
Masterarbeit am Institut für Mathematik der Freien Universität Berlin,

Arbeitsgruppe Mathematical Geometry Processing

Neighborhood Computation of Point Set
Surfaces

Martin Skrodzki
Matrikelnummer: 4707622

martin.skrodzki@fu-berlin.de

Betreuer: Prof. Dr. Konrad Polthier

Eingereicht bei: Prof. Dr. Konrad Polthier

Berlin, 12. Dezember 2014

mailto:martin.skrodzki@fu-berlin.de

Eidesstattliche Erklärung

Ich versichere hiermit an Eides Statt, dass diese Arbeit von niemand an-
derem als meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel
wie Berichte, Bücher, Internetseiten oder ähnliches sind im Literaturverzeich-
nis angegeben, Zitate aus fremden Arbeiten sind als solche kenntlich gemacht.
Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen
Prüfungskommission vorgelegt und auch nicht veröffentlicht.

Datum: 12. Dezember 2014

Name: Martin Skrodzki

Unterschrift:

Contents

1 Introduction 1
1.1 Overview . 2
1.2 Notation . 3

2 Point Cloud Smoothing 5
2.1 Review of the Point Based Model 5

2.1.1 Neighborhoods . 6
2.1.2 Tangent Spaces . 6
2.1.3 Isotropic Gaussian Fairing 13

2.2 Curvatures of Point Sets . 17
2.2.1 Directional Curvatures 17
2.2.2 Weingarten Map . 19
2.2.3 Estimation of weights and Principal Curvatures 21

2.3 Anisotropic Mean Curvature Flow 22

3 General idea of neighborhood computation and Kd-Trees 27
3.1 General idea of neighborhood computation 27
3.2 Theory of Kd-Trees . 28

3.2.1 Binary Search and linear Range Search 29
3.2.2 Kd-Trees in Dimension d 34
3.2.3 Generalization to finite d-dimensional point sets 37

3.3 Implementations . 39
3.3.1 Lexicographical Order 39
3.3.2 Abstract Kd-Tree . 40
3.3.3 Sorting . 41
3.3.4 Median . 42

4 Two more Spatial Data Structures 45
4.1 Quadtree and Octree . 45
4.2 R-Tree . 47
4.3 Choice of a Data Structure, Curse of Dimensionality 49

iii

5 Nearest Neighbor Search 53
5.1 Nearest Neighbor using PCA 54
5.2 Nearest Neighbor Search using Kd-Trees 56
5.3 Implementation in JavaView 62
5.4 Alternative Pivot Policies for the Kd-Tree 63

6 Median 67
6.1 Randomization . 67
6.2 Deterministic Algorithm . 68
6.3 Approximation . 71

7 The Program 75
7.1 General Procedure . 75
7.2 Example . 76
7.3 Setting Details . 78

8 Computational Results 83
8.1 Building Times and Tree Depths 84
8.2 Kd-Tree vs. PCA . 87
8.3 ”Middle of most spread Dim.” vs. Median 91
8.4 Conclusion from computational results 93

9 Conclusion and Further Research 95

Appendices

Appendix A PCA Nearest Neighbor JavaView Implementation 99

Appendix B PCA Nearest Neighbor JavaView Implementation103

Appendix C Kd-Tree Sorting Class 107

Appendix D Kd-Tree Median Class 113

Appendix E Nearest Neighbor Computation in abstract Kd-
Tree 117

Appendix F Implementation of alternative Pivot Rules 121

Chapter 1

Introduction

In this thesis we will present data structures for efficient neighborhood com-
putation of point set surfaces. Given data structures will be tested within a
smoothing application implemented in JavaView [Pol+].
During the last years, both 3D scanners and printers became very affordable.
Therefore the range of applications got broader. Techniques of 3D printing
are now used e.g. in medical applications [Ren+10], [Leu+05] and material
sciences [Lam+02]. Furthermore methods from 3D scanning are applied in
e.g. face recognition [BF05], traffic accident analysis [Buc+07], as well as in
art related or archaeological settings [Lev+00]. A 3D scanner is shown in
Figure 1.1.

Figure 1.1: A 3D Scanner and a 3D printer. Picture taken from [Pro].

From the scanning process, a 3D computer model of the scanned object is
obtained. This model is given by a set of points representing the original

1

1.1 Overview Martin Skrodzki

object. If the scanned objects has e.g reflecting surfaces, or is not lighted
correctly, the resulting sample points will be noised. Therefore when scanning
perfectly flat objects, the resulting model on the computer might still show
a rough structure. To not have the noise interfere in the printing process or
in a rendering on the computer, the scanned surfaced is usually smoothed.
A common approach to smoothing techniques is to compute a mesh on the
point samples obtained from the scanning process. This mesh is then used to
smooth the point set, see e.g. [JDD03], [VMM99]. Although this approach is
well studied it has one obvious disadvantage: The first step will always be the
computation of a mesh. To overcome this disadvantage, several techniques
have been developed which work on a point set only and do not require a
mesh. For an overview see [GP11].
Not using a mesh does come with a prize. A mesh already encodes neigh-
borhood information, which we will see to be very important for smoothing
procedures. When using a solely point-based technique, neighborhoods are
not available a priori. This thesis aims at presenting methods for efficient
computation of neighborhoods in the point-based setting.

1.1 Overview

As stated above the main goal of this thesis is to present ways to efficiently
compute neighborhoods in point sets. In order to emphasize the importance
of neighborhoods within smoothing procedures, in Chapter 2 we will present
the general idea of point cloud smoothing. The chapter will be mostly based
on [LP05]. For a start tools of differential geometry are presented that are
used for smoothing in a continuous setting. In order to apply these tools on
the point-based approach, we introduce discrete versions of them. Further-
more the chapter introduces the concept of anisotropic smoothing for feature
detection.
Having set the theoretical background of smoothing, in Chapter 3 we will
give a first general idea of neighborhood computation in point clouds. This
idea will lead us to the need for data structures. The field of computational
geometry developed several structures suitable for our purposes. Namely we
will present Kd-Trees and their implementation in Chapter 3, while two more
data structures will be presented in Chapter 4. Although we motivated the
need for neighborhood computation from 3D applications, our data struc-
tures will be able to handle general d-dimensional points. This is mainly to
be able to use them in later, higher-dimensional applications as the theory
of manifolds.

2

1.2 Notation Martin Skrodzki

The general idea of Nearest Neighbor search will be made more explicit in
Chapter 5. We give an implementation of nearest neighbor search within the
JavaView [Pol+] framework using Kd-trees. Since our implementations will
make heavy use of the median of a point set, in Chapter 6 we will consider
three different algorithms of how to determine the median of an unordered
sequence.
All implementations are included in a Java program which will be presented
in Chapter 7. This is mainly done since the presented program will be used
to obtain the computational results given in Chapter 8. All different strate-
gies given in the previous chapters are then evaluated and advice for practical
applications is given. Finally we give a conclusion and suggestions for further
research in Chapter 9.
This thesis started as the project ”Orthogonal Range Searching” [SS] in the
course ”Scientific Visualization”, given by Konrad Polthier. We will also
present results from this project.

1.2 Notation

Throughout the thesis we will make use of the following notational conven-
tions.

• For a ∈ N, by [a] we denote the set {1, . . . , a}.

• Any vector v is a column vector. We denote its transpose by vT .

• If not stated otherwise, ‖.‖ and 〈., .〉 denote the standard norm and
scalar product in the ambient Euclidean space.

3

1.2 Notation Martin Skrodzki

4

Chapter 2

Point Cloud Smoothing

To both fix a theoretical basis and suggest practical applications of nearest
neighbor search on point sets, in this chapter we will present [LP05]. In
our presentation we will generally follow the setup of the paper, but divert
from it when it seems beneficial for a deeper understanding of the given
concepts. The general outline will be a first review of the point based model
in Section 2.1, including the definition of a discrete tangential space and
isotropic fairing in the discrete setting. We then in Section 2.2 turn to the
curvature(s) of point sets and approximate the notion of directional curvature
from differential geometry within the discrete setting. In the last Section
2.3 the computed curvatures are used to define an anisotropic Laplacian for
corresponding anisotropic fairing.

