$$

This expression gives us the density for a regular $\left|N_{k}\left(p_{\imath}\right)\right|$-gon of radius 1 . In general we do not want points $x_{j} \in N_{k}\left(p_{\iota}\right)$ in a very dense region to have a larger influence on a p_{ι} than those points of the neighborhood from a less dense region. Hence the weight $\omega_{\iota j}$ of a point $x_{j} \in N_{k}\left(p_{\iota}\right)$ is given by the density of the sample in direction $\left(p_{\iota}-x_{j}\right)$ and the distance of x_{j} to p_{ι} :

$$
\begin{equation*}
\omega_{\iota j}=\frac{1}{\delta_{\iota j} \cdot\left\|p_{\iota}-x_{j}\right\|} . \tag{2.28}
\end{equation*}
$$

Therefore we finally obtain

$$
\begin{equation*}
W_{\iota}=\frac{1}{\left|N_{k}\left(p_{\iota}\right)\right|} \sum_{x_{j} \in N_{k}\left(p_{\iota}\right)} \frac{1}{\delta_{\iota j} \cdot\left\|p_{\iota}-x_{j}\right\|} \kappa_{i j} T_{\iota j} T_{\iota j}^{T} . \tag{2.29}
\end{equation*}
$$

It is worth noting that the general approach concerning equation (2.26) is the same in both [LP05] and [Tau95]. However, since [Tau95] works on polygonal meshes, in that setting it is not necessary to include a density estimation, since the density can be computed from the volume and angles of the triangulation. Having no such mesh at hand we have followed [LP05] here in giving a discrete directional density measure. Furthermore note that the eigenvalues of the derived discrete shape operator (2.29) are the principal curvatures and the eigenvectors are the principal curvature directions at p_{ι}. They will be crucial in the following section when anisotropic fairing is introduced.

2.3 Anisotropic Mean Curvature Flow

Applying (2.18) with the discrete Laplacian as given in (2.16) has the effect outlined in Figure 2.5.
To not loose features of the original point set, such as sharp edges, we now introduce an anisotropic Laplacian Δ^{A} to smooth the point set. In the continuous case, considering a function $\rho: \mathbb{R}_{0}^{+} \times \Omega \rightarrow \mathbb{R}$, this leads to the parabolic problem

$$
\frac{\partial}{\partial t} \rho-\operatorname{div}\left(A\left(\nabla \rho_{\epsilon}\right) \nabla \rho\right)=f(\rho), \quad \text { in } \mathbb{R}^{+} \times \Omega
$$

Figure 2.5: Smoothing a noised cube with the the process from (2.18) and the Laplacian as given in (2.16). The picture shows the original noised point set as well as the smoothed point set after 60, 390, and 890 iterations.

$$
\begin{aligned}
\rho(0, .) & =\rho_{0}, & & \text { on } \Omega, \\
\frac{\partial}{\partial \nu} \rho & =0, & & \text { on } \mathbb{R}^{+} \times \partial \Omega
\end{aligned}
$$

for given initial density $\rho_{0}: \Omega \rightarrow[0,1]$, see [PR99] or [CDR00]. The authors of [PR99] propose a diffusion coefficient

$$
A=G\left(\left\|\nabla \rho_{\epsilon}\right\|\right),
$$

where $G: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}^{+}$is a monotone decreasing function satisfying certain properties. The anisotropic Laplacian reduces to the isotropic version in case of $A \equiv 1$. We now want to mimic the continuous case in our discrete setting and define

$$
\begin{equation*}
\left.\Delta^{A}\right|_{p_{\imath}}:=\left.\left.\operatorname{div}\right|_{p_{\imath}} \circ\left(A_{i} \cdot \nabla\right)\right|_{p_{\imath}}, \tag{2.30}
\end{equation*}
$$

where

$$
\left.\left(A_{i} \cdot \nabla_{x_{j}}\right)\right|_{p_{\iota}}(f):=g_{\iota j} \cdot\left(f\left(p_{\iota}\right)-f\left(x_{j}\right)\right)\left(p_{\iota}-x_{j}\right),
$$

for all $x_{j} \in N_{k}\left(p_{\iota}\right)$ and $g_{\iota j}$ some function mapping to $[0,1] \subset \mathbb{R}$. With this definition, the anisotropic Laplacian behaves different for different functions $g_{\iota j}$. For a threshold λ we can e.g. consider

$$
\begin{align*}
g_{\iota j}^{\text {sharp }} & = \begin{cases}1, & \text { if }\left|\kappa_{\iota j}\right|<\lambda, \\
0, & \text { if }\left|\kappa_{\iota j}\right| \geq \lambda ;\end{cases} \tag{2.31}\\
g_{\iota j}^{\text {cont }} & = \begin{cases}1, & \text { if }\left|\kappa_{\iota j}\right|<\lambda, \\
\frac{\lambda^{2}}{\lambda^{2}+10\left(\kappa_{\iota j}-\lambda\right)^{2}}, & \text { if }\left|\kappa_{\iota j}\right| \geq \lambda ;\end{cases} \tag{2.32}
\end{align*}
$$

Now in both cases the anisotropic smoothing prefers neighbors x_{j} of p_{ι} that have curvature $\kappa_{\iota j}$ less than λ. In the case of (2.31) all other neighbors are neglected in the computation, while in case of (2.32) neighbors with curvature greater or equal to λ are only considered to a small extend. That is, if the neighbor x_{j} lies in a "flat direction" from p_{ι} its influence on p_{ι} is higher than the influence of a neighbor at a "steep direction".
As announced at the end of Section 2.2.3 we will now use principal curvatures in the setting of anisotropic smoothing. In [LP05] three possible ways of utilizing principal curvature are given. First, the user defines a parameter called the edge quotient Q. At each point p_{ι} of the point set a feature at p_{ι} is to be enhanced, if the quotient q_{p} of the principal curvatures is less than the chosen parameter, i.e. the condition is

$$
\begin{equation*}
q_{p}:=\frac{\kappa_{p_{l}}^{1}}{\kappa_{p_{\iota}}^{2}}<Q . \tag{2.33}
\end{equation*}
$$

A second approach consists of considering the point p_{ι} as a feature that is to be enhanced, if the larger principal curvature exceeds a threshold K. That is the condition

$$
\begin{equation*}
\max \left\{\kappa_{p_{\iota}}^{1}, \kappa_{p_{\iota}}^{2}\right\}>K \tag{2.34}
\end{equation*}
$$

The third and last approach given qualifies a point p_{ι} to be a feature of the sampled surface, if there is some directional curvature exceeding a threshold D. That is p_{ι} is considered a feature to be enhanced if

$$
\begin{equation*}
\exists x_{j} \in N_{k}\left(p_{\iota}\right) \text { such that }\left|\kappa_{\iota j}\right|>D \tag{2.35}
\end{equation*}
$$

Note that all three approaches given by (2.33), (2.34), and (2.35) include the necessity of choosing a suitable parameter Q, K, or D, respectively. Considering 2.5 we now present a corresponding series of images in Figure 2.6, except this the anisotropic Laplacian is used. For better visibility of features,

Figure 2.6: Smoothing a noised cube with the the process from (2.18) and the anisotropic Laplacian as given in (2.30). The picture shows the original noised cube as well as the smoothed cube after 30,80 , and 150 iterations. The faces of a triangulation are only shown for better feature visibility and the triangulation is not used in the actual procedure, where only the underlying point set is used.
a triangulated geometry is shown, but the algorithm only acts on the underlying point set.

As a final remark to this section we would like to emphasize the choice of a good neighborhood $N_{k}\left(p_{\iota}\right)$ for each point $p_{\iota} \in P$. The importance of a well chosen neighborhood becomes obvious in the following setup. Assume that we have a smooth point sample of an object. Now we can compute the neighborhood on this smooth point sample and store it. We add noise to the point set and obtain a noised sample. When applying the techniques from this section to this noised sample, we use the stored neighborhood of the smooth sample instead of computing a neighborhood on the noised sample. The striking result at this point is that in this admittedly artificial
setup, the results are better than in the case where a neighborhood from the noised sample is used. Figure 2.7 from [LP05] illustrates this. Although this might be an artificial setup, it still shows the importance of a well chosen neighborhood and poses the question how to find the "best" neighborhood from a noised point set.

Figure 2.7: A figure taken from [LP05] to illustrate the benefits of using a neighborhood from a smooth point set. From left to right the noised sample points and the smoothed point set after 15 respectively 50 iterations.

Chapter 3

General idea of neighborhood computation and Kd-Trees

In Chapter 2 we set a theoretical basis that depended heavily on the notion of neighborhoods. In this chapter we will in Section 3.1 give an informal description of a procedure for the computation of nearest neighbors. This informal description will motivate the inspection of certain data structures, of which $K d$-Trees are presented in Section 3.2 in terms of the underlying theory. Finally we close this chapter with some remarks on the implementation of $K d$-Trees in Section 3.3.

3.1 General idea of neighborhood computation

In Chapter 2 all computations did rely on the knowledge of a neighborhood $N_{k}\left(p_{\iota}\right)$ for a given sample point p_{ι}. A first naive approach for finding the neighborhood $N_{k}\left(p_{\imath}\right)$ would be to iterate through all points in the point set $P=\left\{p_{\iota} \mid 1 \leq \iota \leq n\right\}$ and report the k points closest to p_{ι}. This algorithm has time complexity $c(k) \cdot n$. Therefore, finding the neighborhoods for all n points in P would take time $\mathcal{O}\left(n^{2}\right)$.
In order to obtain a shorter computation time for the neighborhoods, we turn to the concept of Spatial Indexing. It is much like the index in the back of a book, which can be used to easily find the page, where a certain notion occurs. Similarly, a spatial database indexes over points or objects in space, providing easy access to them without the necessity to go through the whole database. See [SC03] for an introduction to Spatial Databases and [CZ05] for applications other than those mentioned in this thesis.
In this chapter and in Chapter 4 we will present three tree-like data struc-
tures, where each internal node and each leaf of the tree represents a region of the three-dimensional space. Then the general idea of a fast nearest neighbor computation is outlined in the following algorithm.

```
Algorithm 1 NearestNeighbor
    procedure NearestNeighbor \(\left(D, p_{\iota}\right) / /\) Data structure \(D\), point \(p_{\iota}\)
        Find the region(s) in \(D\) storing \(p_{\iota}\).
        Add all neighboring regions to a Stack \(S\).
        while \(S\) is not empty do
            Pop a region \(R\) from \(S\).
            if \(R\) might contain a point closer to \(p_{\iota}\) than the current NN then
                Consider all points from \(R\) as possible NN to \(p_{\iota}\)
                Replace the current NN if applicable.
                Add all neighboring regions \(R^{\prime}\) of \(R\) to \(S\).
            end if
        end while
    end procedure
```

By using Algorithm 1, we expect that in line 6 certain regions are rejected. Thereby their corresponding neighboring regions will never be examined and in general, to find a nearest neighbor of a point p_{ι}, will not require to compute the distance to all n points from the point set P. In Section 5.2 we will present an implementation of Algorithm 1.

3.2 Theory of Kd-Trees

In this section we will present the theory behind the data structure of $K d$ Trees. Since the main idea of a $K d$-Tree will be a generalization of Binary Search to arbitrary dimension, in Section 3.2.1 we will first recall Binary Search. In the same section we turn to one dimensional Range Searches. We use them to illustrate the different concepts of balanced Binary Search Trees and AVL Trees. Having these concepts at hand, in Section 3.2.2 we present the concept of a $K d$-Tree. In this section we will generally follow the presentation of [Ber +08$]$, but we divert from it as its seems necessary. In particular we immediately consider a $K d$-Tree in arbitrary dimension, while [Ber+08] mostly presents two-dimensional trees. Some texts and illustrations in this section are taken from $[\mathrm{SS}]$. Note that $K d$-Trees are only the first of three data structures presented in this thesis. See Chapter 4 for the presentation of two more concepts.

3.2.1 Binary Search and linear Range Search

The concept of Binary Search will be the basis for the following discussion. Hence we will shortly recall it. Given an ordered list of numbers r_{1}, \ldots, r_{n}, Binary Search either finds a given number q amongst the r_{i} or states that $q \neq r_{i}$ for all $i=1, \ldots, n$. A pseudo-code adaption of Binary Search is given as Algorithm 2, which gives the index i for a query number q or returns -1 if q is not equal to any of the r_{i}.

```
Algorithm 2 Binary Search
    procedure \(\operatorname{BinarySEARCH}\left(L:=\left\{r_{1}, \ldots, r_{n}\right\}, q\right) / /\) ordered \(r_{i}\), query
    point \(q\)
        if \(L\) is empty then
            return -1
        else
            Median \(\leftarrow r_{\lfloor n / 2\rfloor}\)
            if Median \(=q\) then
                return \(\lfloor n / 2\rfloor\)
            else if Median \(>q\) then
                return BinarySearch \(\left(\left\{r_{1}, \ldots, r_{\lfloor n / 2\rfloor-1}\right\}, q\right)\)
            else if Median \(<q\) then
                return BinarySearch \(\left(\left\{r_{\lfloor n / 2\rfloor+1}, \ldots, r_{n}\right\}, q\right)\)
            end if
        end if
    end procedure
```

Binary Search on n numbers has a runtime of $\log (n)$ and is furthermore an optimal searching strategy [SW11]. Now Binary Search can also be used to find all numbers $\left\{r_{i} \mid a \leq r_{i} \leq b\right\}$ for given a, b, by performing Binary Search on $\left\{r_{1}, \ldots, r_{n}\right\}$ twice, with input a and input b and respective output i_{a} and i_{b} according to Algorithm 2. Now the numbers greater equal a and less equal b are given by

$$
\left\{r_{i} \mid a \leq r_{i} \leq b\right\}=\left\{r_{i} \mid i_{a} \leq i \leq i_{b}\right\} .
$$

Instead of an ordered list or an array, one might also make use of the data structure of a balanced Binary Search Tree. While an array or a list need to be sorted in an initial step to be able to use them in Algorithm 2, a balanced Binary Search Tree needs to be built from the numbers r_{i}. In the balanced Binary Search Tree presented in [Ber+08], the numbers r_{1}, \ldots, r_{n} are stored in the leafs of the tree while the queried median values are stored in the
nodes above. For instance consider the set $\{2,3,5,7,11,13,17\}$ consisting of the first seven prime numbers. The corresponding balanced Binary Search Tree is given in Figure 3.1.

Figure 3.1: A balanced Binary Search Tree for the first seven prime numbers. Circular shapes denote stored median values, while rectangular shapes denote stored input numbers r_{i}.

Querying the tree from Figure 3.1 with the region $[3,12]$ we see that the nodes and leafs colored light-gray are traversed during the Binary Search for $a=3$ and $b=12$. The last number α seen when performing Binary Search with $q=3$ is $\alpha=3$. Accordingly the last number β seen when performing Binary Search with $q=12$ is $\beta=13$. In any case it is necessary to report all numbers between α and β, which are marked dark gray in the figure. They can be obtained by traversing certain subtrees. Finally it needs to be checked whether α and β lie in the queried range and they are reported accordingly. We can formalize this 1-dimensional range query on a Binary Search Tree in the following algorithm.
We state the correctness of this algorithm in the following theorem.

Theorem 3. Algorithm 3 reports exactly those points from the input tree T that lie in the queried range $[a, b]$.

Proof. First consider any reported point p. If p is stored at the leaf where the path to a or b ends, p is tested explicitly for inclusion in the query range in lines 28 and 39. Otherwise p has been reported in a call of line 22 or line 33 . Assume without loss of generality that p has been added to the result by line 22. Recall that the node $v_{\text {split }}$ is a splitting node in the sense that the paths to a and b in the tree T go to the left and right subtree of $v_{\text {split }}$ respectively,

```
Algorithm 3 1DimRangeQuery
    procedure 1DimRangeQuery \((T,[a, b])\) //Binary Search Tree \(T\), range
    \([a, b]\)
        \(v_{\text {split }} \leftarrow T\).get Root ()
        while \(v_{\text {split }}\) is not a leaf and \(\left(b \leq \operatorname{value}\left(v_{\text {split }}\right)\right.\) or \(\left.a>\operatorname{value}\left(v_{\text {split }}\right)\right)\)
    do
            if \(b \leq \operatorname{value}\left(v_{\text {split }}\right)\) then
            \(v_{\text {split }} \leftarrow v_{\text {split }}\).getLeft ()
            else
                        \(v_{\text {split }} \leftarrow v_{\text {split }}\).get Right ()
            end if
        end while
        //Now \(v_{\text {split }}\) is the node where \(a\) and \(b\) lie in the left and right subtree
    respectively
        if \(v_{\text {split }}\) is a leaf of \(T\) then \(/ / v_{\text {split }}\) is a leaf of \(T\)
            if value \(\left(v_{\text {split }}\right) \in[a, b]\) then
                return value \(\left(v_{\text {split }}\right)\)
        else
            return NULL
        end if
        else \(/ / v_{\text {split }}\) is an internal node of \(T\)
            Result \(=\emptyset\)
            \(v_{\ell} \leftarrow v_{\text {split }} \cdot g e t \operatorname{Left}() / /\) Follow a path to \(a\)
            while \(v_{\ell}\) is not a leaf do
                        if value \(\left(v_{\ell}\right) \geq a\) then
                    Add all points from the right subtree of \(v_{\ell}\) to the Result
                    \(v_{\ell} \leftarrow v_{\ell} . \operatorname{get} \operatorname{Left}()\)
            else
                \(v_{\ell} \leftarrow v_{\ell} . g e t \operatorname{Right}()\)
            end if
        end while
        if value \(\left(v_{\ell}\right) \in[a, b]\) then Add value \(\left(v_{\ell}\right)\) to the Result
        end if
        \(v_{r} \leftarrow v_{\text {split }}\).get \(\operatorname{Right}() / /\) Follow a path to \(b\)
```

```
31: \(\quad\) while \(v_{r}\) is not a leaf do
                                if value \(\left(v_{r}\right)<b\) then
                                    Add all points from the left subtree of \(v_{r}\) to the Result
                                    \(v_{r} \leftarrow v_{r} . \operatorname{get} \operatorname{Right}()\)
        else
                        \(v_{r} \leftarrow v_{r} . \operatorname{get} \operatorname{Left}()\)
        end if
        end while
        if value \(\left(v_{r}\right) \in[a, b]\) then Add value \(\left(v_{r}\right)\) to the Result
        end if
        return Result
        end if
    end procedure
```

see Figure 3.2. Since v_{ℓ} and hence its right subtree $v_{\ell} . \operatorname{get} \operatorname{Right}()$ lie in the left subtree of the splitting node $v_{\text {split }}$, we have $p \leq \operatorname{value}\left(v_{\text {split }}\right)$. Because the search path of b goes into the right subtree of $v_{\text {split }}$ we know $p<b$. On the other hand, the search path of a goes into the left subtree of v_{ℓ} and p is in the right subtree of v_{ℓ}, therefore $a<p$. It follows that $p \in[a, b]$. Therefore every reported point p does indeed lie in the queried range $[a, b]$.
Now consider a point $p \in[a, b]$ that is stored in the leaf μ of T. Then there exists a node v of T with maximal depth that is visited by Algorithm 3 and is an ancestor of μ. Claim: $v=\mu$, i.e. p is reported. Assume for a contradiction that p is not reported by Algorithm 3. Then v cannot be a node visited in line 22 or line 33 , since all descendants of these nodes are reported. Therefore v is a node on the search path to a, on the search path to b, or on both paths. First assume that v is on the search path of a, but not on the search path of b. Then the search path must go left from v and μ must be in the right subtree of v, otherwise v would not be the ancestor with maximal depth. But then μ is included in the call of line 22 and is therefore reported.
The case of v lying on the search path to b and not on the search path to a is similar, hence we will close by considering the case of v lying on both the path to a and the path to b. Assume first that μ is in the left subtree of v. Then the search path of a goes right at v, otherwise v would not be the ancestor of maximal depth. But then $p<a$. Similarly, if μ is in the right subtree of v, the search path of b goes left at v, therefore $p>b$. Both contradict to the assumption that p lies in the queried range. Thus all points in the queried range are indeed reported by Algorithm 3.