2.1 Review of the Point Based Model

Given a smooth surface S we will consider point samples taken from S in
a sufficiently dense way to reflect the structure of the surface. In [ABK98]
it was proven that from such a point set, the surface can be reconstructed
in terms of its topological features and that for increasing sample size, the
sampled surface converges to S. We assume that sample points sufficiently
close together are distributed nearby the tangent plane of S. Considering
Principal Component Analysis e.g. [Han10], it is not surprising that an ap-
proximation of the tangent plane of S can be derived from the sample points
by the covariance matrix of neighboring points.
At first we present how several objects from differential geometry are trans-
lated to the point based model. That is, for any sample point, we need a
definition of tangent space at this point. This will be done via a minimum
least squares expression on the neighborhood of the point. Using this tan-

5

2.1 Review of the Point Based Model Martin Skrodzki

gent space, we will be able to transfer the techniques of mean curvature flows
from triangulated spaces to point clouds.
The model presented here is very similar to the model used in [Pau+02],
where a linear approximation of the tangent plane is done almost in the
same way. However, the minimum least square expression is set up slightly
different. In [Ale+03] and [Lev04] also linear approximations of a tangent
space are computed via a minimum least squares technique. But they use
a second step to define an implicit surface from the linear approximations,
which will not be done here since the linear approximation is sufficient.
In the following, we assume that a smooth surface S, embedded in R3, is
sampled by n points. The set of samples will be denoted by

P = {pι | 1 ≤ ι ≤ n} (2.1)

and we assume that P describes S in the sense, that the density of P is high
enough such that all features from S can be recovered from P . In particular,
each pι is given by its three real-valued coordinates.

2.1.1 Neighborhoods

The main idea of the point based model is to perform all computations on
neighborhoods induced by the Euclidean notion of vicinity rather than on
combinatorial neighborhoods as in meshes. For a fine sample and a small
Euclidean neighborhood, both notions will be similar. Different approaches
on how to set up the neighborhood are presented in [FR01]. In certain
aspects, we will follow their third presented method. In [Pau+02] all points
from P are considered in the moving least squares method and are weighted
according to their Euclidean distance. The authors introduce the notation
Ñk(pι) for the k nearest neighbors of pι relative to Euclidean distance.
We will consider an ε-k-neighborhood N ε

k(pι) of a sample point pι, that is an
intersection of the sample points contained in an ε-ball centered at pι and
the k sample points closest to pι. In particular this means that N ε

k(pι) must
not necessarily contain k points. However, in the following we will assume
that k does denote the size of the neighborhood. Since the parameters ε and
k will be globally set, see Chapter 7, we will use the notation Nk(pι) for the
neighborhood.

2.1.2 Tangent Spaces

The tangent spaces presented in this section will be approximation to the
tangent spaces of the smooth surface S in a twofold sense. First, any tangent

6

2.1 Review of the Point Based Model Martin Skrodzki

space that we derive from the point set P will be an approximation because
of the noise on the point set. Second, our tangent planes will not necessarily
contain the point of tangency. However, we will see that our concept of a
discrete tangent space still converges to the smooth tangent space on S.
Given a point pι of the point set and its neighborhood Nk(pι), we approximate
a tangent space Tι by minimizing

E(n, r) =
∑

x∈Nk(pι)

(〈x− b, n〉 − r)2, (2.2)

where b ∈ R3 is any point, n denotes the normal vector of Tι and r is the
distance of Tι to b. We would now like to find a certain point b such that
(2.2) simplifies. Therefore let

b =
∑

x∈Nk(pι)

x

k
(2.3)

denote the barycenter of the neighborhood Nk(pι). Setting b = b in (2.2), we
see

0 ≤ E(n, r)

=
∑

x∈Nk(pι)

(〈x− b, n〉 − r)2

=
∑

x∈Nk(pι)

(
〈x− b, n〉2 − 2r〈x− b, n〉+ r2

)
=

∑
x∈Nk(pι)

〈x− b, n〉2 − 2r ·
∑

x∈Nk(pι)

〈x− b, n〉+
∑

x∈Nk(pι)

r2

=
∑

x∈Nk(pι)

〈x− b, n〉2 − 2r

〈 ∑
x∈Nk(pι)

(
x− b

)
, n

〉
+ k · r2

=
∑

x∈Nk(pι)

〈x− b, n〉2 − 2r

〈 ∑
x∈Nk(pι)

x−
∑

x∈Nk(pι)

b︸ ︷︷ ︸
=k·b−k·b=0

, n

〉
+ k · r2

=
∑

x∈Nk(pι)

〈x− b, n〉2 + k · r2.

Since the first summands do not depend on r, to minimize the expression
E(n, r) is to set r = 0. That is, the barycenter b of Nk(pι) is necessarily a
point in any minimizing plane. Therefore we can alter the minimum least

7

2.1 Review of the Point Based Model Martin Skrodzki

square expression (2.2) to the following

E(n) :=
∑

x∈Nk(pι)

〈x− b, n〉2. (2.4)

Compare this to the usual definition of a tangent plane, e.g. [Bär10]

Definition 1. Let S ⊂ R3 be a regular surface, p ∈ S, then

TpS = {T ∈ R3 | ∃ε > 0, γ : (−ε, ε)→ S, γ ∈ C∞, γ(0) = p, γ′(0) = T}
(2.5)

is called the tangential plane of S in p.

For the sake of simplicity in the smooth case the tangential plane is usually
seen to be placed at the point p, i.e. one considers the affine tangential plane
TpS + p, see Figure 2.1.

Figure 2.1: The affine tangential plane TpS + p on a regular surface S
according to Definition 1.

Now compare Figure 2.1, showing a smooth tangent plane at p ∈ S, to Fig-
ure 2.2, showing a discrete approximation of a tangent plane at pι ∈ P . The
most notable difference here is that the point pι does not lie in the tangent
plane Tι, but the barycenter b̄ of the neighborhood Nk(pι) does.
If we consider the limit of the sample density δ (see Section 2.2.3) and the

8

2.1 Review of the Point Based Model Martin Skrodzki

number of neighbors k both to infinity, then for every γ as in Definition 1 and
for every ε > 0, there are a necessary density δ and a k such that P contains
two points p1 and p2 that have distance less than ε to the endpoints of γ.
Therefore, in the limit, the tangential plane as defined via (2.4) coincides
with the tangential plane from Definition 1.

x

y

z

x1

x2

x4

x3
b

pι

n

Tι

Figure 2.2: Given a point pι and its neighborhood N4(p) = {x1, . . . , x4}
with the corresponding barycenter b. The tangent plane Tι given by (2.4)
includes b and has normal vector n. The points x2 and x4 lie below the plane,
while x1, x3, and in particular pι lie above the plane.

Following [Han10], we define the covariance matrix of a given set of points
to be the following.

Definition 2. Given k vectors x1, . . . , xk of dimension d by xi =
(xi1, . . . , xid)

T and their arithmetic mean x =
∑k

i=1
xi
k

with x = (x1, . . . , xd)
T ,

the empirical covariance of the jth and `th coordinate is given by

sj` :=
k∑
i=1

(xij − xj)(xi` − x`). (2.6)

The matrix S = (sj`)j,`∈[d] is called the empirical variance-covariance
matrix.

Since we will not deal with any other sort of covariance here, we will just
refer to this construction by covariance matrix. As stated in [Han10], the

9

2.1 Review of the Point Based Model Martin Skrodzki

covariance matrix can be computed using the following identity.

Lemma 1. Given k vectors x1, . . . , xk of dimension d by xi = (xi1, . . . , xid)
T

and their arithmetic mean x =
∑k

i=1
xi
k

with x = (x1, . . . , xd)
T , the following

identity holds

(sj`)j,`∈[d] =
k∑
i=1

(xi − x)(xi − x)T . (2.7)

Proof. Expanding one of the summands of the statement, we obtain

(xi − x)(xi − x)T =

 xi1 − x1
...

xid − xd

 · (xi1 − x1, . . . , xid − xd)T

=

 (xi1 − x1)(xi1 − x1) . . . (xi1 − x1)(xid − xd)
...

. . .
...

(xid − xd)(xi1 − x1) . . . (xid − xd)(xid − xd)

Summing up these matrices and considering the entry in column j and row
` it is (

k∑
i=1

(xi − x)(xi − x)T

)
j`

=
k∑
i=1

(xij − xj)(xi` − x`) = sj`.

Now given Nk(pι) = {x1, . . . , xk} the neighborhood of pι and its barycenter
b, utilizing Lemma 1, we denote

Mι :=
k∑
i=1

(xi − b)(xi − b)T (2.8)

the covariance matrix of pι.

Theorem 1. Considering the minimum least squares expression (2.4) and
the covariance matrix Mi of pι as given in (2.8), the following identity holds:

E(n) = nT ·Mι · n. (2.9)

10

2.1 Review of the Point Based Model Martin Skrodzki

In other words Theorem 1 states that any minimal vector n of E(n) is also
a minimum of the quadratic form nT ·Mι · n.

Proof. In our application we will only need the theorem in its three-dimensional
application. However, we will prove it for the d-dimensional case here. In
the proof we will use the following short-hand notation

s(i, u, k) :=
(k − 1)xiu

k
−

∑
j∈[k]\{i}

xju
k

= xiu − bu.

Using this and denoting Nk(pι) = {x1, . . . , xk} as well as n = (n1, . . . , nd)
T ,

we can establish

E(n) =
∑

x∈Nk(pι)

〈x− b, n〉2

=
k∑
i=1

〈xi − b, n〉2

=
k∑
i=1

〈
(k − 1)xi

k
−

∑
j∈[k]\{i}

xj
k
, n

〉2

=
k∑
i=1

〈 s(i, 1, k)
...

s(i, d, k)

 ,

 n1
...
nd

〉
2

=
k∑
i=1

(
d∑
`=1

s(i, `, k) · n`

)2

=
k∑
i=1

∑
u,v∈[d]

s(i, u, k) · nu · s(i, v, k) · nv

=
∑
u,v∈[d]

nu · nv ·
k∑
i=1

s(i, u, k) · s(i, v, k)

=
∑
u∈[d]

nu ·
∑
v∈[d]

nv

k∑
i=1

s(i, u, k) · s(i, v, k)

= nT ·

∑

v∈[d] nv
∑k

i=1 s(i, 1, k) · s(i, v, k)
...∑

v∈[d] nv
∑k

i=1 s(i, d, k) · s(i, v, k)

11

2.1 Review of the Point Based Model Martin Skrodzki

= nT ·

∑k

i=1 s(i, 1, k) · s(i, 1, k) . . .
∑k

i=1 s(i, 1, k) · s(i, d, k)
...

. . .
...∑k

i=1 s(i, d, k) · s(i, 1, k) . . .
∑k

i=1 s(i, d, k) · s(i, d, k)

 · n
= nT ·

∑k

i=1(xi1 − b1)(xi1 − b1) . . .
∑k

i=1(xid − bd)(xi1 − b1)
...

. . .
...∑k

i=1(xi1 − b1)(xid − bd) . . .
∑k

i=1(xid − bd)(xid − bd)

 · n
= nT ·Mι · n.

We now want to use the equality established by Theorem 1 to find an al-
ternative way of computing a minimum to expression (2.4). The following
lemma provides us with the necessary tools.

Lemma 2. Given a real, symmetric matrix A ∈ Rd×d, with smallest eigen-
value λ0, then

min
nTn=1

nTAn = λ0.

Proof. As for Theorem 1, we only need the three-dimensional case of this
lemma in our setting. Nonetheless, we prove its d-dimensional version.
Let A = UDUT be the eigendecomposition of the matrix A, with D a diag-
onal matrix having the eigenvalues of A as entries. We get

min
nTn=1

nTAn = min
uTu=1

uTDu = min
uTu=1

uT ·

 λ1u1
...

λdud

= min

uTu=1

d∑
i=1

λi · u2
i ≥ min

uTu=1

d∑
i=1

λ0 · u2
i

= λ0 · min
uTu=1

d∑
i=1

u2
i = λ0 · min

uTu=1
uTu = λ0.

since λ0 is the smallest eigenvalue of A. Picking n = v0 a unit-length eigen-
vector to the eigenvalue λ0, we establish

min
nTn=1

nTAn = vTo Av0 = λ0v
T
0 v0 = λ0.

12

2.1 Review of the Point Based Model Martin Skrodzki

Using Lemma 1 in the following we denote:

nι := unit length eigenvector to the smallest eigenvalue of Mι. (2.10)

It will define the approximation of the tangent space at pι.
Both [Ale+03] and [Lev04] at this point introduce some higher order projec-
tion. They also approximate a tangent plane by a minimum least squares
equation, but then approximate the smooth surface S by polynomials that
are iteratively refined. We will not get into this here, since for our purposes
the initial approximation of the tangent plane is sufficient.

2.1.3 Isotropic Gaussian Fairing

We will now present the method of isotropic Gaussian fairing using the Lapla-
cian. As in Differential Geometry, the Laplacian will be thought of as the
composition of the div and the ∇ operator. While these can be defined con-
tinuously, here we will have to work with their discrete analogues, just as we
did in Section 2.1.2 concerning tangent spaces.
If we consider a sample point pι, its neighborhood Nk(pι) = {x1, . . . , xk},
and a function f : R3 → R, then the discrete version (∇)|pι of the gradient,
for cιj := pι − xj, is given by

(∇xj)|pι(f) = (f(pι)− f(xj))cιj, (2.11)

and

(∇)|pι(f) =
k∑
j=1

(f(pι)− f(xj))cιj. (2.12)

By introducing a factor 1/k, expression (2.12) would become independent of
the size of the neighborhood of pι. Just as the regular gradient

f : Rn → R, (u1, . . . , un) 7→ f(u1, . . . , un), ∇f =

∂f
∂u1
...
∂f
∂un

 , (2.13)

the discrete version as given in (2.12) points in the (approximated) direction
of largest increase of the function. We will illustrate this concept of the
(∇xj)|pι on a function f : R2 → R in the Figure 2.3.
The div operator at pι with neighborhood Nk(pι) = {x1, . . . , xk} will be
interpreted in the following way. Consider the space Rk, where each xj is

13

2.1 Review of the Point Based Model Martin Skrodzki

Figure 2.3: On the left the usual smooth ∇ in red on a smooth surface S.
On the right the approximation (∇)|pι in red on a point set.

identified with an element ej of an orthonormal basis. Any vector ṽ ∈ Rk

can be mapped to R3 by

π : ṽ =
k∑
j=1

vjej 7→
k∑
j=1

vjcιj = v, (2.14)

with cιj = pι − xj as above. Then the divergence div |pι at pι in direction v
is given by

div v|pι =
k∑
j=1

〈ṽ, ej〉Rk =
k∑
j=1

vj, (2.15)

where the inner product 〈., .〉Rk is the euclidean inner product on Rk, where
the cij are identified with an orthonormal basis. Note that div is only well-
defined on the space Rk, where ṽ can be uniquely decomposed in a linear
composition of the ej. Since the map π is in general neither injective nor
surjective div is in R3 only defined on the image of π and is in general not
well-defined in R3. In fact, as soon as |Nk(pι)| ≥ 4, the decomposition of v
into the cιj is not unique any more. However, note that the discrete gradient
as defined in (2.12) is by definition in the image of π and hence the div
operator can be applied to it. Now compare this to the usual definition of
div, given as

F = (F1, . . . , Fn) : Rn → Rn, (u1, . . . , un) 7→ Fi(u1, . . . , un) ∀i = 1, . . . , n,

14

2.1 Review of the Point Based Model Martin Skrodzki

divF =
n∑
i=1

∂

∂xi
Fi.

A common interpretation of the div operator is that it measures the outgo-
ing flow at a point. That is, divF is the sum of flows in the directions xi.
In a certain sense the discrete operator div v|pι also measures the outgoing
flow, but the flow in a direction v, which needs to be approximated by the in-
formation provided with the neighborhood. See Figure 2.4 for an illustration.

Figure 2.4: On the left a vector field F : (x, y) 7→ (2x, 2y), with divF =
2 + 2 = 4. In the middle a vector field G : (x, y) 7→ (−y, x) with divG = 0.
On the right a point pι and a vector v that is expressed in terms of the
neighborhood of pι, defining the divergence, i.e. the flow of pι in direction v.

As stated above, we now define the Laplace operator ∆ to be the composition
of the∇ operator as defined in (2.12) and the div operator as defined in (2.15)
and obtain the isotropic Laplacian ∆|pι to be

∆|pιf =
∑

xj∈Nk(pι)

(f(pι)− f(xj)). (2.16)

As mentioned above, the discrete ∇ as given in (2.12) could be given a factor
1/|Nk(pι). If we did introduce this factor, we would arrive at the discrete
Laplacian as given in [Des+99] by

∆|pι =
1

|Nk(pι)|
∑
xj∈Nι

xj − pι.

However, this is the same operator as given in [Pau+02] for the choice of
ωj = 1 for all xj ∈ Nk(pι) and ωj = 0 otherwise, which by the authors is
called the uniform umbrella:

∆|pι =
1

Ω

∑
xj∈Nι

ωj(pι − xj), Ω =
∑
xj∈Nι

ωj.

15

2.1 Review of the Point Based Model Martin Skrodzki

Using the same weights as given above, [Her12] also defines the Laplacian
as an umbrella operator in this way. We see that there are several ways to
set up a discrete Laplacian and that the term umbrella operator is used in
several different ways across literature. For this thesis we will use the discrete
Laplacian as defined in (2.16).
In [Des+99], the authors present a diffusion process to reduce noise on meshed
surfaces. It arises from minimizing the functional of the total curvature of a
surface S which in the smooth setting is given by

E(S) =

∫
S

κ2
1 + κ2

2 dS,

where κ1, κ2 are the principal curvatures of S. We will show how to compute
κ1 and κ2 in our discrete setting in Section 2.2. Nevertheless, we follow
[Des+99] in considering a different functional, namely

Emembrane(X) =
1

2

∫
Ω

X2
u1

+X2
u2
du1 du2,

where X denotes a mesh parametrized over Ω. The corresponding variational
derivative is

L(X) = Xu1u1 +Xu2u2 ,

which is the Laplacian. Therefore the diffusion process to eliminate noise is
for a given surface S described by the following PDE

∂S

∂t
= λ∆S. (2.17)

It can be solved using explicit Euler integration which gives the following
iterative formula

Sn+1 = (Id+ λ∂t∆)Sn. (2.18)

Using this formula the smoothness of the surface can be controlled by the
scale parameter λ, the number of iterations and the size of the local neighbor-
hood used in the approximation of ∆. Following [Pau+02], it is recommended
in [LP05] to compute the neighborhood of a point pι only in the first step
and cache it for the following iterations. This not only improves efficiency,
but also prevents clustering effects which might arise by tangential drift of
sample points.