Note how it is crucial in Algorithm 3 to traverse many of the inner nodes of

Figure 3.2: A Binary Tree T which is queried for values a and b. The value a is actually stored in a leaf $\alpha=a$ of the tree, while the search path for value b in T ends in leaf β. Compare [Ber+08].
the tree to determine the output. For example, in Figure 3.1 one can see that all inner nodes need to be explored in order to find the numbers from the queried range. To overcome this problem and to compute the output faster we will use AVL Trees [OW02] instead of balanced Binary Search Trees. In the case of AVL Trees all nodes and not only the leafs of the tree will store numbers from the point set. That is, instead of only storing the value of the median, the median itself is stored in the node and does not appear in the left nor in the right subtree. The advantage here is a faster reach of certain nodes since it is not necessary to traverse down to leaf-level anymore. Also the split nodes only storing median values do not have to be stored any more hence saving storage. Explicitly, we know that a Binary Tree with n leafs has $n-1$ internal nodes [Sed92]. Therefore, by using AVL Trees instead of
balanced search tree, we can reduce the needed storage by almost one half. An AVL Tree corresponding to the example from Figure 3.1 is given in Figure 3.3.

Figure 3.3: An AVL Tree for the first seven prime numbers.
We will now use the ideas from this section and generalize them to higher dimensions. In our presentation we will follow [Ber +08], but will divert from their idea by using AVL Trees rather than balanced Binary Search Trees to use the mentioned benefits.

3.2.2 Kd-Trees in Dimension d

After having presented the general idea of Binary Search and one-dimensional range queries, we will now generalize it to an arbitrary dimension d. For the remainder of this section we will make the following assumption:

Assumption 1. Given a set of points $\left\{p_{1}, \ldots, p_{n}\right\} \subset \mathbb{R}^{d}$, denoting by $p_{i 1}, \ldots, p_{i d}$ the d coordinates of the point p_{i}, we assume that

$$
\begin{equation*}
p_{i k} \neq p_{j k} \quad \forall i, j=1, \ldots, n, \quad i \neq j, \forall k=1, \ldots, d . \tag{3.1}
\end{equation*}
$$

Since this is a very strict assumption, in Section 3.2.3 we will show that it can be dropped. We just state it here for the sake of simplicity.
For a given set of points $P=\left\{p_{1}, \ldots, p_{n}\right\}$ their $K d$-Tree is recursively defined. In the first step, the points from P are ordered according to their first coordinate. By Assumption 1 we know that these first coordinates are distinct and hence we can find a unique median m_{1} according to this ordering. We introduce a hyperplane $h_{1}=\left\{x \in \mathbb{R}^{d} \mid x_{1}=m_{1}\right\}$. Now we split the point set P into a "left" and a "right" half, according to whether $p_{i 1} \leq m_{1}$ or $p_{i 1}>m_{1}$, that is the chosen median always lies in the "left" half and hence the size of the halves differs by at most one. Now we apply this same technique to both the left half and the right half, but the median is
now not taken from the ordered first coordinates, but the second coordinates. Also, the introduced hyperplanes only start at the hyperplane h_{1} introduced earlier. When the median is taken from the d-th coordinate, in the next recursion step, the median will be once again taken from the first coordinate, i.e. it is taken in cyclic order from the coordinates.

In Figure 3.4 this recursion is illustrated. The first hyperplane h_{1} splits the pointset on the x-axis. The second hyperplane splits the left half of the pointset on the y-axis, but only starts at hyperplane h_{1} and then goes off to negative infinity. Since in this case, the points are two-dimensional, the third hyperplane again splits on the x-dimension.

Figure 3.4: A set of eight points is recursively split with four hyperplanes that define the corresponding $K d$-Tree, which is also shown. Note that the internal representing p_{6} has only one child.

Using this recursion ensures that the result is an AVL Tree that stores the input points corresponding to hyperplanes in its inner nodes, while all other points are stored in the leafs. To formalize the construction of a $K d$-Tree we state this building procedure in Algorithm 4.

The algorithm uses the convention that the median belongs to the "left" part of the hyperplane. For this to still obtain an AVL Tree, the median has to be defined in the following way.

```
Algorithm 4 Build \(K d\)-Tree
    procedure Build \(K d\)-Tree ( \(\mathrm{P}, d, \delta) / /\) point set \(P\) containing points of
    dimension \(d\), current depth \(\delta\)
        if \(|P|=1\) then
            return A leaf storing the single point of \(P\)
        else
            \(s d \leftarrow \delta \bmod d / /\) The dimension where to split \(P\)
            \(m \leftarrow\) Median of \(P\) in the splitting Dimension //Let \(m\) bis the
    median of \(P\) according to the values of the points in dimension \(s d\).
                \(H \leftarrow\left\{x \in \mathbb{R}^{d} \mid x_{s d}=m_{s d}\right\} / /\) The hyperplane \(H\) is an axis-parallel
    hyperplane containing all points whose \(s d\)-th coordinate is equal to the
    \(s d\)-th coordinate of \(m\).
            \(P_{\ell} \leftarrow P \cap\left\{x \in \mathbb{R}^{d} \mid x_{s d}<m\right\} / /\) All points from \(P\) that have sdth
    coordinate strictly smaller to the \(s d\)-th coordinate of \(m\).
        \(P_{r} \leftarrow P \cap\left\{x \in \mathbb{R}^{d} \mid x_{s d}>m\right\} / /\) All points from \(P\) that have \(s d\)-th
    coordinate strictly larger to the \(s d\)-th coordinate of \(m\).
        //Note that because of Assumption 1 there is no other point in \(P\)
    except \(m\) with \(s d\)-th coordinate equal to the \(s d\)-th coordinate of \(m\).
        \(n_{\ell} \leftarrow \operatorname{Build} K d\)-Tree \(\left(P_{\ell}, d, \delta+1\right)\)
            \(n_{r} \leftarrow \operatorname{Build} K d-\operatorname{Tree}\left(P_{r}, d, \delta+1\right)\)
            return A node \(\nu\) storing \(m\), representing \(H\), with \(n_{\ell}\) as left and
    \(n_{r}\) as right child.
        end if
    end procedure
```

Definition 3. Given points $P=\left\{p_{1}, \ldots, p_{n}\right\}$ with $p_{i} \prec p_{i+1}$ according to some total order \prec. Then the median according to the order \prec is $p_{[n / 2]}$.

Considering Algorithm 4 and following [Ber+08] we can show the next lemma.

Lemma 3. A Kd-Tree for a set of n points uses $\mathcal{O}(n)$ storage and can be constructed in $\mathcal{O}(n \log (n))$ time.

Proof. In Algorithm 4 in each recursion step the most time-consuming part is finding the median. This can be done in $\mathcal{O}(n)$, see Chapter 6 . Therefore the building time $T(n)$ of a $K d$-Tree satisfies the following recursion

$$
T(n)= \begin{cases}\mathcal{O}(1), & \text { if } n=1, \\ \mathcal{O}(n)+2 \cdot T(\lceil n / 2\rceil), & \text { if } n>1,\end{cases}
$$

which solves to $T(n)=\mathcal{O}(n \log (n))$ [SW11].
Note that one can also find the median by initially sorting d lists according to one of the d dimensions respectively and passing on the sorting to the recursion steps. The initial sorting takes $\mathcal{O}(n \log (n))$ time and splitting the sorting to pass it on takes $\mathcal{O}(n)$ time which subsumes the proven bound.
Concerning the storage bound, each point p_{i} from the input point set is stored in either an internal node or a leaf, hence to store the n input points takes $\mathcal{O}(n)$ storage.

3.2.3 Generalization to finite d-dimensional point sets

In practical applications, Assumption 1 is generally not satisfied. Therefore we need to be able to drop this assumption and still be able to perform Algorithm 4. From the description in Section 3.2.2 we know that Assumption 1 is necessary to assure that a median can be found on any dimension. In order to overcome this, we turn to the concept of General Points as introduced in $[\operatorname{Ber}+08]$.

Definition 4. Consider a given point $p \in \mathbb{R}^{d}$, with coordinates p_{1}, \ldots, p_{d}. The corresponding i-th composite coordinate p_{i}^{\prime} is the cyclic concatenation

$$
\begin{equation*}
p_{i}^{\prime}=\left(p_{i}\left|p_{i+1}\right| \ldots\left|p_{d}\right| p_{1}|\ldots| p_{i-1}\right) . \tag{3.2}
\end{equation*}
$$

The General Point p^{\prime} corresponding to p is

$$
p^{\prime}=\left(\begin{array}{c}
p_{1}^{\prime} \tag{3.3}\\
\vdots \\
p_{d}^{\prime}
\end{array}\right)
$$

Two composite coordinates $a^{\prime}=\left(a_{1}|\ldots| a_{d}\right), b^{\prime}=\left(b_{1}|\ldots| b_{d}\right)$ are ordered lexicographically, that is

$$
\begin{equation*}
a^{\prime}<b^{\prime}: \Leftrightarrow \exists j \in\{1, \ldots, d\} \text { s.t. } a_{j}<b_{j} \text { and } a_{k}=b_{k} \forall 1 \leq k<j . \tag{3.4}
\end{equation*}
$$

Note that p_{i}^{\prime} from the definition can be seen as a row-vector with d entries and p^{\prime} can be interpreted as a $d \times d$ matrix. Using this lexicographical order, we can find the median of a point set according to a given dimension. Since the composite coordinates as defined in (3.2) carry the original point coordinate of the given dimension as first item, by ordering lexicographically, we ensure that the desired order is kept intact. Therefore by using General Points instead of the points in the input set we can weaken Assumption 1 to the following.

Assumption 2. Given an input point set $\left\{p^{1}, \ldots, p^{n}\right\} \subset \mathbb{R}^{d}$, we assume that

$$
\begin{equation*}
p^{i} \neq p^{j} \forall i, j=1, \ldots, n, i \neq j \tag{3.5}
\end{equation*}
$$

To wrap up things so far, consider the points p, q, and their corresponding General Points.

$$
p=\left(\begin{array}{l}
2 \\
3 \\
5
\end{array}\right), \quad p^{\prime}=\left(\begin{array}{c}
2|3| 5 \\
3|5| 2 \\
5|2| 3
\end{array}\right), \quad q=\left(\begin{array}{c}
2 \\
7 \\
10
\end{array}\right), \quad q^{\prime}=\left(\begin{array}{c}
2|7| 10 \\
7|10| 2 \\
10|2| 7
\end{array}\right)
$$

Note that the points p and q violate Assumption 1, but satisfy Assumption 2. Considering the first dimension, we can establish the ordering

$$
2|3| 5<2|7| 10
$$

according to the lexicographical order as defined in (3.4).
To end this chapter, note that in an explicit implementation of a $K d$-Tree Assumption 2 can be dropped by telling apart two points with identical coordinates. We will explain an approach to this in Section 3.3.1. Furthermore, although Definition 4 suggests that for each point p of the input a matrix p^{\prime} would have to be stored, this is not the case. In Section 3.3.1 we will show how this problem can be solved by using a lexicographical order on the input points. Furthermore note that we did introduce one-dimensional range queries in Section 3.2.1 but did give a generalization on $K d$-Trees. That is not to say that higher dimensional range queries can not be performed on $K d$-Trees, but they are not necessary for our applications as given in Chapter 2. The interested reader can find a description of higher dimensional range queries in $[B e r+08]$. Finally note that if a $K d$-Tree is stored in external memory with e.g. each node in its own page, then for each node a disk I/O has to be performed. This problem can be overcome as outlined in [Pro+03].

3.3 Implementations

In this section we want to briefly present how the concepts introduced in Section 3.2 are implemented. For all implementations in this thesis, we will use the JavaView framework, see [Pol+]. Benchmarks on the different implementations are given in Chapter 8.

3.3.1 Lexicographical Order

As presented in Section 3.2.3 to be able to apply the data structure of $K d$ Trees, we need to impose an order on the points $p_{\iota} \in P$ such that we can uniquely determine a median according to a given dimension k. An appropriate order is given in Definition 4. For our implementation we will make use of the generic Java interface Comparator<T> as documented in [Ora]. Since our implementation will be based on JavaView and thus uses the corresponding class PdVector for d-dimensional vectors, our Comparator implementation will be Comparator<PdVector>. The only essential values to store are the dimension of the PdVectors which are to be compared, as well as the startDimension, that is the dimension in which the median for the building process of the $K d$-Tree is searched.

By definition of the Comparator<T> interface, the only necessary function of a Comparator<T> implementation is the compare ($\mathrm{T} \arg 0, \mathrm{~T} \arg 1$) method which is to return

$$
\text { compare }(a, b)= \begin{cases}-1 & \text { if } a<b \\ 1 & \text { if } a>b \\ 0 & \text { if } a=b\end{cases}
$$

Recall that by Assumption 2 we want to have all points distinct. In fact we will realize the compare function in a way such that even two PdVectors p, q that agree in all coordinates are considered to be distinct in the sense, that one of them in our order will be smaller than the other. To achieve this, we evaluate the hash code of the object, which is a stable value throughout all computations. Thereby we can even drop Assumption 2. The general idea of the compare function is given in Algorithm 5 and the whole class Java implementation is given in Appendix B. The outlined Comparator<PdVector> will be used in the following.

```
Algorithm 5 Compare
    procedure Compare \((p, q) / /\) Points \(p\) and \(q\)
        for int \(i=0 ; i<d ; i++\) do
            \(\operatorname{dim} \leftarrow(\) startDimension \(+i)\) mod dimension
            if \(p_{i}<q_{i}\) then return -1
            else if \(p_{i}>q_{i}\) then return 1
            end if
        end for
        if \(p\).hashCode()<q.hashCode() then return -1
        else if \(p\).hashCode ()\(<q\).hashCode() then return 1
        end if
        return 0
    end procedure
```


3.3.2 Abstract Kd-Tree

When implementing the $K d$-Tree within the JavaView framework, we can make use of the different polymorphic abilities of the Java language as e.g. presented in [Fla98]. A $K d$-Tree will, independent of the way it is build, provide an implementation of the methods outlined in Section 3.1 and explained in Chapter 5. To realize this, we will implement an abstract $K d$-Tree
incorporating all features for nearest neighbor search as given in Chapter 5. Although the abstract $K d$-Tree already provides a root variable to access its root node, it does not provide a constructor, which has to be provided by the extending class. In order to assure that the user of the abstract class actually implements a constructor, we introduce the item given in Listing 3.1.

```
\(1 \longdiv { / * * }\) This methods creates a KdTree from the given set of
    points.
* It has to be implemented by the class implementing this
3* abstract class.
* @param points The set of points to be represented by the
5 * KdTree.
\(6 \mid * /\)
7 protected abstract void buildTree (PgPointSet points) ;
```

Listing 3.1: An abstract method to force the user of the class to implement a constructor-like method. Note that this method still needs to be called by the user in the constructor of the class implementing the abstract Kd-Tree.

Apart from the stated method in Listing 3.1, the abstract $K d$-tree provides the methods listed in Listing 5.1. They are either generic or related to the procedure of finding nearest neighbors and hence will be explained in Section 5.3.

3.3.3 Sorting

During the process of building a $K d$-Tree, the median of the point set according to a given dimension has to be determined. This can be done quite trivially by sorting the set using the lexicographical comparator presented in Section 3.3.1. Assume that the point set is sorted using the correct order and has n elements, then the median is the $\lfloor n / 2\rfloor$ th element. We could now in each recursion step sort the considered subset. However, we aim for a slightly more elaborate approach.
Assume that the $K d$-Tree is to handle d-dimensional data. Then the idea is to initially create d lists L_{1}, \ldots, L_{d}, each containing the whole point set and each list L_{i} is sorted using Algorithm 5 on startDimension i. Now when the median m is to be determined on dimension j, we easily find it as the $\lfloor n / 2\rfloor$ th element of the list L_{j}. For the recursion step, each list $L_{i}, i \neq j$, has to be partitioned in a way such that all $\lfloor n / 2\rfloor$ elements smaller than m are put in front of the median and all $\lfloor n / 2\rfloor$ elements larger than m are stored behind the median in L_{i}. Here, "smaller" and "larger" refer to the order induced by Algorithm 5 with startDimension j. However, the elements on L_{i} are moved in a way such that any two points below the median are still ordered according to the order obtained with startDimension i. We formalize this
in Algorithm 6. The whole class implementation is given in Appendix C. Finally note that if storage was an issue we could in this procedure also store the indices of points in the list and work on them.