16

2.2 Curvatures of Point Sets Martin Skrodzki

2.2 Curvatures of Point Sets

We will now present the notions of directional curvature and the Weingarten
Map and give approximations of both within the point set setting. The Wein-
garten map, or shape operator, encodes curvature information of a surface.
By approximating the curvature at a point pι we will be able to detect fea-
tures of the original model, present in the point cloud, that are not to be
smoothed by our process, e.g. corners or edges.

2.2.1 Directional Curvatures

In Section 2.1.2 we defined a discrete tangent space. Using this definition,
we can also approximate the notion of directional curvature from differential
geometry. Let S ⊂ R3 be an orientable regular surface with a smooth unit
normal field N and let p ∈ S. Let T ∈ TpS be any unit length vector in the
tangent space at p, γ : (−ε, ε) → S be a curve parametrized by arc length
with γ(0) = p and γ′(0) = T . Then the directional curvature κp(T) is defined
by γ′′(0) = κp(T)N .
If we expand γ(s) into a Laurent series at 0 up to second order, we obtain

γ(s) = γ(0) + γ′(0) · s+
1

2
γ′′(0)s2 +O(s3)

= p+ T · s+
1

2
κp(T)Ns2 +O(s3).

Now we have the equivalences

γ(s) = p+ T · s+
1

2
κp(T)Ns2 +O(s3)

⇔γ(s)− p = T · s+
1

2
κp(T)Ns2 +O(s3)

⇔NT (γ(s)− p) = NTT︸ ︷︷ ︸
=0

·s+
1

2
κp(T)NTN︸ ︷︷ ︸

=1

s2 +O(s3)

⇔2NT (γ(s)− p) = κp(T)s2 +O(s3)

and

γ(s) = p+ T · s+
1

2
κp(T)Ns2 +O(s3)

⇔γ(s)− p = T · s+
1

2
κp(T)Ns2 +O(s3)

⇔〈γ(s)− p, γ(s)− p〉 = 〈T · s+
1

2
κp(T)Ns2 +O(s3), T · s+

1

2
κp(T)Ns2 +O(s3)〉

17

2.2 Curvatures of Point Sets Martin Skrodzki

⇔‖γ(s)− p‖2 = s2 · T TT︸︷︷︸
=1

+sκp(T) 〈T,N〉︸ ︷︷ ︸
=0

+
1

4
κ2
p(T)NTN︸ ︷︷ ︸

=1

s4 +O(s3)

⇔‖γ(s)− p‖2 = s2 +O(s3).

From the last two equalities we get by division

2NT (γ(s)− p)
‖γ(s)− p‖2 = κp(T) +O(s),

which by taking the limit s→ 0 can be transfered into the following formula
for the directional curvature

κp(T) = lim
s→0

2〈N(p), γ(s)− p〉
‖γ(s)− p‖2 . (2.19)

Since we defined a tangent space in Section 2.1.2 and a normal by (2.10) at
each point pι of the point set, we can now define the directional curvature
κιj at pι in direction xj ∈ Nk(pι) by

κιj :=
2〈nι, xj − pι〉
‖xj − pι‖2 . (2.20)

Note that in the smooth setting the direction curvature κp has the following
property.

Theorem 2. The directional curvature κp is a quadratic form and thereby
satisfies the identity

κp(T) =

(
t1
t2

)T (
κ11
p κ12

p

κ21
p κ22

p

)(
t1
t2

)
, (2.21)

where T = t1T1+t2T2 is a tangent vector to S at p, {T1, T2} is an orthonormal
basis of the tangent space to S at p, κ11

p = κp(T1), κ22
p = κp(T2), and κ12

p =
κ21
p .

The vectors {T1, T2} are called principal curvature directions of S if κ12
p =

κ21
p = 0. The corresponding directional curvatures are the principal curva-

tures which in the following will be denoted by κ1
p and κ2

p instead of κ11
p and

κ22
p . For a proof of this theorem see for example [Tho79].

18

2.2 Curvatures of Point Sets Martin Skrodzki

2.2.2 Weingarten Map

We will now divert from [LP05] and follow the approach of [Tau95] to com-
pute a point set estimation of the Weingarten map. In differential geometry,
the Weingarten map, or the shape operator is a linear map Wp : TpS → TpS
defined by

Wp(T) = −∇pN(T),

where N(.) is the Gauss-map and T ∈ TpS some tangential vector. The
actual estimate of the Weingarten map will be given in the next section. At
first we will derive an alternative version of the Weingarten map by writing
it in terms of an integral. Therefore we extend (2.21) to non-tangential
direction. Adding the normal vector N to the orthonormal basis {T1, T2}
of R2, we obtain an orthonormal basis {N, T1, T2} of R3. The extension of
(2.21) is now given by

κp(T) =

 n
t1
t2

T 0 0 0
0 κ1

p 0
0 0 κ2

p

 n
t1
t2

 , (2.22)

where T = nN + t1T1 + t2T2 is an arbitrary vector in R3.
Ultimately we want to approximate the Weingarten map using the point
set. To do this, we will first write it as an integral, which can later be
approximated by a sum. For −π ≤ θ ≤ π let Tθ be a unit length tangent
vector

Tθ = cos(θ)T1 + sin(θ)T2,

with {T1, T2} the orthonormal principal curvature directions of S at p. We
define the symmetric matrix

Wp :=
1

2π

∫ π

−π
κp(Tθ)TθT

T
θ dθ. (2.23)

Since the normal vector N is orthogonal to Tθ, we see that N is an eigenvector
of Wp associated to the eigenvalue 0. Using the fact that {T1, T2, N} is an
orthonormal basis of R3, we can factorize Wp as

Wp = T12

(
w11
p w12

p

w21
p w22

p

)
T T12,

where T12 = [T1, T2] is the 3 × 2 matrix constructed by concatenating the
column vectors T1 and T2 and w12

p = w21
p because of the symmetry of Wp.

19

2.2 Curvatures of Point Sets Martin Skrodzki

Furthermore, by plugging Tθ into (2.22) we obtain

κp(Tθ) =

 0
cos(θ)
sin(θ)

T 0 0 0
0 κ1

p 0
0 0 κ2

p

 0
cos(θ)
sin(θ)

= κ1

p cos(θ)2 + κ2
p sin(θ)2, (2.24)

the Euler formula. Using the decomposition of Wp and the Euler formula we
can now compute

w12
p =

(
1 0

)(w11
p w12

p

w21
p w22

p

)(
0
1

)
= T T1 T12

(
w11
p w12

p

w21
p w22

p

)
T T12T2

= T T1 WpT2

=
1

2π

∫ π

−π
κp(Tθ)T

T
1 TθT

T
θ T2 dθ

=
1

2π

∫ π

−π
(κ1

p cos2(θ) + κ2
p sin2(θ)) · T T1 (cos(θ)T1 + sin(θ)T2)

· (cos(θ)T T1 + sin(θ)T T2)T2 dθ

=
κ1
p

2π

∫ π

−π
cos3(θ) sin(θ) dθ +

κ2
p

2π

∫ π

−π
cos(θ) sin3(θ) dθ = 0,

where both integrals in the last step are 0, because the integrands are point-
symmetric with respect to the origin. But this means that the the other two
eigenvectors of Wp, apart from N , are the two principal curvature directions
T1 and T2. However, the corresponding eigenvalues are not κ1

p and κ2
p, but:

w11
p =

(
1 0

)(w11
p w12

p

w21
p w22

p

)(
1
0

)
= T T1 T12

(
w11
p w12

p

w21
p w22

p

)
T T12T1

= T T1 WpT1

=
1

2π

∫ π

−π
κp(Tθ)T

T
1 TθT

T
θ T1 dθ

=
1

2π

∫ π

−π
(κ1

p cos2(θ) + κ2
p sin2(θ)) · T T1 (cos(θ)T1 + sin(θ)T2)

· (cos(θ)T T1 + sin(θ)T T2)T1 dθ

20

2.2 Curvatures of Point Sets Martin Skrodzki

=
κ1
p

2π

∫ π

−π
cos4(θ) dθ +

κ2
p

2π

∫ π

−π
cos2(θ) sin2(θ) dθ

=
3

8
κ1
p +

1

8
κ2
p.

Using a similar computation we find

w22
p = T T2 WpT2 =

1

8
κ1
p +

3

8
κ2
p.

To summarize, given a matrix Wp as in (2.23), we obtain the principal cur-
vatures at p as functions of the nonzero eigenvalues of Wp by

κ1
p = 3w11

p − w22
p

κ2
p = 3w22

p − w11
p

(2.25)

Note that all computations in this section have been performed in the smooth
setting. In the next section we will give an estimate of the Weingarten map
within the discrete setting.

2.2.3 Estimation of weights and Principal Curvatures

We now translate the integral formula (2.23) into the discrete setting of a
point set. For each point pι ∈ P we approximate the matrix Wι with a
weighted sum over the neighborhood Nk(pι):

Wι =
1

|Nk(pι)|
∑

xj∈Nk(pι)

ωιjκιjTιjT
T
ιj , (2.26)

where for each neighbor xj of pι we define Tιj to be the normalized tangential
part of the vector cιj = pι − xj, that is we project cιj onto the tangent plane
〈nι〉⊥ and normalize by

Tιj =
(I − nιnTι)cιj
‖(I − nιnTι)cιj‖

.

Last the weights ωιj have to be determined in such a way that (2.26) approx-
imates (2.23) correctly.
This will be done by considering the tangential parts of the covariance ma-
trix Mι as defined in (2.8). Just as for the Weingarten map, we express the
covariance matrix in terms of an integral

Mι =
1

2π

∫ π

−π
δθTθT

T
θ dθ,

21

2.3 Anisotropic Mean Curvature Flow Martin Skrodzki

where δθ = δ1 cos(θ)2+δ2 sin(θ)2 is a quadratic form to estimate the density of
the point set in direction Tθ. By performing similar computations as above
we can determine values δ1 and δ2 in terms of the two largest eigenvalues
of Mι. That is, since we defined nι to be the eigenvector to the smallest
eigenvalue. Utilizing the values δ1, δ2 we can define the density in direction
pι − xj in terms of the two largest eigenvectors v1 and v2 of Mι to be

διj := δ1〈Tιj, v1〉+ δ2〈Tιj, v2〉. (2.27)

This expression gives us the density for a regular |Nk(pι)|-gon of radius 1.
In general we do not want points xj ∈ Nk(pι) in a very dense region to have
a larger influence on a pι than those points of the neighborhood from a less
dense region. Hence the weight ωιj of a point xj ∈ Nk(pι) is given by the
density of the sample in direction (pι − xj) and the distance of xj to pι:

ωιj =
1

διj · ‖pι − xj‖
. (2.28)

Therefore we finally obtain

Wι =
1

|Nk(pι)|
∑

xj∈Nk(pι)

1

διj · ‖pι − xj‖
κijTιjT

T
ιj . (2.29)

It is worth noting that the general approach concerning equation (2.26) is the
same in both [LP05] and [Tau95]. However, since [Tau95] works on polygonal
meshes, in that setting it is not necessary to include a density estimation,
since the density can be computed from the volume and angles of the triangu-
lation. Having no such mesh at hand we have followed [LP05] here in giving a
discrete directional density measure. Furthermore note that the eigenvalues
of the derived discrete shape operator (2.29) are the principal curvatures and
the eigenvectors are the principal curvature directions at pι. They will be
crucial in the following section when anisotropic fairing is introduced.

2.3 Anisotropic Mean Curvature Flow

Applying (2.18) with the discrete Laplacian as given in (2.16) has the effect
outlined in Figure 2.5.
To not loose features of the original point set, such as sharp edges, we now
introduce an anisotropic Laplacian ∆A to smooth the point set. In the con-
tinuous case, considering a function ρ : R+

0 × Ω → R, this leads to the
parabolic problem

∂

∂t
ρ− div(A(∇ρε)∇ρ) = f(ρ), in R+ × Ω,

22

2.3 Anisotropic Mean Curvature Flow Martin Skrodzki

Figure 2.5: Smoothing a noised cube with the the process from (2.18) and
the Laplacian as given in (2.16). The picture shows the original noised point
set as well as the smoothed point set after 60, 390, and 890 iterations.

ρ(0, .) = ρ0, on Ω,

∂

∂ν
ρ = 0, on R+ × ∂Ω

for given initial density ρ0 : Ω→ [0, 1], see [PR99] or [CDR00]. The authors
of [PR99] propose a diffusion coefficient

A = G(‖∇ρε‖),

where G : R+
0 → R+ is a monotone decreasing function satisfying certain

properties. The anisotropic Laplacian reduces to the isotropic version in
case of A ≡ 1. We now want to mimic the continuous case in our discrete
setting and define

∆A|pι := div |pι ◦ (Ai · ∇)|pι , (2.30)

where

(Ai · ∇xj)|pι(f) := gιj · (f(pι)− f(xj))(pι − xj),

23

2.3 Anisotropic Mean Curvature Flow Martin Skrodzki

for all xj ∈ Nk(pι) and gιj some function mapping to [0, 1] ⊂ R. With this
definition, the anisotropic Laplacian behaves different for different functions
gιj. For a threshold λ we can e.g. consider

gsharp
ιj =

{
1, if |κιj| < λ,

0, if |κιj| ≥ λ;
(2.31)

gcont
ιj =

{
1, if |κιj| < λ,

λ2

λ2+10(κιj−λ)2
, if |κιj| ≥ λ;

. (2.32)

Now in both cases the anisotropic smoothing prefers neighbors xj of pι that
have curvature κιj less than λ. In the case of (2.31) all other neighbors are
neglected in the computation, while in case of (2.32) neighbors with curvature
greater or equal to λ are only considered to a small extend. That is, if the
neighbor xj lies in a ”flat direction” from pι its influence on pι is higher than
the influence of a neighbor at a ”steep direction”.
As announced at the end of Section 2.2.3 we will now use principal curvatures
in the setting of anisotropic smoothing. In [LP05] three possible ways of
utilizing principal curvature are given. First, the user defines a parameter
called the edge quotient Q. At each point pι of the point set a feature at pι
is to be enhanced, if the quotient qp of the principal curvatures is less than
the chosen parameter, i.e. the condition is

qp :=
κ1
pι

κ2
pι

< Q. (2.33)

A second approach consists of considering the point pι as a feature that is to
be enhanced, if the larger principal curvature exceeds a threshold K. That
is the condition

max{κ1
pι , κ

2
pι} > K. (2.34)

The third and last approach given qualifies a point pι to be a feature of the
sampled surface, if there is some directional curvature exceeding a threshold
D. That is pι is considered a feature to be enhanced if

∃xj ∈ Nk(pι) such that |κιj| > D. (2.35)

Note that all three approaches given by (2.33), (2.34), and (2.35) include the
necessity of choosing a suitable parameter Q, K, or D, respectively. Con-
sidering 2.5 we now present a corresponding series of images in Figure 2.6,
except this the anisotropic Laplacian is used. For better visibility of features,

24

2.3 Anisotropic Mean Curvature Flow Martin Skrodzki

Figure 2.6: Smoothing a noised cube with the the process from (2.18) and
the anisotropic Laplacian as given in (2.30). The picture shows the original
noised cube as well as the smoothed cube after 30, 80, and 150 iterations. The
faces of a triangulation are only shown for better feature visibility and the
triangulation is not used in the actual procedure, where only the underlying
point set is used.

a triangulated geometry is shown, but the algorithm only acts on the under-
lying point set.

As a final remark to this section we would like to emphasize the choice of
a good neighborhood Nk(pι) for each point pι ∈ P . The importance of a
well chosen neighborhood becomes obvious in the following setup. Assume
that we have a smooth point sample of an object. Now we can compute the
neighborhood on this smooth point sample and store it. We add noise to
the point set and obtain a noised sample. When applying the techniques
from this section to this noised sample, we use the stored neighborhood
of the smooth sample instead of computing a neighborhood on the noised
sample. The striking result at this point is that in this admittedly artificial

25

2.3 Anisotropic Mean Curvature Flow Martin Skrodzki

setup, the results are better than in the case where a neighborhood from the
noised sample is used. Figure 2.7 from [LP05] illustrates this. Although this
might be an artificial setup, it still shows the importance of a well chosen
neighborhood and poses the question how to find the ”best” neighborhood
from a noised point set.

whereni denotes the normal vector inpi defined in the last para-
graph. It is worth to mention that the directional curvatureκp is a
quadratic form and satisfies the identiy

κp(eϕ) = e
⊥
ϕ

„
κ11

p κ12
p

κ21
p κ22

p

«
eϕ, (3)

where eϕ =
` cos ϕ

sin ϕ

´
relative to a basis{v1, v2} of TpS with

κ11
p = κp(v1), κ22

p = κp(v2), andκ12
p = κ21

p .

3.2 Weingarten Map
We now rewrite the Weingarten map in integral form where direc-
tional curvatures can be found in the integrand. This integral for-
mula is then approximated by a sum, but one has to be careful since
the sample density in different directions may vary. We takethis
into account by estimating directional densities.