3.3.4 Median

Sorting of a list containing n elements can be done in $\mathcal{O}(n \log (n))$, see [SW11]. However, we will see in Chapter 6 that sorting is not the fastest way to determine the median. Hence apart from a $K d$-Tree implementation that simply sorts its points to build it, we also offer an implementation that actually computes the median from the list in each recursion step. The advantages are obvious: We have no need for storing a list for each dimension, but we only need to work on the original point cloud. Also the overhead of sorting the lists, as outlined in the previous section, is unnecessary. Since we do not want to settle for a particular median algorithm at the start, we use the strategy design pattern as given in [Gam+94]. That is, we provide an interface for a median algorithm as shown in Listing 3.2 and provide the $K d$ Tree during its building process with an instance implementing this interface. See Chapter 6 for the offered instances.

```
public interface IMedianAlgorithm \{
    public PdVector median(PdVector [] points, int dim);
\(3 \mid\}\)
```

Listing 3.2: Interface to use the Strategy design pattern for median computation

The whole code of the $K d$-Tree class using median computation is given in Appendix D. Note that computing the median still requires partition on the point set to be able to recursively find medians on the lower and upper halves. However, only one partition has to be performed and not dimension many partitions as in Section 3.3.3.

```
Algorithm 6 Build \(K d\)-Tree Sorting
    procedure BuildSorting \((P, d) / /\) Point set \(P\) of dimension \(d\)
        for int \(i=0 ; i<d ; i++\) do
            Create a List \(L_{i}\) to hold all points from \(P\) and sort it lexicograph-
    ically with start dimension \(i\).
        end for
        RecursiveBuild \(\left(L_{1}, \ldots, L_{d}, 0,0,|P|-1\right)\)
    end procedure
    procedure RecursiveBuild \(\left(L_{1}, \ldots, L_{d}, j, s, e\right) / /\) Sorted Lists \(L_{i}\), cur-
    rent dimension \(j\), start index \(s\), end index \(e\)
        if \(e<s\) thenreturn NULL
        else if \(s=e\) thenreturn Leaf storing the \(L_{j}(s)\).
        end if
        \(m_{i} \leftarrow\lfloor(s+e) / 2\rfloor / /\) index of the median
        \(m \leftarrow L_{j}\left(m_{i}\right) / /\) find the median
        for all Lists \(L_{i}, i \neq j\) do
            Partition \(\left(L_{i}, m, j, s, e\right)\)
        end for
        \(\ell \leftarrow \operatorname{RecursiveBuild}\left(L_{1}, \ldots, L_{d}, j+1 \bmod d, s, m_{i}-1\right)\)
        \(r \leftarrow \operatorname{RecursiveBuild}\left(L_{1}, \ldots, L_{d}, j+1 \bmod d, m_{i}+1, e\right)\)
        return Node storing \(m\) with left child \(\ell\) and right child \(r\)
    end procedure
    procedure Partition \(\left(L_{i}, m, j, s, e\right) / /\) List \(L_{i}\) ordered on dimension \(i\), me-
    dian \(m\) obtained in order on dimension \(j\), start and end index \(s\) and \(e\)
        Create a queue \(Q\)
        \(k \leftarrow s\)
        for all points \(p\) in \(L_{i}\) from \(s\) to \(e\) do
            if \(p<_{j} m\) then//Compare using Algorithm 5
                \(p\) is stored at position \(k\) in \(L_{i}\) and \(k \leftarrow k+1\).
            else if \(p>_{j} m\) then//Compare using Algorithm 5
                    Add \(p\) to \(Q\).
            end if
        end for
        Place \(m\) at index \(\lfloor(s+e) / 2\rfloor\) in \(L_{i}\), put all elements of \(Q\) to the places
    \(\lfloor(s+e) / 2\rfloor, \ldots, e\) in \(L_{i}\), keeping their order from \(Q\).
    end procedure
```


Chapter 4

Two more Spatial Data Structures

In Chapter 3 we introduced the general idea of neighborhood computation on spatial data structures. We did also introduce the data structure of a $K d$-Tree. In this chapter, we will present two more data structures that are used in similar applications as the $K d$-Trees. For both present structures we will reason why they are inferior to $K d$-Trees in our application.

4.1 Quadtree and Octree

Quadtrees are spatial data structures that split a d-dimensional space recursively into 2^{d} equally sized cells. In the three dimensional case they are also called Octrees. Since the generalization to the third dimension is straight forward, we will present it along the way of giving the concept for two dimensions.
Given a point set P, the construction of a two-dimensional quadtree starts with a bounding square around P, which will be the initial cell of the quadtree. Recursively, each cell is subdivided into four equally sized square cells until every cell of the Quadtree only contains one point p_{ι} of the input set P. In the two-dimensional case, the cells are usually labeled according to the respective cardinal direction, i.e. North-East (NE), North-West (NW), South-West (SW), and South-East (SE). For Octrees and higher dimensional Quadtrees, the cells are usually numbered, as shown in Figure 4.1.

This procedure gives a tree, where the root corresponds the initial bounding square. Each internal node now has four children, corresponding to the four equally sized square cells that the cell corresponding to the considered node

Figure 4.1: The labeling of a Quadtree and an Octree, cf [Bri05] and [Eri05].
is split up into. The leafs of the tree either represent a point from the input set P or are empty. An example for a Quadtree and its building process is given in Figure 4.2.

Figure 4.2: A set of nine points is recursively put into a Quadtree data structure. The final Quadtree is also shown. Note how some of the leafs are empty and the tree is not balanced. Compare to [Bri05].

For a more thorough introduction see [Bri05] and for implementation detail see [Eri05]. For details on nearest neighbor procedures on Quadtrees see
[Vai89]. From the example in Figure 4.2 it already becomes obvious that an Octree is not balanced. On the contrary, for any distribution of points apart from a uniform distribution, we expect an Octree to be unbalanced. The difference of depth of certain leafs can be arbitrary high already for an Octree on three points. To see this consider the points

$$
\begin{equation*}
p_{1}=\left(\frac{1}{4}, \frac{1}{4}\right), \quad p_{2}=\left(\frac{2^{k+1}-3}{2^{k+1}}, \frac{2^{k+1}-1}{2^{k+1}}\right), \quad p_{3}=\left(\frac{2^{k+1}-1}{2^{k+1}}, \frac{2^{k+1}-3}{2^{k+1}}\right) . \tag{4.1}
\end{equation*}
$$

For $k \in \mathbb{N}, k \geq 1$, the Quadtree representing these three points has height k. For an illustration see Figure 4.3. Although this is a theoretical example and

Figure 4.3: From left to right: Different Quadtrees for the points p_{1}, p_{2}, p_{3} as given in (4.1) for values $k=1,2,3,4$. Note how the Quadtree has exactly depth k in each illustration.
in terms of our application as outlined in Chapter 2 these extreme behaviors of a Quadtree will not arise, we still dismiss the concept of the Quadtree in favor of $K d$-Trees which are always balanced.
To end this section on Quadtress note that they do possess a big advantage over $K d$-Trees. Namely insertion and deletion of points can be efficiently done in a Quadtree, while a $K d$-Tree in general has to be re-built. However, in the application given in Chapter 2 we do not need our data structure to change, since we fix a neighborhood at the beginning of the computation and do not change it throughout the algorithm, see Section 2.1.3.

4.2 R-Tree

The indexing structure of R-Trees has been proposed by [Gut84]. It is a generalization of B-Trees [Com79]. By design the R -Tree is to handle a spatial database, which consists of index record entries of the form

$$
\left(\left(p_{\min }, p_{\max }\right), i d\right)
$$

where the pair $p_{\min }, p_{\max } \in \mathbb{R}^{n}$ defines an n-dimensional rectangular bounding box containing a spatial object O and $i d$ is an identifier for O. Note here that for $O=p \in \mathbb{R}^{n}$ a single point, p can be stored in the degenerated hyper-rectangle $p_{\min }=p_{\max }$. While the records introduced above are stored in the leafs of an R-Tree, the internal nodes store similar records

$$
\left(\left(p_{\min }, p_{\max }\right), c h i l d\right),
$$

where the pair $p_{\min }, p_{\max } \in \mathbb{R}^{n}$ again defines an n-dimensional rectangular bounding box and child is a pointer to a child of the internal node. The key properties of an R-Tree are given by [Gut84] to be

1. Every leaf of the R-Tree stores between m and M many records unless it is the root.
2. For each record $\left(\left(p_{\min }, p_{\max }\right), i d\right)$ in a leaf node, $\left(p_{\min }, p_{\max }\right)$ is the smallest hyper-rectangle that contains the object O identified by $i d$.
3. Every internal node has between m and M many children unless it is the root.
4. For each record $\left(\left(p_{\min }, p_{\max }\right)\right.$, child $)$ in an internal node, $\left(p_{\min }, p_{\max }\right)$ is the smallest hyper-rectangle that contains all rectangles in the given child node.
5. The root has at least two children unless it is a leaf.
6. All leafs appear on the same level.

Note that the hyperrectangles of internal nodes and leafs can be pairwise overlapping. An illustration of the R-Tree concept is provided in Figure 4.4.

R-Trees provide search algorithms that output all $i d$ s whose rectangles overlap with a search rectangle $\left(s_{\min }, s_{\max }\right)$. Furthermore new objects can be inserted into the tree and objects from the tree can be deleted. In the first case nodes might be split to satisfy they have between m and M many children. Different splitting strategies and a full description of the algorithms on R-Trees can be found in [Gut84], [GUW02], as well as in [SC03] where also different models as $\mathrm{R}+$-Trees and R^{*}-Trees are discussed. For an explicit description about a nearest neighbor algorithm using R-Trees, see [RKV95]. In [Els+12] several data structures are compared according to their performance on nearest-neighbor search strategies. The authors come to the following conclusion:

The R-tree library SpatialIndex performs about on par to the STANN library. Both were generally slower than the $K d$-Tree implementations.

Therefore we dismiss R-Trees as possible data structures for our application as outlined in Chapter 2. It is also worth mentioning [Jun11], where it is shown that on the chosen benchmark example of the thesis, a static $K d$-Tree performs 221, 608 writing operations while the R-Tree from [Gut84] performs $1,539,451$ writing operations during the same example.

4.3 Choice of a Data Structure, Curse of Dimensionality

In Sections 4.1 and 4.2 we gave reasons for our choice to pick the data structure of a $K d$-Tree over a Quadtree or an R-Tree. Our reasoning was mostly based on assumptions and experimental data as presented in [Els+12]. At this point we would like to pose the question:

For a set of points P in dimension d, what is the fastest data structure to use in order to perform nearest neighbor queries on P ?

Sadly, there is no final answer to this question. This is mainly because the dimension here is variable. That is to answer the question above we would need to find a data structure that behaves good independent of both the dimension of the ambient space and the dimension of the embedded point set. However, as dimension grows, new phenomena can be observed. For example it was shown in $[$ Bey +99$]$ that
assuming the distance distribution behaves a certain way (...) the difference in distance between the query point and all data points becomes negligible.

In other words, if $d_{\max }=\max _{p_{i}, p_{j} \in P}\left\|p_{i}-p_{j}\right\|$ and $d_{\min }=\min _{p_{i}, p_{j} \in P}\left\|p_{i}-p_{j}\right\|$, then

$$
\lim _{d \rightarrow \infty} \frac{d_{\max }}{d_{\min }} \rightarrow 1
$$

for certain conditions on the distribution of the p_{i} and the size of P as given in $[B e y+99]$. This has an immediate effect on the nearest neighbor procedure as outlined in 3.1. The advantage of the procedure lies in an expectedly large
cut off of points from P, i.e. we hope not to have to consider all points of P, but only a certain subset. As the fraction $\frac{d_{\max }-d_{\text {min }}}{d_{\text {max }}}$ becomes smaller, less and less points from P can be cut off and have to be considered when looking for nearest neighbors.
Another effect of high dimensions is the formation of so called hubs in the point set P. A hub is a point $p_{\iota} \in P$ that appears as a nearest neighbor to unusually many points $x_{j} \in P$. For a formal description of the phenomenon see [RNI10]. It is interesting since it can be shown to be an inherent property of data distributions in high-dimensional vector space and thus also appears in real-world data. The emergence of hubs with growing dimension strongly effects the structure of the directed k-nearest-neighbor-graph and thereby has a strong impact on any algorithm for k nearest neighbor search.
Because of the presented reasons we are not able to give one analysis that once and for all settles the question for a best suited data structure for nearest neighbor computation on point sets. This explains why we have to retreat to experimental data in our reasoning about the choice of a data structure.

Figure 4.4: An R -Tree in \mathbb{R}^{2} and the corresponding rectangles. The dotted drawn rectangles correspond to internal nodes of the R-Tree, while the fully drawn rectangles are rectangles storing the actual objects. In R_{8} the corresponding object is shown. See [Gut84].
4.3 Choice of a Data Structure, Curse of Dimensionality Martin Skrodzki

Chapter 5

Nearest Neighbor Search

In Chapter 3 we gave the general idea of nearest neighbor computation in Algorithm 1. In this chapter we will now use this idea, to set up a Nearest Neighbor Search algorithm on $K d$-Trees. Recall that nearest neighbor computation can be naively done by just iterating over all points. This leads to the following algorithm. Note that we do not require the input point to be

```
Algorithm 7 Naive Nearest Neighbor
    procedure NaiveNearestNeighbor \(\left(P=\left\{x_{j} \mid j=0, \ldots, n-1\right\}, p\right)\)
    //point set \(P\), point \(p\), not necessarily element of \(P\)
        \(\min \leftarrow x_{0}\)
        for \(j=0 ; j=|P|-1 ; j++\) do
            if \(\left\|p-x_{j}\right\|<\min\) then
                    \(\min \leftarrow x_{j}\)
            end if
        end for
        return min
    end procedure
```

an element of the point set P. We will maintain this throughout the chapter. However, in the practical application outlined in Chapter 2 we want to query for nearest neighbors of a point $p_{\iota} \in P$ and we do not want p_{ι} to be reported as the nearest neighbor. We will describe solutions to this in Section 5.3. Finally keep in mind that Algorithm 7 has a runtime of $\mathcal{O}(n)$, that is, determining a nearest neighbor for each point x_{j} of the point set P takes $\mathcal{O}\left(n^{2}\right)$. In the remainder of the chapter we want to give two more algorithms on how to compute nearest neighbors. The first will be given in Section 5.1 and will be using Principal Component Analysis. The second will be given in Section 5.2 and will be a realization of the general idea outlined
in Algorithm 1. We will then explain how that realization is implemented in JavaView, which will be done in Section 5.3 and finally in Section 5.4 we try to modify the $K d$-Tree slightly to obtain even better results for the nearest neighbor algorithm.
Before we get into the algorithms note, that these algorithms will determine $\varepsilon-k-$ neighborhoods. That is, as described in Section 2.1.1, given a queried point p_{ι} of a point set P : The intersection of $P \cap B_{\varepsilon}\left(p_{\iota}\right)$ and the k sample points from P closest to p_{ι}. To find the nearest neighbor, it suffices to set $k=1$ and ε to e.g. the diameter of the axis aligned bounding box of P.

5.1 Nearest Neighbor using PCA

The following approach to a computation of nearest neighbors uses Principal Component Analysis (PCA) as given e.g. in [Han10]. We first give a description of the procedure, than formalize it as Algorithm 8. A JavaView implementation is given in Appendix A.
Given a point set P, we will compute the eigenvalues and eigenvectors of the covariance matrix of P as defined in (2.8), except we take the sum over all points in P, not only over a neighborhood of a fixed point. The unit eigenvector a_{1} to the largest eigenvalue λ_{1} of the covariance matrix is the direction of largest variance in P. The unit eigenvector a_{2} to the next largest eigenvalue λ_{2} is the direction of largest variance in P amongst all those vectors orthogonal to a_{1}. In general a_{i}, the unit eigenvector to the i th largest eigenvalue is orthogonal to a_{1}, \ldots, a_{i-1} and under this condition gives the direction of largest variance in P.
In our setting in \mathbb{R}^{3}, there will be three principal directions a_{1}, a_{2}, a_{3}. The vertices of P are now ordered in three lists L_{1}, L_{2}, L_{3} according to their position regarding the principal directions. We now iterate through all vertices $p_{\iota} \in P$. For a start we determine the smallest index $\min _{1}$ such that the distance of the points $L_{1}\left(\min _{1}\right)$ and p_{ι} in direction a_{1} is less or equal to ε. For the lists L_{2} and L_{3} we determine indices $\min _{2}, \min _{3}, \max _{2}, \max _{3}$. Indicating the range of points whose distance to p_{ι} on the direction a_{2} and a_{3} respectively is less or equal than ε.
Finally, we iterate over all indices starting at $\min _{1}$. If we come to an index whose point has larger distance to p_{ι} on the direction a_{1} than ε, there are no more points to consider. For all points that we consider before running into this break, we need to check whether their corresponding index on L_{2} and L_{3} lies in $\left[\min _{2}, \max _{2}\right]$ and $\left[\min _{3}, \max _{3}\right]$ respectively. If so, the only thing left to do is compute the actual euclidean distance of the point to p_{ι}, if it is smaller than ε, the point is added to the list of neighbors. A last thing to
do, after the break condition of the iteration is reached, is to check, whether the list of neighbors contains more than k points and if so, trim it accordingly.

```
Algorithm 8 Nearest Neighbor using PCA
    procedure NearestNeighborPCA \(\left(P=\left\{x_{j} \mid j=0, \ldots, n-1\right\}, \varepsilon, k\right)\)
    //point set \(P\), influence \(\varepsilon\), max. valence \(k\)
        \(M \leftarrow\) computeCovariance \((P)\)
        \(\left[a_{1}, a_{2}, a_{3}\right] \leftarrow\) computeEigenvectors \((M)\)
        for \(j=0, \ldots, n-1\) do
            \(L_{i} \cdot \operatorname{add}\left(\left\langle x_{j}, a_{i}\right\rangle\right), i=1,2,3\)
        end for
        \(\operatorname{Sort}\left(L_{i}\right), i=1,2,3 / /\) Order the points on the principal directions
        for \(\iota=0, \ldots, n-1\) do //Find NN for all points \(p_{\iota}\)
            \(\min _{i} \leftarrow \min \left\{j \mid L_{i}(j) \leq \varepsilon\right\}, i=1,2,3\)
            \(\max _{i} \leftarrow \max \left\{j \mid L_{i}(j) \leq \varepsilon\right\}, i=2,3\)
            for \(h=\min _{1}, \ldots, n-1\) do
                    if \(\iota<j\) and \(L_{1}(h)-L_{1}(\iota)>\varepsilon\) then
                    Break the for loop
                    end if
                    if (Index of \(x_{j}\) in \(L_{2}<\min _{2}\) or \(>\max _{2}\) ) or (Index of \(x_{j}\) in \(L_{3}\)
    \(<\min _{3}\) or \(>\max _{3}\) ) then
                                    Continue with the next iteration in the for loop
                    end if
                    \(d \leftarrow\left\|p_{\iota}-x_{j}\right\|\)
                    if \(d>\varepsilon\) then
                                    Continue with the next iteration in the for loop
                    end if
                    neigh.add \(\left(x_{j}\right)\)
            end for
            if Length(neigh) \(>k\) then
                    Trim neigh to size \(k\) keeping the \(k\) points closest to \(p_{\iota}\).
            end if
        end forreturn neigh
    end procedure
```

This algorithm will serve as a benchmark in Chapter 8 for the procedures of the following section.