We can choose a basis that diagonolizes the matrix in (3). This
is done by the principal curvature directions. Let us assumethatv1

andv2 are already the principal curvature directions with princi-
pal curvaturesκ1

p andκ2
p. With respect to this basis the Weingarten

mapWp reads as

„
κ1

p 0
0 κ2

p

«
. The task is now to express the Wein-

garten map in integral form, i.e. we have to solve

Wp =
1

2π

Z 2π

o

µϕeϕe
⊥
ϕ ,

whereµϕ = µ1 cos2 ϕ + µ2 sin2 ϕ. This yields

µ1 =
3κ1

p − κ2
p

2
µ2 =

−κ1
p + 3κ2

p

2
.

We denote the mean curvature ofS atp by Hp and getWp in terms
of the directional curvaturesκϕ:

„
κ1

p 0
0 κ2

p

«
=

1

π

Z 2π

0

(2κϕ − Hp)eϕe
⊥
ϕ ,

These computations can also be performed in the ambient
3-space. We now translate this integral formula of the smoothcat-
egory into a discrete formula in the point set setting by estimating
the Weingarten map by

X

pj∈Ni

wijκije
tan
ij e

tan⊥
ij ,

whereNi denotes the neighborhood ofpi, wij are weights that have
to be determined in order to approximate the integral correctly, κij

is the directional curvature inpi in direction ofpj , andetan
ij is the

normalized tangential part of the vectoreij = (pi − pj).
The problem we face now is to estimate the weightswij . We will

cope with this problem by estimating the density of samples in dif-
ferent directions. The approach is to consider the tangential part of
the covariance matrixMi (the covariance matrix encodes the distri-
bution around the barycenter), express it similarly in integral formR 2π

0
δϕeϕe⊥ϕ where we approximate the densityδϕ by the quadratic

form δϕ = δ1 cos2 ϕ + δ2 sin2 ϕ. We obtain

δ1 =
3c1 − c2

2
δ2 =

−c1 + 3c2

2
,

whereci are the eigenvalues of theMi. All computations are similar
to those forµi earlier. If we now denote the normalized tangential
part of an edgeeij by etan

ij and the tangential eigenvectors ofMi by
v1 andv2, we obtain for the densityδij in eij direction

δij =
3c1 − c2

2
〈etan

ij , v1〉 +
−c1 + 3c2

2
〈etan

ij , v2〉

= 2e
tan
ij Mie

tan⊥
ij −

1

2
trace(Mi).

Since we know the result for regular|Ni|-gons of radius1, we have
to normalize, i.e. rescale by a factor2

Ni
. Moreover, since we want

integrative invariance, we have to substitute∆x by
2π‖pi−pj‖

δij
in

a Riemannian sum approximation and are now able to define the
Weingarten mapWi at a vertexpi of the point set:

Wi =
1

π

X

pi∈Ni

4π‖pi − pj‖

|Ni|δij

(2κij − Hi)e
tan
ij e

tan⊥
ij . (4)

Note that this shape operator is a translation of the operator
Taubin [13] derived for polygonal meshes. The major difference in
the point set category is our incorperation of a discrete directional
density measure. This is not neccessary in the mesh setting since
volumes and interior angles of triangles are naturally available to
incorporate directional denseties of the sample.

3.3 Principal Curvatures
The eigenvalues and eigenvectors of our discrete shape operatorWi

are the principal curvatures and principal curvature directions inpi.
They are fundamental in the next section to define the anisotropic
Laplacian and for the anisotropic fairing algorithm we present.

(a) (b) (c)

Figure 3: In contrast to most other sequences we compute in this example the connectivity of the point set from the original uv-parametrized
torus which is for convenience shown with reduced transparency as the underlying surface. Note, the connectivity is calculated from the
original point set of the torus only, and it ignores the uv-mesh. Figures (b) and (c) after 15 respectively 50 iterations show how much of the
original structure can be recovered if only the spatial adjacency of the original unnoised point set is known.

Figure 2.7: A figure taken from [LP05] to illustrate the benefits of using a
neighborhood from a smooth point set. From left to right the noised sample
points and the smoothed point set after 15 respectively 50 iterations.

26

Chapter 3

General idea of neighborhood
computation and Kd-Trees

In Chapter 2 we set a theoretical basis that depended heavily on the notion
of neighborhoods. In this chapter we will in Section 3.1 give an informal
description of a procedure for the computation of nearest neighbors. This
informal description will motivate the inspection of certain data structures, of
whichKd-Trees are presented in Section 3.2 in terms of the underlying theory.
Finally we close this chapter with some remarks on the implementation of
Kd-Trees in Section 3.3.

3.1 General idea of neighborhood computa-

tion

In Chapter 2 all computations did rely on the knowledge of a neighborhood
Nk(pι) for a given sample point pι. A first naive approach for finding the
neighborhood Nk(pι) would be to iterate through all points in the point set
P = {pι | 1 ≤ ι ≤ n} and report the k points closest to pι. This algorithm
has time complexity c(k) · n. Therefore, finding the neighborhoods for all n
points in P would take time O(n2).
In order to obtain a shorter computation time for the neighborhoods, we turn
to the concept of Spatial Indexing. It is much like the index in the back
of a book, which can be used to easily find the page, where a certain notion
occurs. Similarly, a spatial database indexes over points or objects in space,
providing easy access to them without the necessity to go through the whole
database. See [SC03] for an introduction to Spatial Databases and [CZ05]
for applications other than those mentioned in this thesis.
In this chapter and in Chapter 4 we will present three tree-like data struc-

27

3.2 Theory of Kd-Trees Martin Skrodzki

tures, where each internal node and each leaf of the tree represents a region of
the three-dimensional space. Then the general idea of a fast nearest neighbor
computation is outlined in the following algorithm.

Algorithm 1 NearestNeighbor

1: procedure NearestNeighbor(D, pι) //Data structure D, point pι
2: Find the region(s) in D storing pι.
3: Add all neighboring regions to a Stack S.
4: while S is not empty do
5: Pop a region R from S.
6: if R might contain a point closer to pι than the current NN then
7: Consider all points from R as possible NN to pι
8: Replace the current NN if applicable.
9: Add all neighboring regions R′ of R to S.
10: end if
11: end while
12: end procedure

By using Algorithm 1, we expect that in line 6 certain regions are rejected.
Thereby their corresponding neighboring regions will never be examined and
in general, to find a nearest neighbor of a point pι, will not require to compute
the distance to all n points from the point set P . In Section 5.2 we will present
an implementation of Algorithm 1.

3.2 Theory of Kd-Trees

In this section we will present the theory behind the data structure of Kd-
Trees. Since the main idea of a Kd-Tree will be a generalization of Binary
Search to arbitrary dimension, in Section 3.2.1 we will first recall Binary
Search. In the same section we turn to one dimensional Range Searches. We
use them to illustrate the different concepts of balanced Binary Search Trees
and AVL Trees. Having these concepts at hand, in Section 3.2.2 we present
the concept of a Kd-Tree. In this section we will generally follow the presen-
tation of [Ber+08], but we divert from it as its seems necessary. In particular
we immediately consider a Kd-Tree in arbitrary dimension, while [Ber+08]
mostly presents two-dimensional trees. Some texts and illustrations in this
section are taken from [SS]. Note that Kd-Trees are only the first of three
data structures presented in this thesis. See Chapter 4 for the presentation
of two more concepts.

28

3.2 Theory of Kd-Trees Martin Skrodzki

3.2.1 Binary Search and linear Range Search

The concept of Binary Search will be the basis for the following discussion.
Hence we will shortly recall it. Given an ordered list of numbers r1, . . . , rn,
Binary Search either finds a given number q amongst the ri or states that
q 6= ri for all i = 1, . . . , n. A pseudo-code adaption of Binary Search is given
as Algorithm 2, which gives the index i for a query number q or returns −1
if q is not equal to any of the ri.

Algorithm 2 Binary Search

1: procedure BinarySearch(L := {r1, . . . , rn}, q) //ordered ri, query
point q

2: if L is empty then
3: return -1
4: else
5: Median← rbn/2c
6: if Median = q then
7: return bn/2c
8: else if Median > q then
9: return BinarySearch({r1, . . . , rbn/2c−1}, q)
10: else if Median < q then
11: return BinarySearch({rbn/2c+1, . . . , rn}, q)
12: end if
13: end if
14: end procedure

Binary Search on n numbers has a runtime of log(n) and is furthermore an
optimal searching strategy [SW11]. Now Binary Search can also be used to
find all numbers {ri | a ≤ ri ≤ b} for given a, b, by performing Binary Search
on {r1, . . . , rn} twice, with input a and input b and respective output ia and
ib according to Algorithm 2. Now the numbers greater equal a and less equal
b are given by

{ri | a ≤ ri ≤ b} = {ri | ia ≤ i ≤ ib}.

Instead of an ordered list or an array, one might also make use of the data
structure of a balanced Binary Search Tree. While an array or a list need to
be sorted in an initial step to be able to use them in Algorithm 2, a balanced
Binary Search Tree needs to be built from the numbers ri. In the balanced
Binary Search Tree presented in [Ber+08], the numbers r1, . . . , rn are stored
in the leafs of the tree while the queried median values are stored in the

29

3.2 Theory of Kd-Trees Martin Skrodzki

nodes above. For instance consider the set {2, 3, 5, 7, 11, 13, 17} consisting of
the first seven prime numbers. The corresponding balanced Binary Search
Tree is given in Figure 3.1.

7

3 13

2 5 11 17

2 3

α

5 7 11 13

β

Figure 3.1: A balanced Binary Search Tree for the first seven prime num-
bers. Circular shapes denote stored median values, while rectangular shapes
denote stored input numbers ri.

Querying the tree from Figure 3.1 with the region [3, 12] we see that the
nodes and leafs colored light-gray are traversed during the Binary Search for
a = 3 and b = 12. The last number α seen when performing Binary Search
with q = 3 is α = 3. Accordingly the last number β seen when performing
Binary Search with q = 12 is β = 13. In any case it is necessary to report all
numbers between α and β, which are marked dark gray in the figure. They
can be obtained by traversing certain subtrees. Finally it needs to be checked
whether α and β lie in the queried range and they are reported accordingly.
We can formalize this 1-dimensional range query on a Binary Search Tree in
the following algorithm.
We state the correctness of this algorithm in the following theorem.

Theorem 3. Algorithm 3 reports exactly those points from the input tree T
that lie in the queried range [a, b].

Proof. First consider any reported point p. If p is stored at the leaf where the
path to a or b ends, p is tested explicitly for inclusion in the query range in
lines 28 and 39. Otherwise p has been reported in a call of line 22 or line 33.
Assume without loss of generality that p has been added to the result by line
22. Recall that the node vsplit is a splitting node in the sense that the paths
to a and b in the tree T go to the left and right subtree of vsplit respectively,

30

3.2 Theory of Kd-Trees Martin Skrodzki

Algorithm 3 1DimRangeQuery

1: procedure 1DimRangeQuery(T, [a, b]) //Binary Search Tree T , range
[a, b]

2: vsplit ← T.getRoot()
3: while vsplit is not a leaf and (b ≤ value(vsplit) or a > value(vsplit))

do
4: if b ≤ value(vsplit) then
5: vsplit ← vsplit.getLeft()
6: else
7: vsplit ← vsplit.getRight()
8: end if
9: end while
10: //Now vsplit is the node where a and b lie in the left and right subtree

respectively
11: if vsplit is a leaf of T then //vsplit is a leaf of T
12: if value(vsplit) ∈ [a, b] then
13: return value(vsplit)
14: else
15: return NULL
16: end if
17: else//vsplit is an internal node of T
18: Result = ∅
19: v` ← vsplit.getLeft() //Follow a path to a
20: while v` is not a leaf do
21: if value(v`) ≥ a then
22: Add all points from the right subtree of v` to the Result
23: v` ← v`.getLeft()
24: else
25: v` ← v`.getRight()
26: end if
27: end while
28: if value(v`) ∈ [a, b] then Add value(v`) to the Result
29: end if
30: vr ← vsplit.getRight() //Follow a path to b

31

3.2 Theory of Kd-Trees Martin Skrodzki

31: while vr is not a leaf do
32: if value(vr) < b then
33: Add all points from the left subtree of vr to the Result
34: vr ← vr.getRight()
35: else
36: vr ← vr.getLeft()
37: end if
38: end while
39: if value(vr) ∈ [a, b] then Add value(vr) to the Result
40: end if
41: return Result
42: end if
43: end procedure

see Figure 3.2. Since v` and hence its right subtree v`.getRight() lie in the
left subtree of the splitting node vsplit, we have p ≤ value(vsplit). Because the
search path of b goes into the right subtree of vsplit we know p < b. On the
other hand, the search path of a goes into the left subtree of v` and p is in
the right subtree of v`, therefore a < p. It follows that p ∈ [a, b]. Therefore
every reported point p does indeed lie in the queried range [a, b].
Now consider a point p ∈ [a, b] that is stored in the leaf µ of T . Then there
exists a node v of T with maximal depth that is visited by Algorithm 3 and is
an ancestor of µ. Claim: v = µ, i.e. p is reported. Assume for a contradiction
that p is not reported by Algorithm 3. Then v cannot be a node visited in
line 22 or line 33, since all descendants of these nodes are reported. Therefore
v is a node on the search path to a, on the search path to b, or on both paths.
First assume that v is on the search path of a, but not on the search path
of b. Then the search path must go left from v and µ must be in the right
subtree of v, otherwise v would not be the ancestor with maximal depth.
But then µ is included in the call of line 22 and is therefore reported.
The case of v lying on the search path to b and not on the search path to
a is similar, hence we will close by considering the case of v lying on both
the path to a and the path to b. Assume first that µ is in the left subtree
of v. Then the search path of a goes right at v, otherwise v would not be
the ancestor of maximal depth. But then p < a. Similarly, if µ is in the
right subtree of v, the search path of b goes left at v, therefore p > b. Both
contradict to the assumption that p lies in the queried range. Thus all points
in the queried range are indeed reported by Algorithm 3.

Note how it is crucial in Algorithm 3 to traverse many of the inner nodes of

32

3.2 Theory of Kd-Trees Martin Skrodzki

root(T)

vsplit

α = a β 6= bThe subtrees with all leafs reported

Figure 3.2: A Binary Tree T which is queried for values a and b. The value
a is actually stored in a leaf α = a of the tree, while the search path for value
b in T ends in leaf β. Compare [Ber+08].

the tree to determine the output. For example, in Figure 3.1 one can see that
all inner nodes need to be explored in order to find the numbers from the
queried range. To overcome this problem and to compute the output faster
we will use AVL Trees [OW02] instead of balanced Binary Search Trees. In
the case of AVL Trees all nodes and not only the leafs of the tree will store
numbers from the point set. That is, instead of only storing the value of the
median, the median itself is stored in the node and does not appear in the
left nor in the right subtree. The advantage here is a faster reach of certain
nodes since it is not necessary to traverse down to leaf-level anymore. Also
the split nodes only storing median values do not have to be stored any more
hence saving storage. Explicitly, we know that a Binary Tree with n leafs
has n − 1 internal nodes [Sed92]. Therefore, by using AVL Trees instead of

33

3.2 Theory of Kd-Trees Martin Skrodzki

balanced search tree, we can reduce the needed storage by almost one half.
An AVL Tree corresponding to the example from Figure 3.1 is given in Figure
3.3.

7

3 13

2 5 11 17

Figure 3.3: An AVL Tree for the first seven prime numbers.

We will now use the ideas from this section and generalize them to higher
dimensions. In our presentation we will follow [Ber+08], but will divert from
their idea by using AVL Trees rather than balanced Binary Search Trees to
use the mentioned benefits.

3.2.2 Kd-Trees in Dimension d

After having presented the general idea of Binary Search and one-dimensional
range queries, we will now generalize it to an arbitrary dimension d. For the
remainder of this section we will make the following assumption:

Assumption 1. Given a set of points {p1, . . . , pn} ⊂ Rd, denoting by
pi1, . . . , pid the d coordinates of the point pi, we assume that

pik 6= pjk ∀i, j = 1, . . . , n, i 6= j, ∀k = 1, . . . , d. (3.1)

Since this is a very strict assumption, in Section 3.2.3 we will show that it
can be dropped. We just state it here for the sake of simplicity.
For a given set of points P = {p1, . . . , pn} their Kd-Tree is recursively de-
fined. In the first step, the points from P are ordered according to their
first coordinate. By Assumption 1 we know that these first coordinates are
distinct and hence we can find a unique median m1 according to this or-
dering. We introduce a hyperplane h1 = {x ∈ Rd | x1 = m1}. Now we
split the point set P into a ”left” and a ”right” half, according to whether
pi1 ≤ m1 or pi1 > m1, that is the chosen median always lies in the ”left” half
and hence the size of the halves differs by at most one. Now we apply this
same technique to both the left half and the right half, but the median is

34

3.2 Theory of Kd-Trees Martin Skrodzki

now not taken from the ordered first coordinates, but the second coordinates.
Also, the introduced hyperplanes only start at the hyperplane h1 introduced
earlier. When the median is taken from the d-th coordinate, in the next
recursion step, the median will be once again taken from the first coordinate,
i.e. it is taken in cyclic order from the coordinates.
In Figure 3.4 this recursion is illustrated. The first hyperplane h1 splits the
pointset on the x-axis. The second hyperplane splits the left half of the
pointset on the y-axis, but only starts at hyperplane h1 and then goes off
to negative infinity. Since in this case, the points are two-dimensional, the
third hyperplane again splits on the x-dimension.

p1

p2

p3

p4

p5

p6

p7

p8

p1

p2

p3

p4

p5

p6

p7

p8

p1

p2

p3

p4

p5

p6

p7

p8

p1

p2

p3

p4

p5

p6

p7

p8

p1

p2

p3

p4

p5

p6

p7

p8

p4

p3

p2 p1

p5

p8 p6

p7

Figure 3.4: A set of eight points is recursively split with four hyperplanes
that define the corresponding Kd-Tree, which is also shown. Note that the
internal representing p6 has only one child.