5.2 Nearest Neighbor Search using Kd-Trees

In Section 3.1 we already gave a general idea on how data structures can speed up the procedure of finding nearest neighbors. We will now make this explicit for the data structure of $K d$-Trees. In our presentation we follow [Moo91], but divert slightly, since [Moo91] considers $K d$-Trees to be Binary Trees, while we work on AVL Trees.
The algorithm works recursively. Given a query point p_{ι} it traverses the $K d$ Tree to the leaf that would store the point p_{ι}, if it was stored in a leaf of the tree. Note that this leaf is uniquely determined since the leafs of the $K d$-Tree partition the whole space. Already during this traversal, the points x_{j} from the internal nodes are stored as possible candidates for nearest neighbors of p_{ι}, if they satisfy $\left\|x_{j}-p_{\iota}\right\|<\varepsilon$. However, only k points are stored in an order corresponding to increasing distance to p_{ι}. In case of a $(k+1)$-th point being added, the point x_{j} that has largest distance to p_{ι}, amongst the possible nearest neighbor candidates, is deleted from the candidate list. Once the leaf representing the region, where p_{ι} lies, is reached, the point of the leaf is also stored as a possible candidate. The tree is traversed back to the root, where

- at each internal node v the following check is performed. If in the list of current candidates for nearest neighbors less than k elements are stored, or the distance of p_{ι} to the hyperplane represented by v is less than the distance of p_{ι} to the furthest point from the current candidate list. That is, the other side of the hyperplane is examined if and only if the list still needs points or the other side of the hyperplane might contain a point closer to p_{ι} than some element from the current list. If the check is done successfully, the subtree on the other side of the node is inspected recursively.
- at each leaf ℓ the point x_{ℓ} stored in ℓ is added if the current candidate list does not have k points yet, or $\left\|x_{\ell}-p_{\iota}\right\|<\left\|x_{j}-p_{\iota}\right\|$ where x_{j} is the point from the current candidate list that is furthest from p_{ι}.

Note that the recursive traversal of a subtree of the $K d$-Tree is performed in the same as the whole procedure is: At first the algorithm traverses to the leaf closest to p_{ι} and then goes back to the root of the subtree, performing the check outlined above. We give an example of this procedure in Figures 5.1 to 5.6 for the search of one neighbor in \mathbb{R}^{2} with an ε such that all given points are within influence radius. Figure 5.1 shows a set of seven points in \mathbb{R}^{2} and their corresponding $K d$-Tree as well as the queried point p for which we search a nearest neighbor.

Figure 5.1: Initial point set and its $K d$-Tree with the query point p.

Figure 5.2 shows how, according to our procedure, we start to traverse the $K d$-Tree at its root, p_{4}, which is stored as currently closest point to p.

Figure 5.2: Root is examined and stored as nearest neighbor.

Figure 5.3 illustrates how the traversal continues in the direction of p, that is to the left side of the hyperplane of p_{4} and considers the point p_{3}, which is closer to p than p_{4} and is hence the new nearest neighbor.

In Figure 5.4 we see the initial traversal coming to an end at the leaf of the $K d$-Tree storing p_{1}. The procedure considers p_{1}, but keeps p_{3} as currently closest neighbor to p.

The traversal is now reversed and the hyperplane at p_{3} is examined, see Figure 5.5. Since the distance of p to the hyperplane at p_{3} is smaller than the distance of p to its currently nearest neighbor, p_{3}, the other side of the hyperplane is also considered. But the only node in the other subtree is p_{2}, which is further to p than p_{3}, hence p_{3} is kept as nearest neighbor.

Figure 5.3: Traversal continues to p_{3} which is new nearest neighbor.

Figure 5.4: Traversal stops in leaf p_{1}, but keeps p_{3} as nearest neighbor.

Figure 5.5: In the internal node p_{3}, its subtree containing p_{2} is examined, but p_{2} is further from p than p_{3}.

In the last Figure 5.6 we see that the traversal reached the root of the $K d$ Tree again and examines the corresponding hyperplane at p_{4}. But since this hyperplane is further from p than its current nearest neighbor, the whole subtree to the right of p_{4} is not examined anymore and recursion comes to a halt reporting p_{3} as nearest neighbor of p.

As we saw in the example, the big advantage of the procedure outlined is that under the right circumstances a whole subtree can be discarded from

Figure 5.6: The right subtree of p_{4} is rejected since the hyperplane through p_{4} is further from p than the current nearest neighbor p_{3}.
the search. In general, if $\left|N_{k}\left(p_{t}\right)\right|$ is small compared to $|P|$ we expect to be able to discard many subtrees from the search. We make the description of our procedure explicit in Algorithm 9.

Note that in line 21 we do not have to check whether the hyperplane of r has distance less than ε to p, since this follows by transitivity from the condition in place and the fact that $\| L$.furthest $-p \|<\varepsilon$ by definition of L.
The only question remaining now is about the runtime of Algorithm 9. For this discussion we will consider the simplified case of $k=1$ and ε large enough such that all points stored in the $K d$-Tree are possible nearest neighbors. Furthermore assume that the $K d$-Tree stores n points. Then at least $\mathcal{O}(\log n)$ visits of nodes in the tree are necessary, since the algorithm traverses down to leaf-level and the tree is balanced. On the other side, it can make at most n visits to nodes, since afterwards, the algorithm traversed every node in the $K d$-Tree. The two important figures to look at here is the worst case run time as well as the average case run time. Figure 5.7 gives an example for a worst case example in which almost every leaf of the tree needs to be examined.

Concerning the average case runtime, we turn to [FBF77]. Within their paper they prove the following theorem.

Theorem 4. The expected search time for the k nearest neighbors of a prespecified query point p in d-dimensional space is proportional to $\log n$, where n is the number of points stored in the Kd-Tree.
In particular, the expected search time is independent of the distribution $\rho(P)$ of points in space.

```
Algorithm 9 Nearest Neighbor \(K d\)-Trees
    procedure \(\operatorname{NNKDTree}(p, r, \varepsilon, k) / /\) Query point \(p\), Root \(r\) of the tree,
    influence \(\varepsilon\), max. valence \(k\)
        \(L \leftarrow\) empty list / /List to store the neighbor candidates, gives furthest
    neighbor so far.
        return NNKdTreeRek \((p, r, \varepsilon, k, L)\)
    end procedure
    procedure \(\operatorname{NNKDTREEREK}(p, r, \varepsilon, k, L) / /\) Query point \(p\), current posi-
    tion \(r\), influence \(\varepsilon\), max. valence \(k\), current best neighbors \(L\)
        if \(\mathrm{r}==\) null then
            //The currentPosition is null, nothing can be done here, return
    the currently known nearest neighbors
            return \(L\)
        else
            //The current Position contains a point, since it is either a leaf or
    an internal node
            Extract the point \(x_{j}\) from \(r\) and store it in \(L\). If \(L\) becomes to
    large, delete furthest point in \(L\).
            if \(r\) is a leaf then
                return \(L\)
            else
                //If the currentPosition is not a Leaf, we can apply recursion
    to (possibly) both sides of the hyperplane
                NNKdTreeREK \((p\), subtree of \(r, \varepsilon, k, L)\)
                if \(|L|<k\) and \(\| p-r\).hyperplane \(\|<\varepsilon\) then
                            //There are still neighbors missing and the other side of
    the hyperplane is still within influence radius
                    NNKdTreeRek \((p\),other subtree of \(r, \varepsilon, k, L)\)
                else if \(\| L\).furthest \(-p\|>\| p-r\).hyperplane \(\|\) then
                    //There are no neighbors missing, but we might find closer
    points to \(p\) on the other side of the hyperplane
                    NNKDTreeRek \((p\), other subtree of \(r, \varepsilon, k, L)\)
                end if
                return \(L\)
            end if
        end if
    end procedure
```


Figure 5.7: A figure from [Moo91], showing how a bad distribution of points can, for certain query points, lead to the necessity of examining almost all nodes of the $K d$-Tree.

The general idea of the proof is to use the estimated size of the regions represented by the leafs of the $K d$-Tree. The size of the region is derived from the number of points in P and the regions are fit into small d-dimensional hypercubes. When searching for nearest neighbors of the query point p, the algorithm traverses to the leaf representing the region that contains p. This takes $\mathcal{O}(\log n)$. Now the number of those hypercubes, which have to be investigated is estimated. It comes to be independent of the file size N and the probability distribution of the points in P, but only depends on k and d. Note at this point, that for large values of k and d, compared to n, the
theorem becomes meaningless. For a thorough proof see [FBF77].

5.3 Implementation in JavaView

We will now briefly present the implementation of Algorithm 9 within the JavaView framework. The nearest neighbor computations are performed by the abstract $K d$-Tree class as introduced in Section 3.3.2. Apart from the method given in Listing 3.1 the abstract $K d$-Tree provides the methods given in Listing 5.1.

```
//Nearest Neighbor for given \(k\)
public PriorityQueue \(<\) PdVector \(>\)
    getNearestNeighborsQueueByNumber (PdVector input, int
    count, Boolean includeInput);
public PiVector getNearestNeighborsVectorByNumber (PdVector
        input, int count, Boolean includeInput);
protected PriorityQueue \(<\) PdVector \(>\)
        getNumberOfNearestNeighbors (PdVector input, int count,
        PriorityQueue \(<\) PdVector \(>\) currentBest, Node
        currentPosition, Boolean includeInput);
//Nearest Neighbor Stack for given influence radius
public Stack<PdVector \(>\) getNearestNeighborsStackByInfluence (
        PdVector input, double influence, Boolean includeInput)
protected Stack \(<\) PdVector \(>\) getStackOfNearestNeighbors (
    PdVector input, double influence, Stack<PdVector> stack
        , Node currentPosition, Boolean includeInput);
//Nearest Neighbor Vector for given influence radius
public PiVector getNearestNeighborsVectorByInfluence (
        PdVector input, double influence, Boolean includeInput)
        ;
0 protected PiVector getVectorOfNearestNeighbors (PdVector
        input, double influence, PiVector vector, Node
        currentPosition, Boolean includeInput);
//Nearest Neighbor for given \(k\) and influence radius
public PriorityQueue \(<\) PdVector \(>\)
        getNearestNeighborsQueueByNumberAndInfluence (PdVector
        input, int count, double influence, Boolean
        includeInput) ;
public PiVector
        getNearestNeighborsVectorByNumber AndInfluence (PdVector
        input, int count, double influence, Boolean
        includeInput);
14 protected PriorityQueue \(<\) PdVector \(>\)
        getInfluencedNumberOfNearestNeighbors (PdVector input,
        int count, double influence, PriorityQueue \(<\) PdVector \(>\)
        currentBest, Node currentPosition, Boolean includeInput)
        ;
```

Listing 5.1: Methods provided by the abstract Kd-Tree class
All methods in Listing 5.1 compute nearest neighbors for an input point p, always given as a PdVector. However, three different ways to set up the
neighborhood $N_{k}(p)$ are treated separately.

1. Case: The number k of neighbors is given. In the terms of Chapter 2, the influence radius ε is larger than $\max _{p_{\iota}, p_{j} \in P}\left\|p_{\iota}-p_{j}\right\|$. This means no point is neglected as possible nearest neighbor, because it is has distance larger ε to the input point.
2. Case: The influence radius ε is given. This means that all points $x_{j} \in P$ are reported as nearest neighbors of the input point p, if $\left\|x_{j}-p\right\| \leq \varepsilon$.
3. Case: Both a number k of neighbors and an influence radius ε is given. In this case, the neighborhood of the input point p is given by the intersection of the neighborhoods of Case 1 and Case 2.

For all three cases we furthermore provide two methods each. The first method provides a data structure which actually contains the nearest neighbors as PdVectors. This is either a PriorityQueue<PdVector>, provided with an appropriate comparator, or a Stack<PdVector>. For the documentation of these data structures, see [Ora]. The second method provided does not give the actual points, but a set of indices corresponding to these points. The result is provided in form of a PiVector from the JavaView framework. Although all six methods generally work in the same way, i.e. they construct the necessary data structure and call a protected recursive function to fill the data structure, we decided to rather provide six methods than one. This is mainly because the different used data structure can hardly be accessed by one common interface as they provide different functionality. Furthermore, the PiVectors could be obtained from the corresponding PriorityQueue or Stack, but this would involve iteration over the whole data structure. By providing a method that immediately returns a PiVector, we save this time. Since the last method getInfluencedNumberOfNearestNeighbors realizes the third case from above, i.e. incorporates the first and second case, we provide this method in Appendix E. The other methods are implemented similarly.

5.4 Alternative Pivot Policies for the Kd-Tree

The tree building algorithms from Section 3.3 require the median of the point set within a certain dimension to be found by either sorting or a more elaborate algorithm. Using the median, the point set is split, while the dimensions are iterated in a cyclic manner. The benefit of this method is the fact that the resulting $K d$-Tree is always a balanced tree. That is, if n points are stored in the tree, traversing to a leaf takes time $\mathcal{O}(n \log (n))$. However, this pivot
policy of splitting at the median and iterate through dimensions does not necessarily provide well shaped regions for nearest neighbor search. In the context of nearest neighbor search we aim for regions that are approximately of cubical form, which in Algorithm 9 minimizes the regions to be considered. However, the use of perfectly cubical regions degenerates the $K d$-Tree to a Quad-, respectively Octree, which was dismissed in Section 4.1. In order to maintain a balanced tree, but still obtain well shaped regions, [Omo87] suggests to split the point set at the median, but not iterate through dimensions. The dimension is rather chosen in each recursion step as the dimension within which the spread of the point set is maximal. Although this seems to be a good approach, [Moo91] found that the obtained regions are still far from optimal, see Figure 5.8.

We saw that neither Quad-, respectively Octrees, nor balanced trees, even with the more sophisticated pivot policy of [Omo87] are a perfect choice for the nearest neighbor procedures. Note that this is mainly, because the data cannot be assumed to be uniformly distributed. If it was, the policy of [Omo87] would perform much better. As a consequence, [Moo91] suggests a different pivot policy that lies between the "median of the most spread dimension" policy and the usage of Quad-, respectively Octrees.
The proposed pivot policy splits the point set on the most split dimension, just as [Omo87] does. However, it is not split at the median, but at the point closest to the middle of the range along this dimension. That is the pivot element a is chosen from the point set P as

$$
\begin{align*}
i & =\underset{j=1, \ldots, d}{\arg \max }\left(\max _{p, q \in P}\left|p_{i}-q_{i}\right|\right), \\
m & =\left(\min _{p \in P} p_{i}+\max _{q \in P} q_{i}\right) / 2, \tag{5.1}\\
a & =\underset{p \in P}{\arg \min }\left|p_{i}-m\right|
\end{align*}
$$

This pivot policy, according to [Moo91] does create only slightly unbalanced trees, while the regions of the $K d$-Tree seem to be more cubical. The effect of this pivot policy is illustrated in Figure 5.9. An implementation is given in Appendix F.

In Chapter 8 we will compare the presented pivot policies.

Figure 5.8: A figure taken from [Moo91], illustrating the short-comings of the "median of the most spread dimension" pivot policy of [Omo87], namely the creation of many slim regions.

Figure 5.9: A figure taken from [Moo91], illustrating the alternative pivot policy "closest to the center of the most spread dimension", compare to Figure 5.8.

Chapter 6

Median

For a set of points P, we defined the median of P in Definition 3. The building process of $K d$-Trees as given in Section 3.2 makes heavy use of the median. We already mentioned in Section 3.3.4 that finding the median in an ordered sequence is trivial. However, sorting a set P containing n elements comes with the cost of $\mathcal{O}(n \log (n))$. In this chapter, we will investigate alternatives to sorting.

6.1 Randomization

A good class of algorithms for finding the median are randomized algorithms. They are in general based on the idea of the quicksort algorithm. That is, a pivot element p is chosen from the set P and we partition P according to p by placing all elements smaller than p to the left of p and all elements larger than p to its right. Now it can be determined on which side of p the element lies and the algorithm recursively continues on that side of the set. Obviously this algorithm depends heavily on the choice of the pivot element p. Assume for example that p is chosen to be the minimum in every step, then we need to perform $(n-1)+(n-2)+\ldots+1=\frac{n(n-1)}{2}$ operations during the partition, i.e. the worst case runtime is $\mathcal{O}\left(n^{2}\right)$, even worse than sorting the set. A simple version of this idea is given in [SW11] and presented as Algorithm 10.

It is shown in e.g. [Cor +13] that Algorithm 10 has an expected runtime of $\mathcal{O}(n)$, that is an element of rank k, in particular the median, can be found in expected linear time. The algorithm can actually be made faster by not only picking one element at random, but three, and using the median of them as

```
Algorithm 10 Randomized Select
    procedure RandSELECT\(\left(a_{0}, \ldots, a_{n-1}, k\right) / /\) Sequence of element \(a_{i}, k\) th
    element is sought
        if \(\mathrm{n}=1\) then
            return \(a_{0}\)
        else
            Pick \(x\) from the \(a_{i}\) randomly
            Partition the \(a_{i}\) into \(a_{0}, \ldots, a_{q-1}, a_{q}, \ldots, a_{r-1}\), and \(a_{r}, \ldots, a_{n-1}\)
    such that \(a_{i}<x\) for \(i=0, \ldots, q-1, a_{i}=x\) for \(i=q, \ldots, r-1\),
    and \(a_{i}>x\) for \(i=r, \ldots, n-1\)
            if \(k<q\) then
                return \(\operatorname{RANDSELECT}\left(a_{0}, \ldots, a_{q-1}, k\right)\)
            else if \(k<r\) then
                return \(x\)
            else
                return \(\operatorname{RandSELECT}\left(a_{r}, \ldots, a_{n-1}, k-r\right)\)
            end if
        end if
    end procedure
```

pivot element. This is known as "Median-of-Three" technique and can be found e.g. in [SW11].
The algorithm presented in [FR75] is structure-wise equivalent to Algorithm 10. The only difference here is the choice of the pivot element, which is chosen from a random sample. The algorithm from [FR75] was shown to have an optimal number of comparisons within lower-order terms, namely it finds the k th largest of n elements within

$$
n+\min \{k, n-k\}+\mathcal{O}(\sqrt{n}) .
$$

However, the algorithm as given by [FR75] utilizes certain constants that have to be optimized depending on the machine that the algorithm is performed on. This might have been a good idea at the time when the algorithm was introduced, but nowadays an algorithm should perform well on any machine.

6.2 Deterministic Algorithm

We saw in the previous section that the median of a set can be determined in expected linear time. In this section we will present an algorithm with worst case behavior of $\mathcal{O}(n)$, see [Blu+73]. The idea is to use Algorithm 10,
but pick the pivot element in a correct way. It turns out that the median of medians of five elements each does the job. Computing the $n / 5$ medians of blocks of five elements from the original point set can be done in linear time, since finding the median of 5 points can be performed in constant time. Finding the median of these medians is now a recursive call to the method on a set with $n / 5$ points. The obtained median of medians is then used to partition the set and the algorithm is recursively applied to the side of the median. See Algorithm 11.

```
Algorithm 11 Deterministic Select
    procedure \(\operatorname{DETSELECT}\left(a_{0}, \ldots, a_{n-1}, k\right) / /\) Sequence of element \(a_{i}, k\) th
    element is sought
        if \(n<140\) then
            Sort the sequence and return the median
        else
            Compute the \(\lceil n / 5\rceil\) medians \(m_{0}, \ldots, m_{\lceil n / 5\rceil-1}\) of blocks containing
    five consecutive \(a_{i}\) each
            \(m \leftarrow \operatorname{DETSELECT}\left(m_{0}, \ldots, m_{\lceil n / 5\rceil-1},\lfloor\lceil n / 5\rceil / 2\rfloor\right) \quad / /\) Recursively
    compute the median of the medians
            Partition the \(a_{i}\) into \(a_{0}, \ldots, a_{q-1}, a_{q}, \ldots, a_{r-1}\), and \(a_{r}, \ldots, a_{n-1}\)
    such that \(a_{i}<m\) for \(i=0, \ldots, q-1, a_{i}=m\) for \(i=q, \ldots, r-1\),
    and \(a_{i}>m\) for \(i=r, \ldots, n-1\)
            if \(k<q\) then
                return \(\operatorname{DetSelect}\left(a_{0}, \ldots, a_{q-1}, k\right)\)
            else if \(k<r\) then
                return \(m\)
            else
                return \(\operatorname{DETSELEct}\left(a_{r}, \ldots, a_{n-1}, k-r\right)\)
            end if
        end if
    end procedure
```

Call the median of medians a. To compute the runtime of this algorithm, we first give a lower bound on the number of elements larger than a. At least half of the $\lceil n / 5\rceil$ medians initially computed are larger or equal to a, therefore at least half of the $\lceil n / 5\rceil$ groups contributes three elements larger or equal to a, except a group with less than 5 elements (if n is not divisible
by 5) and the group of the a itself. Therefore at least

$$
3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil-2\right) \geq \frac{3 n}{10}-6
$$

elements is larger than a. Similarly at least $\frac{3 n}{10}-6$ elements are smaller than a. Therefore, after partitioning, the algorithm is called on at most $\frac{7 n}{10}+6$ elements. See Figure 6.1 for an illustration.

Figure 6.1: A set of 28 points. An arrow from point p to q indicates that p was found to be smaller than q. The marked point a is the median of medians. Note that all points in the gray region are necessarily smaller than a, which was established directly while computing the medians, or which is given by transitivity.

Determining the medians of the $\lceil n / 5\rceil$ groups and partitioning the point set takes $\mathcal{O}(n)$ time. If we denote the runtime of the algorithm by $T(n)$, then the recursive call to determine the median of medians takes $T(\lceil n / 5\rceil)$ and in
recursion step on the larger partitioned part of the point set the algorithm takes at most time $T(7 n / 10+6)$. We now assume that the median of any set with $n<140$ can be determined in $\mathcal{O}(1)$. This assumption seems rather arbitrary now, but the particular choice will make later calculation easier. Under the assumption, the runtime $T(n)$ satisfies the following recursion

$$
T(n) \leq \begin{cases}\mathcal{O}(1) & \text { if } n<140 \tag{6.1}\\ T(\lceil n / 5\rceil)+T(7 n / 10+6)+\mathcal{O}(n) & \text { if } n \geq 140\end{cases}
$$

To solve this recursion assume that $T(n) \leq c \cdot n$ for some large constant c and $n<140$. This is indeed the case for c large enough. Furthermore we pick a constant a such that the non-recursive term in (6.1) for all $n>0$ is bounded from above by $a \cdot n$. If we plug these assumptions into the right side of (6.1) we get

$$
\begin{aligned}
T(n) & \leq c\lceil n / 5\rceil+c(7 n / 10+6)+a n \\
& \leq c n / 5+c+7 c n / 10+6 c+a n \\
& =9 c n / 10+7 c+a n \\
& =c n+(-c n / 10+7 c+a n),
\end{aligned}
$$

which solves to be at most $c n$, if the inequality

$$
-c n / 10+7 c+a n \leq 0
$$

is satisfied. For $n>70$ this inequality is equivalent to $c \geq 10 a(n /(n-70))$. Since we assume $n \geq 140$, it is $n /(n-70) \leq 2$. Picking $c \geq 20 a$ therefore satisfies the inequality. Hence $T(n) \leq c n$.
Note that the choice of 140 is not necessary. Any integer larger than 70 can be chosen here. The presented calculations are taken from a thorough proof in [Cor +13$]$. Furthermore, the constant c in this algorithm is fairly large. For example, [Epp] computes it to be $c=24$. But as final remark, [DZ99] proves that the median of n elements can be found using at most $2.95 n$ comparisons.

6.3 Approximation

To close this chapter we will briefly mention the possibility of approximating the median. Using just any random element from the set P as approximation of the median will result in a fairly bad result. However, using e.g. the median of a small fixed sample is a better idea. Both approaches take only a constant number of steps and are therefore considerably faster than the methods given above. However, good results can only be expected, if the
sample size is bound to the size of the input set and therefore, constant time approximations will not perform very well.
A more elaborate way of approximating the median is presented in [RB90], where the median is approximated using a sequence of arrays. Data is sorted into the first array. As soon as it is filled, the median of this array is determined, saved in a second array and the first array is emptied. This procedure is iterated until all data has been processed. See Figure 6.2 for an illustration.

Figure 6.2: The process of computing the "Remedian" median approximation. The initial data is written into Array 1, until it is filled. Its median is stored in Array 2 and Array 1 is emptied, more initial data is written into it. This process is iterated over all Arrays and all initial data, until finally the median of the last used Array gives the approximation of the median.

An obvious downside of approximating the median within our application is the loss of balance of the $K d$-Tree. Since in general an approximation of the median will have different numbers of elements smaller and larger than itself, the $K d$-Tree resulting from the usage of median approximations will not be balanced. This will effect further applications on the $K d$-tree as the nearest neighbor search. Hence, despite runtime advantages, we will not utilize approximation of the median.
6.3 Approximation

Martin Skrodzki

Chapter 7

The Program

In this chapter we will briefly describe the program used in Chapter 8. It implements the techniques presented in Chapter 2 and Chapter 5. Implementation is done in Java using the JavaView Framework [Pol+]. We will here explain the general procedure of how to use the program, present an example and give details for all possible settings.

7.1 General Procedure

So far the program is available as a Java file PaPointCloud with a corresponding launch configuration DevApps_PaPointCloud. In Eclipse run the file using its launch configuration. The initial start up screen is shown in Figure 7.1.

Now start by selecting the entry "Smooth Surface" in the Scene Graph. Via the Load Model Dialog, browse the computer to load a model. Adjust the look of the geometries as intended. This can be done using the

$$
\text { Inspector } \rightarrow \text { Geometry } \rightarrow \text { Material }
$$

dialog. By loading a smooth surface the program immediately creates a point cloud. Select the corresponding entry "Point Cloud" in the Scene Graph. Now the smoothing process as given in Chapter 2 is controlled by several parameters. These can be set in the project panel. See Section 7.3 for details on these settings.
Obviously, one can already load a noised surface into the program. Assume that the loaded "Smooth Surface" is indeed smooth. To demonstrate the algorithm we now want to add noise to the surface. This can be done by

Figure 7.1: The initial start screen of the program.
browsing to

$$
\text { Method } \rightarrow \text { Effect } \rightarrow \text { Noise }
$$

and applying noise to the smooth set using this dialog. To actually start the smoothing process, browse to

$$
\text { Method } \rightarrow \text { Vector Field } \rightarrow \text { Evolve. }
$$

In the shown dialog select the "Vertex Vector" option as well as the "Flip Direction" box. Finally hit the "Animate" button to see the smoothing procedure.

7.2 Example

We will now go through the program alongside an example. Assume that we want to apply the procedure as given in Section 7.1 to the geometry shown in Figure 7.2 using the settings as given in Listing 7.1.

Figure 7.2: An example geometry to illustrate the program's abilities, namely a point set sample of the Costa surface.

```
Original neighbourhood of smooth surface
Vector Len \(=0.5\)
Vector \(\mathrm{Siz}=2\).
4
5 Noise:
6 - Nor , Tan
- Amplitude \(=0.3\)
Evolve:
- Vector
- Offset 0. bis -0.49
Project:
Enabled:
    Max Valence
Density: 10
8 Influence: 1.0
Max Valence: 10
20 Curvature Thre: 1.0
21 Edge Quotient: 30.
22| Density Level: 0.71
```

23 Value of Max Hue: 0.57533
Listing 7.1: A list of examplary settings to illustrate the program's abillities.

In Eclipse we start the PaPointCloud file using the launch configuration DevApps_PaPointCloud. Select the entry "Smooth Surface" in the Scene Graph. Via the Load Model Dialog, browse the computer to load the model "Costa4918Noise03OrigNeigh.jvx". To obtain the image shown in Figure 7.2, go to

$$
\text { Inspector } \rightarrow \text { Geometry } \rightarrow \text { Material, }
$$

and deselect the checkbox "Vector Fields". Leave the Material dialog open. Select the entry "Point Cloud" in the Scene Graph. In the Material dialog adjust the Vector Length and the Vector Size to 0.5 and 2.0 respectively, as given above. Now display the Project Panel by selecting Inspector \Rightarrow Project. According to the given description in Listing 7.1, mark the "Maximum Valence" field and set the "Influence Radius", "Maximum Valence", "Curvature Threshold", "Edge Quotient" and "Value of Max Hue" to the given values. Note that after entering the value into the text field, by pressing Shift+Enter, you can enter values that would be out of bounds for this field.
To apply noise open

$$
\text { Method } \rightarrow \text { Effect } \rightarrow \text { Noise. }
$$

As stated in the description, select both "Normal" and "Tangential". Set the Amplitude to 0.3. The Point Set now has noise. Leave the Noise dialog by clicking "ok" and open

$$
\text { Method } \rightarrow \text { Vector Field } \rightarrow \text { Evolve. }
$$

Switch to the direction "Vertex Vector". Mark the "Flip Direction" box. Press "Animate" to start the smoothing process. Different stages of the animation are shown in Figure 7.3.

7.3 Setting Details

In this section we will briefly explain the different setting possibilities of the program. First the six checkboxes on top of the project inspector, shown on the left of Figure 7.1.

- Update Neighbors: Every change of the point set geometry triggers a new computation of the neighborhoods.

Figure 7.3: The images show from left to right and top to bottom: The original point cloud, the point cloud with noise applied, the smoothing process with animation offset 0.2 , and the smoothing process with animation offset 0.4. Note how the points become darker during the animation, indicating that their position becomes more and more fixed.

- Maximum Valence: Not all points within influence radius of the input contribute to the neighborhood, but only as many as the parameter maximum valence is set to (see below).
- Z-Density: The point set is dissolved along the z-axis according to the Z-Density Level set (see below).
- Sharp Cutoff: Utilize the function $g_{\iota j}^{\text {sharp }}$ as defined in (2.31) within the anisotropic Laplacian. $g_{\iota j}$ then only depends on the Edge Quotient (see below).
- Constrain Interior: Depending on the Interior Threshold, certain points are considered to be point on the interior of a flat surface and are not moved by the smoothing procedure.
- Adjust Max Hue: Automatically set the Value of Max Hue parameter.

Apart from these options, several parameters are to be chosen using sliders. The parameters are

- Influence Radius: This is the parameter called ε in Chapter 2. It determines the maximum distance of neighbors.
- Maximum Valence: This is the parameter called k in Chapter 2. It is only active if the Maximum Valence checkbox is set. It limits the size of each neighborhood.
- Curvature Threshold: This is the parameter called λ in Chapter 2. It determines when a point is considered to be a feature which is not to be smoothed as in (2.31) and (2.32).
- Interior Threshold: If the Constrain Interior checkbox is selected, this parameter determines when a point is considered to be in the interior of a flat surface.
- Edge Quotient: This is the parameter called Q in Chapter 2. As defined in (2.33), it incorporates principal curvature directions into the anisotropic smoothing process.
- Z-Density Level: Density of the point cloud along the z-axis. Effect is illustrated in Figure 7.4.
- Values of Max Hue: Maximum Hue of the different coloring schemes as listed below.
- Torus Density: Changing this parameter creates a Torus as smooth surface of set density.

Next, the vertex color can be chosen. The program offers the following possibilities. They are illustrated in Figure 7.5.

- Mean: Colors the vertices according to the mean curvature.
- Max Princ: Colors the vertices according to the maximum principal curvature.
- CovQuotient: Colors the vertices according to the covariance quotient.
- MeanAni: Colors the vertices according to the mean curvature, considering the anisotropic cut-off.

Figure 7.4: The effect of the Z-Density Level parameter on the point cloud of the Costa surface.

- PrincQuotient: Colors the vertices according to the principal curvature quotient.
- MaxCov: Colors the vertices according to maximum covariance.

Below the vertex color, the program shows one text field.

- Min Neighbors: This field shows the smallest neighborhood according to the given parameters, i.e. all neighborhoods are computed according to the Influence Radius and Maximum Valence. The size of the smallest neighborhood is shown in the textfield. This enables easy set up of good parameters for a given geometry.

The last settings concern the use of $K d$-Trees.

- Use Kd-Tree for NNSearch: This enables the use of $K d$-Trees for nearest neighbor search rather than the covariance method given in Section 5.1.

Three types of $K d$-Trees can be chosen.

- Sorting: The $K d$-Tree initially sorts the points and passes the sorting on during its recursive building process. See Section 3.3.3.
- Median: The $K d$-Tree computes the median in each step of the recursive building process. The method for median computation is specified below. See Section 3.3.4.
- Middle of most spread Dim: The $K d$-Tree splits at the point closest to the middle of the most spread dimension as given in Section 5.4.

In case of the Median- $K d$-Tree being utilized, the type of median finding algorithm can be specified from the following options.

Figure 7.5: The effect of the different vertex colorings, from left to right and top to bottom: Mean, MaxPrinc, CovQuotient, MeanAni, PrincQuotient, MaxCov.

- Sorting: The set is sorted an the $\lfloor n / 2\rfloor$-th element is given as median.
- Linear Determin.: The median is computed using the deterministic linear-time algorithm presented in Section 6.2.
- Floyd-Rivest-Rand.: The median is computed using the randomized algorithm of Floyd and Rivest as presented in Section 6.1.

Chapter 8

Computational Results

In the previous chapters we presented several techniques for nearest neighbor search. In this chapter we would like to test the presented methods within the JavaView framework. The test will be performed on three point set geometries, referred to as Costa, Cylinder and Torus. The geometries are shown in Figure 8.1. By subdivision using the algorithm of Catmull-Clark, the number and complexity of the geometries is increased. Figure 8.2 shows the different complexities used in the benchmarks.

Figure 8.1: From left to right: A sampled version of the Costa surface, a cylinder intersected with a plane segment, and a torus.

Geometry	\#Vertices	1 subd.	2 subd.
Costa	4918	28311	112041
Cylinder	5249	30977	123393
Torus	4851	19404	77616

Figure 8.2: The different geometries and their number of vertices originally and after one, respectively two subdivisions.

In $[\mathrm{SS}]$ it was shown that the benefit, for the building times of a $K d$-Tree and
nearest neighbor computation times, of storing a general point p^{\prime} as defined in (3.3) is marginal compared to computing it on the fly from the original vertex p of the point set. Since our setup focuses on building $K d$-Trees for nearest neighbor searches, we therefore compute all composite coordinates from (3.2) when needed. This allows us to store only the d-dimensional points $p \in P$ and not $d \times d$-matrices p^{\prime}. Although it does not affect our setup, note that computing composite coordinates for each point during the building process did prove to be beneficial in the application of region queries, see [SS]. The corresponding experimental results, taken from [SS], are given in Figure 8.3.

Task	Type	Data	Duration	Result
Build	Store	Average	3070 ms	On average the Storing
		Median	3202 ms	classes took 114ms
	Compute	Average	3184 ms	longer to be built, i.e.
		Median	3307 ms	3.7% longer.
Region	Store	Average	4669 ms	On average the Computing
query		Median	4867 ms	classes took 3975ms
	Compute	Average	8644 ms	longer to perform the
		Median	7570 ms	query, i.e. 85.1% longer.
Nearest	Store	Average	273379 ms	On average the Computing
Neighbor		Median	198103 ms	classes took 5408ms
Query	Compute	Average	267971 ms	longer to perform the 2\%
		Median	194846 ms	query, i.e. 2% longer.

Figure 8.3: The shown data is taken from $[\mathrm{SS}]$ and was established by performing 100 build operations, 1000 region queries and 1000 nearest neighbor searches on a geometry with 69649 vertices. The two compared $K d$-Tree implementations either determine all composite coordinates from Definition 4 during the building process and save them (Store) or determine the coordinates on the fly when needed in queries (Compute).

8.1 Building Times and Tree Depths

At first we will compare the times for the building process of the different $K d$-Tree implementations developed throughout this thesis. We will refer to the $K d$-Tree as presented in Section 3.3.3 by "Sorting". The $K d$-Trees as presented in Section 3.3.4 will be denoted by "Median", followed by a specification of the used algorithm as presented in Chapter 6. Namely these will
be "Median (Sorting)", "Median (Lin.Det)" (see Section 6.2), and "Median (Floyd-Rivest)" (see Section 6.1).
To avoid side effects from other processes on the computer, the trees were build 1000 times each on all three geometries. The obtained data can be found in Figure 8.8. Furthermore, the building times for the original geometries are plotted in Figure 8.4, while the times for the once and twice subdivided geometries are plotted in Figure 8.5 and Figure 8.6 respectively.

Figure 8.4: Building time of the different $K d$-Tree implementations on the original geometries as shown in Figure 8.1.

We see that the $K d$-Tree implementation, which determines the median using the randomized algorithm of Floyd and Rivest has the shortest building time. Furthermore note that the construction of a $K d$-Tree that uses the "Closes to middle of most spread dimension" pivot rule (see Section 5.4) takes up to ten times as long as the construction of the "Median (Floyd-Rivest)" $K d$-Tree. We know that all $K d$-Trees set up by "Sorting" or one of the "Median" implementations have the same height on each geometry, since these implementations always create a balanced AVL Tree. However, the "Closest to Middle" implementation does not necessarily create a balanced tree. Therefore we monitored the depth of the resulting $K d$-Tree on the different geometries. The numbers are given in Figure 8.7. They already suggest that any operation on these trees will be costly due to the high depths of the trees.

Figure 8.5: Building time of the different $K d$-Tree implementations on the geometries, each subdivided once using Catmull-Clark.

Figure 8.6: Building time of the different $K d$-Tree implementations on the geometries, each subdivided twice using Catmull-Clark.

	Cylinder	Cylinder1	Cylinder2
Balanced	12	14	16
Closest to Middle	287	694	2162

	Torus	Torus1	Torus2
Balanced	12	14	16
Closest to Middle	238	1373	5453

Figure 8.7: Development of the depth of the $K d$-Trees obtained using the "Closest to middle of most spread dimension" pivot strategy on the original geometries as well as on their respective subdivisions.

8.2 Kd-Tree vs. PCA

We will now turn to nearest neighbor search. First we will compare the performance of our $K d$-Tree implementation with the nearest neighbor algorithm using PCA as given in Section 5.1. In order to do so, we let both, the $K d$-Tree "Sorting" and the PCA algorithm run on the original Cylinder

| | Costa | | Costa 1 | | Costa 2 | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Average | Median | Average | Median | Average | Median |
| Sorting (Sorting) | 9.21 | 8 | 62.50 | 61 | 328.61 | 326 |
| Median (Sinear Det.) | 10.73 | 11 | 90.57 | 89 | 498.18 | 496 |
| Median (Line | 15.78 | 15 | 119.91 | 119 | 630.47 | 629 |
| Median (Floyd-Rivest) | 5.41 | 5 | 37.33 | 37 | 200.32 | 198 |
| Closest to Middle | 5.07 | 5 | 110.53 | 110 | 2057.34 | 2046 |
| | Cylinder | | Cylinder 1 | | Cylinder 2 | |
| | Average | Median | Average | Median | Average | Median |
| Sorting | 10.36 | 10 | 77.46 | 76 | 355.84 | 353 |
| Median (Sorting) | 13.08 | 13 | 123.64 | 122 | 588.76 | 586 |
| Median (Linear Det.) | 19.81 | 19 | 155.64 | 155 | 735.98 | 733 |
| Median (Floyd-Rivest) | 6.46 | 6 | 46.20 | 46 | 203.67 | 201 |
| Closest to Middle | 11.66 | 12 | 109.31 | 108 | 499.23 | 498 |
| | Torus | | | Torus | 1 | Torus 2 |
| | Average | Median | Average | Median | Average | Median |
| Sorting (Sorting) | 6.62 | 6 | 32.71 | 32 | 162.29 | 160 |
| Median (Sorting | 8.17 | 8 | 50.82 | 50 | 263.01 | 261 |
| Median (Linear Det.) | 14.90 | 14 | 76.97 | 76 | 377.20 | 377 |
| Median (Floyd-Rivest) | 5.45 | 5 | 23.77 | 23 | 107.40 | 106 |
| Closest to Middle | 4.57 | 4 | 71.11 | 70 | 1092.47 | 1089 |

Figure 8.8: Building times of the different $K d$-Tree implementations. All times are given in ms. The columns Costa, Cylinder, Torus give the times for the original geometries, while the other columns give the times for the once, respectively twice subdivided geometries. The numbers are plotted in Figures 8.4, 8.5, and 8.6.
geometry. We choose some influence radius ε in such a way that all points of the geometry are considered in every neighborhood. Then we vary the Max Valence parameter from $k=1$ to 400 . That is, in each run, both the $K d$-Tree and the PCA method try to find k nearest neighbors to each point p in the point set. Results are given in Figure 8.9.

Figure 8.9: Neighborhood computation times for different maximal neighborhood sizes and a fixed (large) influence radius. The $K d$-Tree implementation shown is "Sorting".

Recall that the geometry used in Figure 8.9 has 5249 vertices, hence our neighborhood computation includes neighborhoods of size up to 7.62% of the whole geometry. In any practical application, the neighborhoods will be a lot smaller, i.e. a small two-digit constant. Therefore from Figure 8.9 we already see that the $K d$-Tree method improves neighborhood computation times drastically. Up to a maximum neighborhood size of 100 , the $K d$-Tree is more than 3.3 times faster than the PCA method.

We will now alter the setup of our experiment slightly. While before we fixed an influence radius and varied the maximum neighborhood size, we will now do the opposite. There will be no restrictions on the size of the neighborhood and we will vary the influence radius. The cylinder geometry has a diameter of 2.09 , which is the length of the diagonal of the smallest axis-parallel bounding box of the geometry. We will vary the influence radius from 0.002 up to 0.33 , which is 15% of the diameter of the geometry. Again, in any practical application, the influence radius will be chosen smaller. During the experiment, in each run, both the $K d$-Tree and the PCA method try to find all neighbors to each point p in the point set, that lie within influence radius. Results are given in Figure 8.10.

Figure 8.10: Neighborhood computation times for different influence radii and no restriction on the neighborhood size. The $K d$-Tree implementation shown is "Sorting".

As for the different valences, also when varying the influence radius, our $K d$ -

Tree implementation performs better than the PCA-approach within the given range. In the following we will therefore restrict our experiments to a maximum neighborhood size of $k \in[0,300]$ and an influence radius ε of up to 15% of geometry's diameter.

8.3 "Middle of most spread Dim." vs. Median

Recall that the implementations "Sorting" and "Median" (independent of the used median algorithm) produce the same balanced $K d$-Tree. Solely the $K d$-Tree implementation utilizing the "Closest to middle of most spread dimension" pivot rule does produce a different $K d$-Tree. In this section we will perform several nearest neighbor queries on these two types of $K d$-Trees to determine which approach provides faster results.
At first we perform the same experiment as we did on the $K d$-Tree and the PCA method. That is, we use both the "Sorting" and the "Closest to Middle" implementation to determine neighborhoods of different size on the Cylinder. Neighborhood sizes are varied from $k=1$ to 100 . As above, we set the influence radius to a high value that ensure all points to qualify for possible neighborhood membership. The results of this experiment are plotted in Figure 8.11.

We repeat the experiment in a similar fashion, except this time, we run it on the original Costa surface and we repeat it five times to exclude any interference with other processes. Figure 8.12 shows for each neighborhood size the median of the obtained running times.

To finish the comparison between the balanced $K d$-Trees and the trees obtained by the "Closest to middle of most spread dimension" pivot rule, we repeat the second experiment from Section 8.2. On the original torus geometry and its once subdivided form, we do not impose any restrictions on the size of the neighborhood and vary the influence radius in 100 steps from one per mill of the geometry's diameter to 10% of the geometry's diameter. Results are given in Figure 8.13.

Figure 8.11: Times for the computation of different sized neighborhoods using $K d$-Tree "Sorting" and the "Closest to Middle" implementation. On the top the times on the original cylinder geometry, in the middle the times on the geometry after one subdivision, and on the bottom after two subdivisions.

Figure 8.12: Times for the computation of different sized neighborhoods using $K d$-Tree "Sorting" and the "Closest to Middle" implementation. Times are taken on the original Costa surface without subdivision and the experiment was repeat five times. The plot shows the median.

8.4 Conclusion from computational results

We saw in Section 8.2 that the usage of $K d$-Trees can speed up the process of nearest neighbor computations drastically, compared to the method outlined in Section 5.1 and therefore also compared to any naive method. Hence, $K d$ Trees should be used for neighborhood computations in point cloud settings. Concerning the different implementations of $K d$-Trees we saw that building a balanced $K d$-Tree by using the median as pivot element and determining the median using a randomized algorithm is faster than any other shown implementation. This coincides with the general observation that, although theoretically faster, deterministic algorithms are in practice often slower than randomized algorithms.
Finally, we can not reproduce the results from [Moo91]. In all three tested applications, the "Closest to Middle" implementation of $K d$-Trees performed worse or on par with the $K d$-Trees producing a balanced $K d$-Tree.

Figure 8.13: Neighborhood computation times for different influence radii and no restriction on the neighborhood size using the "Sorting" and "Closest to Middle" implementations.

Chapter 9

Conclusion and Further Research

In this thesis we presented an application for neighborhood computation in a point cloud setting, namely the smoothing of point clouds. We gave different approaches on how to implement the presented nearest neighbor methods and experimentally showed that the fastest choice from the presented implementations is a randomized median algorithm in a balanced $K d$-Tree for both fast building and neighborhood computation.
Nonetheless certain aspects are left for further research. For example note that the smoothing algorithm as presented in [LP05] does not include automatic feature detection. Further research for compatible feature detection mechanisms should be conducted and a suitable procedure should be included in the presented program.
It was already mentioned in [LP05] that smoothing behaves amazingly well if the neighborhood is given from the final smooth object already. This poses an interesting question on how well neighborhoods can be obtained from point clouds at all and whether the presented methods can be improved.
Already in the Introduction we dismissed, for the course of this thesis, smoothing approaches that use meshes. The main disadvantage of meshes is the time used to actually compute the mesh. However, meshes do have certain advantages. Assume that the point cloud is a scan of a very thin surface. Using the presented nearest neighbor search techniques, points from one side of the surface might, depending on the thickness of the surface, the influence radius, and the maximum valence, be considered as neighbors of the other side of the surface. Meshes do not pose these problems and they are to be taken seriously in further research.
In Chapter 4 we dismissed Quadtrees and R-Trees in favor of $K d$-Trees. Although this decision stands, an interesting question is the following: Can
a probability distribution be found that mimics point clouds obtained from surface scans? And can such a probability distribution be used to make any statements on the efficiency of different data structures, beside computational results?
In [Moo91], the pivot strategy "Closest to middle of most spread dimension" was introduced as beneficial for the nearest neighbor search. We have not been able to reproduce this results. Further tests could reveal the reasons for this phenomenon.
Finally, in a Quadtree when looking for nearest neighbors it is possible to search in four directions. Our $K d$-Tree implementation only offers to traverse the tree. By introducing links on the leaf-level which connect the leafs of the tree horizontally, one would be able to peek into neighboring subtrees. Also the process could be parallelized into traversing the tree in three directions. However, not too many links apart from the suggested ones can be introduced, before the $K d$-Tree actually collapses into a Quadtree.

Appendices

Appendix A

PCA Nearest Neighbor JavaView Implementation

```
protected void computeNeighbourByCovariance(PgPointSet geom
    double influence, int nov) {
    int dim = geom.getDimOfVertices();
    PdVector [] vertex = geom.getVertices();
    PiVector neigh = new PiVector(nov);
    double influence2 = influence*influence;
    PdVector [] bndbox = geom.getBounds();
    if (bndbox = null) {
        if (PsDebug.WARNING) PsDebug.warning("missing
        bndbox of geometry = "+geom.getName());
        return;
    }
    PdMatrix covMat = computeCovariance(null, vertex);
    if (covMat = null) {
        if (PsDebug.WARNING) PsDebug. warning(" missing
        vertices to compute covariance matrix, geom ="+
        geom.getName());
    return;
    }
    PdVector [] eVector = PdVector.realloc(null, dim, dim);
    PdVector eValue = new PdVector(dim);
    int [] spec = computeCovarianceSpectrum(covMat,
        eVector, eValue);
    // Sort eigenvalues by magnitude, princ[0] is eVector
    if the largest eValue.
    PdVector [] princ = new PdVector[dim];
    for (int j=0; j<dim; j++)
    princ[j] = eVector[spec[dim-1-j]];
    PdVector diag = princ[0];
    PdVector diag2 = princ 1]
    PdVector diag3 = princ[2];
```

```
// Use index vector to identify position along
        direction
int [] index = new int[nov];
double [] height = new double[nov];
for (int i=0; i <nov; i++)
    height[i] = PdVector.dot(diag, vertex[i]);
PuMath.heapsort(nov, height, index);
// For each vertex store its position in the height
        vector
int [] indexInv = new int[nov];
for (int i=0; i<nov; i++)
    indexInv[index[i]] = i;
int [] index2 = new int[nov];
double [] height2 = new double[nov];
for (int i=0; i<nov; i++)
    height2[i] = PdVector.dot(diag2, vertex[i]);
PuMath.heapsort(nov, height2, index2);
// For each vertex store its position in the height
        vector
int [] indexInv2 = new int[nov];
for (int i=0; i<nov; i++)
    indexInv2[index2[i]] = i;
int [] index3 = new int[nov];
double [] height3 = new double[nov];
for (int i=0; i<nov; i++)
    height3[i] = PdVector.dot(diag3, vertex[i]);
PuMath.heapsort(nov, height3, index3);
// For each vertex store its position in the height
        vector
int [] indexInv3 = new int[nov];
for (int i=0; i<nov; i++)
    indexInv3[index3[i]] = i;
int maxValence = m_maxValence.getValue();
int [] indexNeigh = new int[nov];
double [] distNeigh = new double[nov];
// Largest index smaller than i such that dist(vertex[
        indMin], vertex[i])<influence.
int currMin = 0;
m_minNeighCnt = Integer.MAXVALUE;
for (int i=0; i<nov; i++) {
    while (height[index[i]]-height[index[currMin]] >
        influence)
        currMin++;
    // In direction 2 and 3 we compute integer bounds
        currMinI and currMaxI
    // which enclose all vertices of the influence
        interval of the current
    // vertex index[i] (currMinI and currMaxI both belong
        to the influence
    // interval too). The values currMinI and currMaxI
        are indices of
    // the index2 and index3 array.
    // Find in 2 direction currMin2 and currMax2
```

```
int currMin \(2=\) indexInv2[index[i] \(]-1\);
while (currMin2 \(>=0\) \&\&
        height2[index[i]] - height2[index \(2[\) currMin2] \(]<\)
            influence) \{
        currMin2--;
\}
currMin2++;
int currMax \(2=\) indexInv2[index[i]];
while (currMax \(2<\) nov \&\&
        height2[index2[currMax2]] - height2[index[i]] \(<\)
                influence) \{
    currMax2++;
\}
currMax2--;
// Find in 3 direction currMin3 and currMax3
int currMin3 \(=\) indexInv3[index[i]];
while (currMin \(3>=0 \& \&\)
        height3[index[i]] - height3[index3[currMin3]] \(<\)
            influence) \{
        currMin3--;
\}
currMin3++;
int currMax \(3=\) indexInv3[index[i]];
while (currMax \(3<\) nov \&\&
        height3[index3[currMax3]] - height3[index[i]] \(<\)
            influence) \{
        currMax3++;
\}
currMax3--;
int numNeigh \(=0\);
for (int \(\mathrm{j}=\) currMin; \(\mathrm{j}<\) nov ; \(\mathrm{j}++\) ) \(\{\)
    // Must first check if we are still in the 1-
        interval
    // since this is the only place when we break.
    if (i<j \&\& height[index[j]]-height[index[i]]>
        influence)
        break;
        // Check of index[j]-vertex lies in 2-influence
        interval of index[i]
    if (indexInv2[index[i]]]<currMin2 || currMax2<
                indexInv2[index[i]])
            continue;
    if (indexInv3[index[i]]<currMin3 || currMax3<
                indexInv3[index[i]])
        continue;
    if \((\mathrm{j}=\) i)
        continue;
    double dist \(=\) PdVector.sqrDist(vertex[index[i]],
                vertex[index[j]]);
    if (dist \(>\) influence2)
        continue;
    neigh.m_data[numNeigh] = index[j];
    distNeigh [numNeigh] \(=\) dist;
```

```
129| numNeigh++;
130
131
132
133
134
135
136
137
138
1 3 9
140
141
142
142
            m_neigh[index[i]].setSize(numNeigh);
            for (int j=0; j<numNeigh; j++)
            m_neigh[index[i ]].m_data[j] = neigh.m_data[
                    indexNeigh[j]];
        }
    }
    for (int i=0; i<nov; i ++) {
        vertex[i].setName(String.valueOf(m_neigh[i].getSize()
            ));
    }
149| }
```

Listing A.1: Implementation of the technique outlined in Section 5.1.

Appendix B

PCA Nearest Neighbor JavaView Implementation

```
import java.security.InvalidParameterException;
import java.util.Comparator;
import jv.vecmath.PdVector;
/**
* This class realizes a Comparator for PdVectors of
    arbitrary dimension. Within its compare method, two
* vectors are compared lexicographically with respect to
    the startDimension set in the comparator.
* For example, if the dimension is 3 and startDimension is
            1, the vectors are compared in their
    * components y, z, x.
    * @author Martin Skrodzki
    * @see Comparator
    * @see PdVector
    * @version 30.09.14, 1.0.0 created (ms)
    */
public class LexicographicalComparator implements
        Comparator<PdVector> {
    /**
        at.
    *
    protected int startDimension;
    /**
        * The dimension of the vectors compared using the
            comparator
        */
    protected int dimension;
    /**
        * Creates a new Lexicographical Comparator to compare
        two PdVectors lexicographically.
    * @param startDimension The dimension where the
        lexicographical comparison is started at,
```

```
    * some value >=0 and <= dimension-1.
    * @param dimension The dimension of the Vectors that are
            compared, some value >0.
    * @throws InvalidParameterException If either
        startDimension <0, dimension<=0 or startDimension >=
        dimension.
    */
public LexicographicalComparator(int startDimension, int
        dimension) throws InvalidParameterException {
    super();
    if (startDimension < 0 || dimension <= 0) {
        throw new InvalidParameterException("Can only
            initialize a Lexicographical Comparator on
                    startDimension"
                    + "greater equal to 0 and dimension greater than
                    0, but was given startDimension "+
                    startDimension
                    +" and dimension "+dimension+".");
    }
    if (startDimension >= dimension) {
        throw new InvalidParameterException("Can only
            initialize a Lexicographical Comparator on a
                    startDimension "
                    + "less than dimension, but was given dimension "
                    +dimension+" and startDimension "
                    +startDimension+".");
    }
    this.startDimension = startDimension;
    this.dimension = dimension;
}
/* (non-Javadoc)
    * @see java.util.Comparator#compare(java.lang.Object,
        java.lang.Object)
    */
    @Override
    public int compare(PdVector arg0, PdVector arg1) {
        if (arg0.getSize() != arg1.getSize()) {
        throw new ClassCastException("
            LexicographicalComparator can only compare two
            vectors of size same size,"
            + "but vectors have sizes "+arg0.getSize()+" and
                    "+arg1.getSize()+".");
    }
    if (arg0.getSize() != this.dimension) {
        throw new InvalidParameterException("
            LexicographicalComparator of dimension "+this.
            dimension+
                    ' can only compare vectors of according dimension
                    , but was given vectors of dimension "+
                    arg0.getSize()+".");
    int d = startDimension;
    //Compare the entries of the Vectors according to the
        given startDimension of this comparator
    if (arg0.getEntry(d) < arg1.getEntry(d)) {
        return -1;
    } else
    if (arg0.getEntry(d) > arg1.getEntry(d)) {
```


Martin Skrodzki

		부 웅	家宫						¢		ぶべさ

 /**
 * @return the dimension, i.e. the dimension of the
 vectors that can be compared using this comparator.
 */
 public int getDimension() {
 return dimension;
 }
 /**
 * @param dimension Set the dimension of the vectors that
 are to be compared by this lexicographical
 comparator,
 * possible values must be strictly larger than 0.
 * @throws InvalidParameterException If the given
 dimension parameter is <= 0 or strictly less than
 the set startDimension.
 130 */
public void setDimension(int dimension) throws
InvalidParameterException {
if (dimension <= 0) {
throw new InvalidParameterException("Can only set "
dimension to a value strictly greater than 0,"
+ " but was given value "+dimension+".");
}
if (startDimension >= dimension) {
throw new InvalidParameterException("Can only set a
",
+" but was given dimension "+dimension+" and set
startDimension "+startDimension+".");
}
this.dimension = dimension;
}
142
143|}

```

Listing B.1: Implementation of the Lexicographical Order as described in Section 3.3.1.

\section*{Appendix C}

\section*{Kd-Tree Sorting Class}
```

package devMS.kdTree;
import java.security.InvalidParameterException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.LinkedList;
import devMS.comparators.LexicographicalComparator;
import jv.geom.PgPointSet;
import jv.vecmath.PdVector;
**

* This class implements the abstract class {@link KdTree}
On top of the functionality of the abstract class,
* this class can actually build a KdTree. This is done via
an initial sort of the points in three lists:
* One sorting according to each dimension of the points.
The sortings are maintained during the building
process
* and thereby it is trivial to find the median.
* @author Martin Skrodzki
*/
public class KdTree_Sorting extends KdTree {
/**
 * Creates a KdTree from the given set of points by
calling the method {@link \#buildTree(PgPointSet)}.
 * @param points The set of points that are to be
represented by this KdTree.
 * @throws InvalidParameterException if the given point
set is NULL.
*/
public KdTree_Sorting(PgPointSet points) throws
InvalidParameterException{
super(points);
buildTree(points);
}
/* (non-Javadoc)

```
0
```

 * @see devMS.kdTree.KdTree#createTree(jv.geom.PgPointSet
)
 */
 protected void buildTree(PgPointSet points) {
int length = points.getNumVertices();
//Create ArrayLists that can be sorted later on using
the Collections.sort() method
ArrayList<ArrayList<PdVector>> sortings = new ArrayList
<ArrayList <PdVector>>(dimension);
for (int i=0; i<dimension; i++) {
sortings.add(new ArrayList < PdVector > (length));
}
//Fill the ArrayLists with the points from the base
geometry
for (int j=0; j<length; j++) {
for (int i=0; i<dimension; i++) {
sortings.get(i).add(points.getVertex(j));
}
}
//Sort the lists
for (int i=0; i<dimension; i++) {
Collections.sort(sortings.get(i), new
LexicographicalComparator(i, dimension)) ;
}
//TODO Is sorted insertion faster than insertion and
sorting?
this.root = recursiveBuild(sortings, 0, 0, length - 1);
}
/**
* Recursively builds a KdTree from a set of points. The
points are given to the method in three sorted lists
* The method finds the median in the current split
dimension, splits all three lists according to the
median
* and passes the lists on recursively, while stating on
what part of the lists the recursion should act.
* @param sortings A list of sorted lists, where each
lists realizes a sorting along a certain dimension.
* @param splitDim The dimension in which to search for
the median.
* @param start The starting index from where to work on
the lists.
* @param end The ending index where to end working on
the lists.
* @return A node representing the root of a KdTree
storing all points between start and end in the
given lists.
*/
private Node recursiveBuild(ArrayList<ArrayList < PdVector
>> sortings, int splitDim, int start, int end) {
//TODO Rewrite this not to resort in the same place,
but use an array twice as long and sort in the
first and second half alternating.

```
```

 //No element has been passed to the method, return null
 if (end < start) {
 return null;
 }
 //Only one element has been passed to the method,
 create a leaf containing this element
 if (start = end) {
 Node result = new Node(null, null, Node.
 noHyperplaneValue, splitDim, sortings.get(0).get(
 start), true,
 indexTable.get(sortings.get(0).get(start)));
 return result;
 } else {
 //There is more than one element, apply recursion
 PdVector median = null;
 double splitValue = 0;
 int medianIndex = (start+end)/2;
 //Find the median according to the given
 splitDimension
 median = sortings.get(splitDim).get(medianIndex);
 splitValue = median.getEntry(splitDim);
 //Partition the other two lists accordingly
 for (int i=0; i<dimension; i++) {
 if (i != splitDim) {
 partition(sortings.get(i), median, splitDim,
 start, end, medianIndex);
 }
 }
 //Create a new Node with two children being the
 recursive processing of the rest of the elements
 Node left = recursiveBuild(sortings,(splitDim+1) %
 dimension, start, medianIndex - 1);
 Node right = recursiveBuild (sortings, (splitDim+1) %
 dimension, medianIndex +1,end);
 Node result = new Node(left, right, splitValue,
 splitDim, median,false,indexTable.get(median));
 return result;
 }
 }
/**
* Partitions a part of a given list, defined by the
start and end index around a pivot element. The
sorting
* of the list is kept intact while partitioning around
the pivot element.
* @param sortedList The sorted list which part is to be
partitioned.
* @param pivot The pivot element around which to
partition the indicated part of the given list.
* @param splitDim The dimension according to which the
comparator acts to keep the sorting intact
* @param start The starting index indicating where the
part of the list starts that is to be partitioned.
* @param end The ending index indicating where the part
of the list ends that is to be partitioned.

```


Martin Skrodzki

166|\}
Listing C.1: Implementation of a \(K d\)-Tree as outlined in Section 3.3.3.

Martin Skrodzki

\section*{Appendix D}

\section*{Kd-Tree Median Class}
```

package devMS.kdTree;
import java.security.InvalidParameterException;
import devMS.comparators. LexicographicalComparator;
import devMS.median.IMedianAlgorithm;
import jv.geom.PgPointSet;
import jv.vecmath.PdVector;
**
* This class implements the abstract class {@link KdTree}.
On top of the functionality of the abstract class,
* this class can actually build a KdTree. This is done via
a recursive method that finds the median of a point

* set and partitions the point set around the median.
* @author Martin Skrodzki
*/
public class KdTree_Median extends KdTree {
/**
 * An algorithm to determine the median of a set.
*/
protected IMedianAlgorithm medianAlgorithm;
/**
 * Several Lexicographical Comparators that are used in
the recursive run of
 * {@link \#recursiveBuild(PdVector[], int, int, int)}
which are stored as a field of the class to not
 * have to initialize them in every run of the recursion.
*/
protected LexicographicalComparator[] dimComparator;
protected LexicographicalComparator comparator;
/**
 * Creates a KdTree from the given set of points by
calling the method {@link \#buildTree(PgPointSet)}.
During
 * the building process it is necessary to determine the
Median of a set. This is done by the given

```
```

 * median Algorithm.
 * @param points The set of points which are to be
 represented by this KdTree.
 * @param medianAlgorithm An algorithm to determine the
 median of a set.
 * @throws InvalidParameterException If the given
 dimension is strictly less than 1.
 */
 public KdTree_Median(PgPointSet points, IMedianAlgorithm
medianAlgorithm) throws InvalidParameterException{
super(points);
if (dimension <= 0) {
throw new InvalidParameterException("Can not build a
KdTree on dimension < 1,
+ "but was given dimension "+dimension+".");
}
this.medianAlgorithm = medianAlgorithm;
//Set up a Lexicographical Comparator for each
dimension
for (int i=0; i<dimension; i++) {
this.dimComparator[i] = new LexicographicalComparator
(i, dimension);
}
//Build the actual tree
buildTree(points);
}
/* (non-Javadoc)
* @see devMS.kdTree.KdTree\#buildTree(jv.geom.PgPointSet)
*/
protected void buildTree(PgPointSet points) {
this.root = recursiveBuild(points.getVertices(),0,0,
points.getNumVertices()-1);
}
/**
* Recursively builds a KdTree from a set of points. The
method finds the median in the current split
* dimension and partitions the set accordingly. It is
specified by the indices left and right on what part
* of the set the method acts.
* @param points The set of points to be represented by
the KdTree this method builds.
* @param splitDim The dimension in which to split the
set, i.e. to find the median; a value >=0 and <
dimension.
* @param left The leftmost index of the part of the
point set on which the method currently works.
* @param right The rightmost index of the part of the
point set on which the method currently works.
* @return The root of a KdTree representing the given
points.
*/
private Node recursiveBuild(PdVector[] points, int
splitDim, int left, int right) {
//No point to be represented, i.e. root stays NULL.
if (left > right) {

```

\section*{Martin Skrodzki}
```

 return null;
 } else
 //Only one point to be represented, i.e. create a leaf
 containing the single point.
 if (left= right) {
 return new Node(null, null, Node.noHyperplaneValue,
 splitDim, points[left], true, indexTable.get(
 points[left]));
 } else {
 //Switch to the correct comparator that is used to
 compare the points to the found median.
 comparator = dimComparator[splitDim];
 int i = left;
 int j = right;
 int m}=(left+right)/2
 PdVector median = medianAlgorithm.median(points,
 splitDim);
 //Proceed from left to right and from right to left
 simultaneously. If points on the left are larger
 //than the median or points on the right are smaller
 than the median, exchange them.
 while (i < j) {
 while (comparator.compare(points[i], median)<0) {
 i++; }
 while (comparator.compare(points[j], median) > 0) {
 j++; }
 PdVector temp = points[i];
 points[i] = points[j];
 points[j] = temp;
 }
 //Recursively create a node storing the median with a
 left and a right subtree holding the points
 //which have been partitioned to the left or right of
 the median respectively.
 return new Node(recursiveBuild(points, (splitDim+1) %
 dimension, left, m-1),
 recursiveBuild (points, (splitDim+1) %
 dimension, m+1, right),
 median.getEntry(splitDim), splitDim, median,
 false, indexTable.get(median));
 }
 }
 }

```

Listing D.1: Implementation of a \(K d\)-Tree as outlined in Section 3.3.4.

Martin Skrodzki

\section*{Appendix E}

\section*{Nearest Neighbor Computation in abstract Kd-Tree}
```

/**
* A recursive search for the input point within the
KdTree is performed. It ends in a leaf
* of the KdTree representing the position into which the
input point would have been stored.
* From here the tree is traversed backwards up to the
root, where every not yet accessed subtree
* is considered if and only if the subtree might still
contain points closer to the input
* point than the points found so far and the subtree is
still within influence radius.
* @param input A point around which to search for
neighbors
* @param count Number of neighbors to be found.
* @param influence Influence radius around the input
point to be considered.
* @param currentBest List of currently closest points
found.
* @param currentPosition Node in the KdTree that is
currently examined.
* @return A queue containing the found neighbors, where
the head of the queue is the one with the largest
distance.
*
protected PriorityQueue $<$ PdVector $>$
getInfluencedNumberOfNearestNeighbors (
PdVector input, int count, double influence,
PriorityQueue $<$ PdVector $>$ currentBest, Node
currentPosition,
Boolean includeInput)\{
if (currentPosition = null)
//The currentPosition is null, nothing can be done
here, return the currently known nearest
neighbors
return currentBest;
$\}$ else \{
//The current Position contains a point, add it to
the list of currently known neighbors,

```
```

//if it fits the influence radius. If the list
becomes to large, trim it
if (includeInput || (currentPosition.getPoint().
hashCode() != input.hashCode())) {
if (currentPosition.getPoint().dist(input) <=
influence) {
currentBest.add(currentPosition.getPoint());
}
if (currentBest.size() > count) {
currentBest.poll();
}
}
//If the currentPosition is a Leaf, recursion comes
to an end and the currently known
//nearest neighbors are reported
if (currentPosition.isLeaf()) {
return currentBest;
} else {
int splitDim = currentPosition.getSplitDim();
double inputSplitDimCoordinate = input.getEntry(
splitDim);
double currentPositionSplitDimCoordinate =
currentPosition.getPoint().getEntry(splitDim);
//If the currentPosition is not a Leaf, we can
apply recursion to both sides of the hyperplane
if (inputSplitDimCoordinate <=
currentPositionSplitDimCoordinate) {
//Examine the side where the input point lies
currentBest =
getInfluencedNumberOfNearestNeighbors(
input,count,influence, currentBest,
currentPosition.getLeft(),includeInput);
if ((currentBest.size() < count)
\&\& (influence >= (Math.abs(
inputSplitDimCoordinate -
currentPositionSplitDimCoordinate)))) {
//If there are still neighbors missing and they
still lie within influence radius,
//examine the other side, too
currentBest =
getInfluencedNumberOfNearestNeighbors(
input, count,influence, currentBest,
currentPosition.getRight(),includeInput
);
} else {
//In case the needed amount of neighbors has
already been found, the other side is only
examined
//if points might be closer to the input than
the points found so far
PdVector currentWorstPoint = currentBest.peek()
if ((currentWorstPoint.dist(input) > (Math.abs(
inputSplitDimCoordinate -
currentPositionSplitDimCoordinate)))

```
```

*)

```

Listing E.1: Implementation of the nearest neighbor algorithm as given in Algorithm 9.

Martin Skrodzki

\section*{Appendix F}

\section*{Implementation of alternative Pivot Rules}
```

import java.security.InvalidParameterException;
import jv.geom.PgPointSet;
import jv.vecmath.PdVector;
import devMS.comparators. LexicographicalComparator ;
**
* This class implements the abstract class {@link KdTree}.
On top of the functionality of the abstract class,
* this class can actually build a KdTree. This is done via
a recursive building method. The Tree is build
* using the point closest to the middle of the largest
spread dimension as pivot element.

* @author Martin Skrodzki
*

public class KdTree_ClosestToMiddle extends KdTree {
public KdTree_ClosestToMiddle(PgPointSet points)
throws InvalidParameterException {
super(points);
if (dimension <= 0) {
throw new InvalidParameterException("Can not build a
KdTree on dimension < 1,
+ "but was given dimension "+dimension+".");
}
//Build the actual tree
buildTree(points);
}
/* (non-Javadoc)
*@see devMS.kdTree.KdTree\#buildTree(jv.geom.PgPointSet)
*/
protected void buildTree(PgPointSet points) {
PdVector minBound = new PdVector(points.
getDimOfVertices());

```
```

 PdVector maxBound = new PdVector(points.
 getDimOfVertices());
 PdVector[] pointArray = new PdVector[points.
 getNumVertices()];
 for (int j=0; j<points.getDimOfVertices(); j++) {
 minBound.setEntry(j, points.getVertex(0).getEntry(j))
 ;
 maxBound.setEntry(j, points.getVertex(0).getEntry(j))
 }
 for (int i=0; i<points.getNumVertices(); i++) {
 pointArray[i] = points.getVertex(i);
 for (int j=0; j<points.getDimOfVertices(); j++) {
 if (pointArray[i].getEntry(j) < minBound.getEntry(j
)) {
 minBound.setEntry(j, pointArray[i].getEntry(j));
 }
 if (pointArray[i].getEntry(j) > maxBound.getEntry(j |
)) {
 maxBound.setEntry(j, pointArray[i].getEntry(j));
 }
 }
 }
 this.root = recursiveBuild(pointArray ,minBound,maxBound
 ,0, points.getNumVertices()-1);
 }
/**
* Recursively builds a KdTree from a set of points. The
points are given to the method in an array.
* The method finds the point closest to the middle of
the largest spread dimension, splits the array
* according to this point and passes the lists on
recursively, while stating on what part of the array
* the recursion should act.
* @param points Points to be stored in the tree

* @param minBound One of the defining points of the
bounding box of the point set.
 * @param maxBound The second defining point of the
bounding box of the point set.
 * @param left Leftmost index of the points array to be
included.
 * @param right Rightmost index of the points array to be
included.
 * @return Root of a Kd-Tree storing all points from the
given array.
*/
private Node recursiveBuild(PdVector[] points, PdVector
minBound, PdVector maxBound, int left, int right) {
//No point to be represented, i.e. root stays NULL.
if (left > right) {
return null;
} else
//Only one point to be represented, i.e. create a leaf
containing the single point.
if (left== right) {
return new Node(null, null, Node.noHyperplaneValue,
Node.noHyperplaneDim, points[left], true);
} else {

```

\section*{Martin Skrodzki}
```

 //Find the largest spread dimension
 int largestSpreadDim \(=0\);
 for (int \(i=1 ; i<m i n B o u n d . g e t S i z e() ; i++)\{\)
 if (Math.abs (maxBound.getEntry (i)-minBound.getEntry
 (i))
 \(>\) Math. abs (maxBound.getEntry (largestSpreadDim)-
 minBound.getEntry (largestSpreadDim))) \{
 largestSpreadDim \(=\mathrm{i}\);
 \}
 \}
 //Determine the splitValue, i.e. middle of the
 largest spread dimension
 double splitValue \(=\) maxBound. getEntry (
 largestSpreadDim \()+\) minBound. getEntry (
 largestSpreadDim) / 2 ;
 //Find the point closest to the middle of the largest
 spread dimension
 PdVector pivot \(=\) points [left];
 int pivotIndex = left;
 for (int \(\mathrm{i}=\mathrm{left}+1\); \(\mathrm{i}<=\) right; \(\mathrm{i}++\)) \{
 double currentDist \(=\) points [i].getEntry (
 largestSpreadDim)-splitValue ;
 double pivotDist \(=\) pivot.getEntry (largestSpreadDim
)-splitValue;
 if (Math. abs(currentDist) < Math.abs (pivotDist)) \{
 pivot \(=\) points[i];
 pivotIndex \(=\) i;
 \}
 \(\}\)
 //Partition the set according to the pivot element
int $\mathrm{i}=$ left +1 ;
int $\mathrm{j}=$ right;
LexicographicalComparator comparator $=$ new
LexicographicalComparator (largestSpreadDim,
minBound. getSize()) ;
//Place the pivot element in the first place
points [pivotIndex] $=$ points[left];
points[left] $=$ pivot;
//Proceed from left to right and from right to left
simultaneously. If points on the left are larger
//than the median or points on the right are smaller
than the median, exchange them.
while $(\mathrm{i}<\mathrm{j})$ \{
while $((\mathrm{i}<\mathrm{j}) \& \&$ (comparator. compare (points [i],
pivot $)<=0)$) $\{\mathrm{i}++;\}$
while $((\mathrm{i}<\mathrm{j})$ \&\& (comparator.compare (points [j],
pivot) > 0)) $\{\mathrm{j}--;\}$
PdVector temp $=$ points [i];
points [i] $=$ points[j];
points $[\mathrm{j}]=$ temp;
\}
points[left] $=$ points [j];
points [j] $=$ pivot;
PdVector rightMinBound $=\mathrm{PdVector} . \operatorname{copyNew}($ minBound $)$;
PdVector rightMaxBound $=$ PdVector.copyNew (maxBound);
maxBound.setEntry (largestSpreadDim, splitValue);

```
```

117 rightMinBound.setEntry(largestSpreadDim, splitValue);
//Recursively create a node storing the median with a
left and a right subtree holding the points
120 //which have been partitioned to the left or right of
the median respectively.
1 2 1
return new Node(recursiveBuild(points, minBound,
maxBound, left, j-1),
recursiveBuild (points, rightMinBound,
rightMaxBound, j+1, right),
pivot.getEntry(largestSpreadDim),
largestSpreadDim, pivot, false);
}
}
125
126|}

```

Listing F.1: Implementation of a \(K d\)-Tree utilizing the alternative pivot rule from [Moo91].

\section*{List of Figures}
1.1 A 3D Scanner and a 3D printer. Picture taken from [Pro]. ..... 1
2.1 The affine tangential plane \(T_{p} S+p\) on a regular surface \(S\) according to Definition 1. ..... 8
2.2 Given a point \(p_{\iota}\) and its neighborhood \(N_{4}(p)=\left\{x_{1}, \ldots, x_{4}\right\}\) with the corresponding barycenter \(\bar{b}\). The tangent plane \(T_{\iota}\) given by (2.4) includes \(\bar{b}\) and has normal vector \(n\). The points \(x_{2}\) and \(x_{4}\) lie below the plane, while \(x_{1}, x_{3}\), and in particular \(p_{\iota}\) lie above the plane. ..... 9
2.3 On the left the usual smooth \(\nabla\) in red on a smooth surface \(S\).
On the right the approximation \(\left.(\nabla)\right|_{p_{\imath}}\) in red on a point set. ..... 14
2.4 On the left a vector field \(F:(x, y) \mapsto(2 x, 2 y)\), with \(\operatorname{div} F=\) \(2+2=4\). In the middle a vector field \(G:(x, y) \mapsto(-y, x)\) with \(\operatorname{div} G=0\). On the right a point \(p_{\iota}\) and a vector \(v\) that is expressed in terms of the neighborhood of \(p_{\iota}\), defining the divergence, i.e. the flow of \(p_{\iota}\) in direction \(v\). ..... 15
2.5 Smoothing a noised cube with the the process from (2.18) and the Laplacian as given in (2.16). The picture shows the original noised point set as well as the smoothed point set after 60,390 , and 890 iterations ..... 23
2.6 Smoothing a noised cube with the the process from (2.18) and the anisotropic Laplacian as given in (2.30). The picture shows the original noised cube as well as the smoothed cube after 30, 80 , and 150 iterations. The faces of a triangulation are only shown for better feature visibility and the triangulation is not used in the actual procedure, where only the underlying point set is used. ..... 25
2.7 A figure taken from [LP05] to illustrate the benefits of using a neighborhood from a smooth point set. From left to right the noised sample points and the smoothed point set after 15 respectively 50 iterations. ..... 26
3.1 A balanced Binary Search Tree for the first seven prime num- bers. Circular shapes denote stored median values, while rect- angular shapes denote stored input numbers \(r_{i}\). ..... 30
3.2 A Binary Tree \(T\) which is queried for values \(a\) and \(b\). The value \(a\) is actually stored in a leaf \(\alpha=a\) of the tree, while the search path for value \(b\) in \(T\) ends in leaf \(\beta\). Compare [Ber +08 ]. ..... 33
3.3 An AVL Tree for the first seven prime numbers. ..... 34
3.4 A set of eight points is recursively split with four hyperplanes that define the corresponding \(K d\)-Tree, which is also shown. Note that the internal representing \(p_{6}\) has only one child. . ..... 35
4.1 The labeling of a Quadtree and an Octree, cf [Bri05] and [Eri05]. ..... 46
4.2 A set of nine points is recursively put into a Quadtree data structure. The final Quadtree is also shown. Note how some of the leafs are empty and the tree is not balanced. Compare to [Bri05]. ..... 46
4.3 From left to right: Different Quadtrees for the points \(p_{1}, p_{2}, p_{3}\) as given in (4.1) for values \(k=1,2,3,4\). Note how the Quadtree has exactly depth \(k\) in each illustration. ..... 47
4.4 An R-Tree in \(\mathbb{R}^{2}\) and the corresponding rectangles. The dotted drawn rectangles correspond to internal nodes of the R-Tree, while the fully drawn rectangles are rectangles storing the ac- tual objects. In \(R_{8}\) the corresponding object is shown. See [Gut84]. ..... 51
5.1 Initial point set and its \(K d\)-Tree with the query point \(p\) ..... 57
5.2 Root is examined and stored as nearest neighbor ..... 57
5.3 Traversal continues to \(p_{3}\) which is new nearest neighbor. ..... 58
5.4 Traversal stops in leaf \(p_{1}\), but keeps \(p_{3}\) as nearest neighbor. ..... 58
5.5 In the internal node \(p_{3}\), its subtree containing \(p_{2}\) is examined, but \(p_{2}\) is further from \(p\) than \(p_{3}\) ..... 58
5.6 The right subtree of \(p_{4}\) is rejected since the hyperplane through \(p_{4}\) is further from \(p\) than the current nearest neighbor \(p_{3}\) ..... 59
5.7 A figure from [Moo91], showing how a bad distribution of points can, for certain query points, lead to the necessity of examining almost all nodes of the \(K d\)-Tree. ..... 61
5.8 A figure taken from [Moo91], illustrating the short-comings of the "median of the most spread dimension" pivot policy of [Omo87], namely the creation of many slim regions. ..... 65
5.9 A figure taken from [Moo91], illustrating the alternative pivot policy "closest to the center of the most spread dimension", compare to Figure 5.8. ..... 66
6.1 A set of 28 points. An arrow from point \(p\) to \(q\) indicates that \(p\) was found to be smaller than \(q\). The marked point \(a\) is the median of medians. Note that all points in the gray region are necessarily smaller than \(a\), which was established directly while computing the medians, or which is given by transitivity. 70
6.2 The process of computing the "Remedian" median approxi- mation. The initial data is written into Array 1, until it is filled. Its median is stored in Array 2 and Array 1 is emptied, more initial data is written into it. This process is iterated over all Arrays and all initial data, until finally the median of the last used Array gives the approximation of the median. . ..... 72
7.1 The initial start screen of the program. ..... 76
7.2 An example geometry to illustrate the program's abilities, namely a point set sample of the Costa surface. ..... 77
7.3 The images show from left to right and top to bottom: The original point cloud, the point cloud with noise applied, the smoothing process with animation offset 0.2 , and the smooth- ing process with animation offset 0.4 . Note how the points become darker during the animation, indicating that their po- sition becomes more and more fixed. ..... 79
7.4 The effect of the Z-Density Level parameter on the point cloud of the Costa surface. ..... 81
7.5 The effect of the different vertex colorings, from left to right and top to bottom: Mean, MaxPrinc, CovQuotient, MeanAni, PrincQuotient, MaxCov. ..... 82
8.1 From left to right: A sampled version of the Costa surface, a cylinder intersected with a plane segment, and a torus. ..... 83
8.2 The different geometries and their number of vertices origi- nally and after one, respectively two subdivisions. ..... 83
8.3 The shown data is taken from [SS] and was established by performing 100 build operations, 1000 region queries and 1000 nearest neighbor searches on a geometry with 69649 vertices. The two compared \(K d\)-Tree implementations either determine all composite coordinates from Definition 4 during the building process and save them (Store) or determine the coordinates on the fly when needed in queries (Compute). ..... 84
8.4 Building time of the different \(K d\)-Tree implementations on the original geometries as shown in Figure 8.1. ..... 85
8.5 Building time of the different \(K d\)-Tree implementations on the geometries, each subdivided once using Catmull-Clark. ..... 86
8.6 Building time of the different \(K d\)-Tree implementations on the geometries, each subdivided twice using Catmull-Clark. ..... 86
8.7 Development of the depth of the \(K d\)-Trees obtained using the "Closest to middle of most spread dimension" pivot strategy on the original geometries as well as on their respective sub- divisions ..... 87
8.8 Building times of the different \(K d\)-Tree implementations. All times are given in ms. The columns Costa, Cylinder, Torus give the times for the original geometries, while the other columns give the times for the once, respectively twice sub- divided geometries. The numbers are plotted in Figures 8.4, 8.5 , and 8.6 ..... 88
8.9 Neighborhood computation times for different maximal neigh- borhood sizes and a fixed (large) influence radius. The \(K d\) - Tree implementation shown is "Sorting" ..... 89
8.10 Neighborhood computation times for different influence radii and no restriction on the neighborhood size. The \(K d\)-Tree implementation shown is "Sorting". ..... 90
8.11 Times for the computation of different sized neighborhoods using \(K d\)-Tree "Sorting" and the "Closest to Middle" imple- mentation. On the top the times on the original cylinder ge- ometry, in the middle the times on the geometry after one subdivision, and on the bottom after two subdivisions. ..... 92
8.12 Times for the computation of different sized neighborhoods us- ing \(K d\)-Tree "Sorting" and the "Closest to Middle" implemen- tation. Times are taken on the original Costa surface without subdivision and the experiment was repeat five times. The plot shows the median. ..... 93

\title{
8.13 Neighborhood computation times for different influence radii and no restriction on the neighborhood size using the "Sorting" and "Closest to Middle" implementations. . . . . . . . . . 94
}

List of Figures
Martin Skrodzki

\section*{List of Algorithms}
1 NearestNeighbor ..... 28
2 Binary Search ..... 29
3 1DimRangeQuery ..... 31
4 Build \(K d\)-Tree ..... 36
5 Compare ..... 40
\(6 \quad\) Build \(K d\)-Tree Sorting ..... 43
\(7 \quad\) Naive Nearest Neighbor ..... 53
8 Nearest Neighbor using PCA ..... 55
9 Nearest Neighbor \(K d\)-Trees ..... 60
10 Randomized Select ..... 68
11 Deterministic Select ..... 69

List of Algorithms
Martin Skrodzki

\section*{Listings}
3.1 An abstract method to force the user of the class to imple-ment a constructor-like method. Note that this method stillneeds to be called by the user in the constructor of the classimplementing the abstract Kd-Tree41
3.2 Interface to use the Strategy design pattern for median com- putation ..... 42
5.1 Methods provided by the abstract Kd-Tree class ..... 62
7.1 A list of examplary settings to illustrate the program's abillities. ..... 77
A. 1 Implementation of the technique outlined in Section 5.1. ..... 99
B. 1 Implementation of the Lexicographical Order as described in Section 3.3.1. ..... 103

Listings
Martin Skrodzki

\section*{Bibliography}
[ABK98] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. "A new Voronoi-based surface reconstruction algorithm". In: Proceedings of the 25th annual conference on Computer graphics and interactive techniques. ACM. 1998, pp. 415-421.
[Ale+03] Marc Alexa et al. "Computing and rendering point set surfaces". In: Visualization and Computer Graphics, IEEE Transactions on 9.1 (2003), pp. 3-15.
[Bär10] Christian Bär. Elementare Differentialgeometrie. German. 2nd. De Gruyter, 2010. ISBN: 978-3-11-022458-0.
[Ber+08] Mark de Berg et al. Computational Geometry. Algorithms and Applications. English. 3rd. Springer, 2008. ISBN: 978-3-540-77974-2.
[Bey+99] Kevin Beyer et al. "When is ?nearest neighbor? meaningful?" In: Database Theory?ICDT?99. Springer, 1999, pp. 217-235.
[BF05] Chris Boehnen and Patrick Flynn. "Accuracy of 3D scanning technologies in a face scanning scenario". In: 3-D Digital Imaging and Modeling, 2005. 3DIM 2005. Fifth International Conference on. IEEE. 2005, pp. 310-317.
[Blu+73] Manuel Blum et al. "Time bounds for selection". In: Journal of computer and system sciences 7.4 (1973), pp. 448-461.
[Bri05] Thomas Brinkhoff. Geodatenbanksysteme in Theorie und Praxis. Einführung in objektrelationale Geodatenbanken unter besonderer Berücksichtigung von Oracle Spatial. German. 1st. Herbert Wichmann, 2005. ISBN: 3-87907-433-X.
[Buc+07] Ursula Buck et al. "Application of 3D documentation and geometric reconstruction methods in traffic accident analysis: with high resolution surface scanning, radiological MSCT/MRI scanning and real data based animation". In: Forensic science international 170.1 (2007), pp. 20-28.
[CDR00] Ulrich Clarenz, Udo Diewald, and Martin Rumpf. "Anisotropic geometric diffusion in surface processing". In: Proceedings of the conference on Visualization'00. IEEE Computer Society Press. 2000, pp. 397-405.
[Com79] Douglas Comer. "Ubiquitous B-tree". In: ACM Computing Surveys (CSUR) 11.2 (1979), pp. 121-137.
[Cor +13\(]\) Thomas H. Cormen et al. Algorithmen - eine Einführung. German. 4th. Oldenbourg, 2013. ISBN: 9783486748611.
[CZ05] Volker Coors and Alexander Zipf. 3D-Geoinformationssysteme. Grundlagen und Anwendungen. German. 1st. Herbert Wichmann, 2005. ISBN: 3-87907-411-9.
[Des+99] Mathieu Desbrun et al. "Implicit fairing of irregular meshes using diffusion and curvature flow". In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co. 1999, pp. 317-324.
[DZ99] Dorit Dor and Uri Zwick. "Selecting the median". In: SIAM Journal on Computing 28.5 (1999), pp. 1722-1758.
[Els+12] Jan Elseberg et al. "Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration". In: Journal of Software Engineering for Robotics 3.1 (2012), pp. 2-12.
[Epp] David Eppstein. Deterministic selection. URL: http://www.ics.uci.edu/~eppstein/161/960130.html.
[Eri05] Christer Ericson. Real-Time Collision Detection. English. 1st. Elsevier, 2005. ISBN: 1-55860-732-3.
[FBF77] Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. "An algorithm for finding best matches in logarithmic expected time". In: ACM Transactions on Mathematical Software (TOMS) 3.3 (1977), pp. 209-226.
[Fla98] David Flanagan. Java. In a nutshell. German. 2nd. O'Reilly, 1998. ISBN: 3-89721-100-9.
[FR01] Michael S Floater and Martin Reimers. "Meshless parameterization and surface reconstruction". In: Computer Aided Geometric Design 18.2 (2001), pp. 77-92.
[FR75] Robert W. Floyd and Ronald L. Rivest. "Algorithm 489: The
Algorithm SELECT for Finding the Ith Smallest of N Elements [M1]". In: Commun. ACM 18.3 (Mar. 1975), pp. 173-. ISSN: 0001-0782. DOI: \(10.1145 / 360680.360694\). URL: http://doi.acm.org/10.1145/360680.360694.
[Gam+94] Erich Gamma et al. Design patterns: elements of reusable object-oriented software. Pearson Education, 1994.
[GP11] Markus Gross and Hanspeter Pfister. Point-based graphics. Morgan Kaufmann, 2011.
[Gut84] Antonin Guttman. R-trees: a dynamic index structure for spatial searching. Vol. 14. 2. ACM, 1984.
[GUW02] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems. The complete book. English. 1st. Prentice Hall, 2002. ISBN: 0-13-031995-3.
[Han10] Andreas Handl. Multivariate Analysemethoden. Theorie und Praxis multivariater Verfahren unter besonderer Berücksichtigung von S-PLUS. German. 2nd. Springer, 2010. ISBN: 978-3-3642-14987-0.
[Her12] Philipp Herholz. "General discrete Laplace operators on polygonal meshes". Diploma Thesis. Humboldt-University Berlin, 2012.
[JDD03] Thouis R Jones, Frédo Durand, and Mathieu Desbrun. "Non-iterative, feature-preserving mesh smoothing". In: ACM Transactions on Graphics (TOG). Vol. 22. 3. ACM. 2003, pp. 943-949.
[Jun11] Christopher Jung. "Vergleich von Quadtree, kd-tree und r-tree für statische und dynamische Geodaten". MA thesis. Cologne University of Applied Sciences, 2011.
[Lam+02] Christopher Xu Fu Lam et al. "Scaffold development using 3D printing with a starch-based polymer". In: Materials Science and Engineering: C 20.1 (2002), pp. 49-56.
[Leu+05] Barbara Leukers et al. "Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing". In: Journal of Materials Science: Materials in Medicine 16.12 (2005), pp. 1121-1124.
[Lev+00] Marc Levoy et al. "The digital Michelangelo project: 3D scanning of large statues". In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co. 2000, pp. 131-144.
[Lev04] David Levin. "Mesh-independent surface interpolation". In: Geometric modeling for scientific visualization. Springer, 2004, pp. 37-49.
[LP05] Carsten Lange and Konrad Polthier. "Anisotropic smoothing of point sets". In: Computer Aided Geometric Design 22.7 (2005), pp. 680-692.
[Moo91] Andrew Moore. An introductory tutorial on kd-trees. Tech. rep. Technical Report No. 209, Computer Laboratory, University of Cambridge. Pittsburgh, PA: Robotics Institute, Carnegie Mellon University, 1991.
[Omo87] S.M. Omohundro. "Efficient Algorithms with Neural Network Behavior". In: Journal of Complex Systems 1.2 (1987), pp. 273-347.
[Ora] Oracle. Java Platform, Standard Edition 7 API Specification. URL:
http://docs.oracle.com/javase/7/docs/api/overviewsummary.html.
[OW02] Thomas Ottmann and Peter Widmayer. Algorithmen und Datenstrukturen. Spektrum, Akad. Verlag, 2002.
[Pau+02] Mark Pauly et al. Multiresolution modeling of point-sampled geometry. Swiss Federal Institute of Technology, Computer Science Department,[Institute of Visual Computing], Computer Graphics Lab CGL, 2002.
[Pol+] Konrad Polthier et al. A 3D Geometry Viewer and a Geometric Software Library written in Java. URL: http://www. javaview.de.
[PR99] Tobias Preußer and Martin Rumpf. "Anisotropic nonlinear diffusion in flow visualization". In: Visualization'99. Proceedings. IEEE. 1999, pp. 325-539.
[Pro] Mathematical Geometry Processing. 3D Scanner. URL: http://www.mi.fu-berlin.de/en/math/groups/aggeom/3D_print/index.html.
[Pro+03] Octavian Procopiuc et al. "Bkd-tree: A dynamic scalable kd-tree". In: Advances in Spatial and Temporal Databases. Springer, 2003, pp. 46-65.
[RB90] Peter J Rousseeuw and Gilbert W Bassett Jr. "The remedian: A robust averaging method for large data sets". In: Journal of the American Statistical Association 85.409 (1990), pp. 97-104.
[Ren +10 ] Fabian Rengier et al. "3D printing based on imaging data: review of medical applications". In: International journal of computer assisted radiology and surgery 5.4 (2010), pp. 335-341.
[RKV95] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. "Nearest neighbor queries". In: ACM sigmod record. Vol. 24. 2. ACM. 1995, pp. 71-79.
[RNI10] Miloš Radovanović, Alexandros Nanopoulos, and Mirjana Ivanović. "Hubs in space: Popular nearest neighbors in high-dimensional data". In: The Journal of Machine Learning Research 11 (2010), pp. 2487-2531.
[SC03] Shashi Shekhar and Sanjay Chawla. Spatial Databases. A Tour. English. 1st. Pearson Education, 2003. ISBN: 0-13-017480-7.
[Sed92] Robert Sedgewick. Algorithmen. German. Addison-Wesley, 1992.
[SS] Thomas Stollin and Martin Skrodzki. "Documentation of the Project Orthogonal Range Searching". Project Documentation for the course Scientific Visualization by Konrad Polthier at FU Berlin in 2013/14.
[SW11] Robert Sedgewick and Kevin Wayne. Algorithms. English. 4th. Addison-Wesley, 2011. ISBN: 978-0-321-57351-3.
[Tau95] Gabriel Taubin. "Estimating the tensor of curvature of a surface from a polyhedral approximation". In: Computer Vision, 1995. Proceedings., Fifth International Conference on. IEEE. 1995, pp. 902-907.
[Tho79] John A Thorpe. Elementary topics in differential geometry. Springer, 1979.
[Vai89] Pravin M Vaidya. "An O(n logn) algorithm for the all-nearest-neighbors problem". In: Discrete \& Computational Geometry 4.1 (1989), pp. 101-115.
[VMM99] Jörg Vollmer, Robert Mencl, and Heinrich Mueller. "Improved laplacian smoothing of noisy surface meshes". In: Computer Graphics Forum. Vol. 18. 3. Wiley Online Library. 1999, pp. 131-138.```