Using this recursion ensures that the result is an AVL Tree that stores the
input points corresponding to hyperplanes in its inner nodes, while all other
points are stored in the leafs. To formalize the construction of a Kd-Tree we
state this building procedure in Algorithm 4.

The algorithm uses the convention that the median belongs to the ”left” part
of the hyperplane. For this to still obtain an AVL Tree, the median has to
be defined in the following way.

35

3.2 Theory of Kd-Trees Martin Skrodzki

Algorithm 4 Build Kd-Tree

1: procedure BuildKd-Tree(P,d,δ) //point set P containing points of
dimension d, current depth δ

2: if |P | = 1 then
3: return A leaf storing the single point of P
4: else
5: sd← δ mod d //The dimension where to split P
6: m ← Median of P in the splitting Dimension //Let m bis the

median of P according to the values of the points in dimension sd.
7: H ← {x ∈ Rd | xsd = msd} //The hyperplane H is an axis-parallel

hyperplane containing all points whose sd-th coordinate is equal to the
sd-th coordinate of m.

8: P` ← P ∩ {x ∈ Rd | xsd < m} //All points from P that have sdth
coordinate strictly smaller to the sd-th coordinate of m.

9: Pr ← P ∩{x ∈ Rd | xsd > m}//All points from P that have sd-th
coordinate strictly larger to the sd-th coordinate of m.

10: //Note that because of Assumption 1 there is no other point in P
except m with sd-th coordinate equal to the sd-th coordinate of m.

11: n` ←Build Kd-Tree(P`, d, δ + 1)
12: nr ←Build Kd-Tree(Pr, d, δ + 1)
13: return A node ν storing m, representing H, with n` as left and

nr as right child.
14: end if
15: end procedure

36

3.2 Theory of Kd-Trees Martin Skrodzki

Definition 3. Given points P = {p1, . . . , pn} with pi ≺ pi+1 according to
some total order ≺. Then the median according to the order ≺ is pdn/2e.

Considering Algorithm 4 and following [Ber+08] we can show the next lemma.

Lemma 3. A Kd-Tree for a set of n points uses O(n) storage and can be
constructed in O(n log(n)) time.

Proof. In Algorithm 4 in each recursion step the most time-consuming part
is finding the median. This can be done in O(n), see Chapter 6. Therefore
the building time T (n) of a Kd-Tree satisfies the following recursion

T (n) =

{
O(1), if n = 1,

O(n) + 2 · T (dn/2e), if n > 1,

which solves to T (n) = O(n log(n)) [SW11].
Note that one can also find the median by initially sorting d lists according
to one of the d dimensions respectively and passing on the sorting to the
recursion steps. The initial sorting takes O(n log(n)) time and splitting the
sorting to pass it on takes O(n) time which subsumes the proven bound.
Concerning the storage bound, each point pi from the input point set is stored
in either an internal node or a leaf, hence to store the n input points takes
O(n) storage.

3.2.3 Generalization to finite d-dimensional point sets

In practical applications, Assumption 1 is generally not satisfied. Therefore
we need to be able to drop this assumption and still be able to perform
Algorithm 4. From the description in Section 3.2.2 we know that Assumption
1 is necessary to assure that a median can be found on any dimension. In
order to overcome this, we turn to the concept of General Points as introduced
in [Ber+08].

37

3.2 Theory of Kd-Trees Martin Skrodzki

Definition 4. Consider a given point p ∈ Rd, with coordinates p1, . . . , pd.
The corresponding i-th composite coordinate p′i is the cyclic concatenation

p′i = (pi|pi+1| . . . |pd|p1| . . . |pi−1). (3.2)

The General Point p′ corresponding to p is

p′ =

 p′1
...
p′d

 . (3.3)

Two composite coordinates a′ = (a1| . . . |ad), b′ = (b1| . . . |bd) are ordered
lexicographically, that is

a′ < b′ :⇔ ∃j ∈ {1, . . . , d} s.t. aj < bj and ak = bk ∀1 ≤ k < j. (3.4)

Note that p′i from the definition can be seen as a row-vector with d entries and
p′ can be interpreted as a d× d matrix. Using this lexicographical order, we
can find the median of a point set according to a given dimension. Since the
composite coordinates as defined in (3.2) carry the original point coordinate
of the given dimension as first item, by ordering lexicographically, we ensure
that the desired order is kept intact. Therefore by using General Points
instead of the points in the input set we can weaken Assumption 1 to the
following.

Assumption 2. Given an input point set {p1, . . . , pn} ⊂ Rd, we assume that

pi 6= pj ∀i, j = 1, . . . , n, i 6= j. (3.5)

To wrap up things so far, consider the points p, q, and their corresponding
General Points.

p =

 2
3
5

 , p′ =

 2|3|5
3|5|2
5|2|3

 , q =

 2
7
10

 , q′ =

 2|7|10
7|10|2
10|2|7

 ,

38

3.3 Implementations Martin Skrodzki

Note that the points p and q violate Assumption 1, but satisfy Assumption
2. Considering the first dimension, we can establish the ordering

2|3|5 < 2|7|10

according to the lexicographical order as defined in (3.4).
To end this chapter, note that in an explicit implementation of a Kd-Tree
Assumption 2 can be dropped by telling apart two points with identical coor-
dinates. We will explain an approach to this in Section 3.3.1. Furthermore,
although Definition 4 suggests that for each point p of the input a matrix
p′ would have to be stored, this is not the case. In Section 3.3.1 we will
show how this problem can be solved by using a lexicographical order on the
input points. Furthermore note that we did introduce one-dimensional range
queries in Section 3.2.1 but did give a generalization on Kd-Trees. That is
not to say that higher dimensional range queries can not be performed on
Kd-Trees, but they are not necessary for our applications as given in Chapter
2. The interested reader can find a description of higher dimensional range
queries in [Ber+08]. Finally note that if a Kd-Tree is stored in external
memory with e.g. each node in its own page, then for each node a disk I/O
has to be performed. This problem can be overcome as outlined in [Pro+03].

3.3 Implementations

In this section we want to briefly present how the concepts introduced in
Section 3.2 are implemented. For all implementations in this thesis, we will
use the JavaView framework, see [Pol+]. Benchmarks on the different im-
plementations are given in Chapter 8.

3.3.1 Lexicographical Order

As presented in Section 3.2.3 to be able to apply the data structure of Kd-
Trees, we need to impose an order on the points pι ∈ P such that we can
uniquely determine a median according to a given dimension k. An appropri-
ate order is given in Definition 4. For our implementation we will make use
of the generic Java interface Comparator<T> as documented in [Ora]. Since
our implementation will be based on JavaView and thus uses the correspond-
ing class PdVector for d-dimensional vectors, our Comparator implementa-
tion will be Comparator<PdVector>. The only essential values to store are
the dimension of the PdVectors which are to be compared, as well as the
startDimension, that is the dimension in which the median for the building
process of the Kd-Tree is searched.

39

3.3 Implementations Martin Skrodzki

By definition of the Comparator<T> interface, the only necessary function of
a Comparator<T> implementation is the compare(T arg0,T arg1) method
which is to return

compare(a, b) =

−1 if a < b,

1 if a > b,

0 if a = b.

Recall that by Assumption 2 we want to have all points distinct. In fact we
will realize the compare function in a way such that even two PdVectors p, q
that agree in all coordinates are considered to be distinct in the sense, that
one of them in our order will be smaller than the other. To achieve this, we
evaluate the hash code of the object, which is a stable value throughout all
computations. Thereby we can even drop Assumption 2. The general idea
of the compare function is given in Algorithm 5 and the whole class Java im-
plementation is given in Appendix B. The outlined Comparator<PdVector>

will be used in the following.

Algorithm 5 Compare

1: procedure Compare(p,q) //Points p and q
2: for int i = 0;i < d;i++ do
3: dim←(startDimension+i) mod dimension
4: if pi < qi then return -1
5: else if pi > qi then return 1
6: end if
7: end for
8: if p.hashCode()< q.hashCode() then return -1
9: else if p.hashCode()< q.hashCode() then return 1
10: end if
11: return 0
12: end procedure

3.3.2 Abstract Kd-Tree

When implementing the Kd-Tree within the JavaView framework, we can
make use of the different polymorphic abilities of the Java language as e.g.
presented in [Fla98]. A Kd-Tree will, independent of the way it is build,
provide an implementation of the methods outlined in Section 3.1 and ex-
plained in Chapter 5. To realize this, we will implement an abstract Kd-Tree

40

3.3 Implementations Martin Skrodzki

incorporating all features for nearest neighbor search as given in Chapter 5.
Although the abstract Kd-Tree already provides a root variable to access
its root node, it does not provide a constructor, which has to be provided
by the extending class. In order to assure that the user of the abstract class
actually implements a constructor, we introduce the item given in Listing
3.1.

1 /∗∗ This methods c r ea t e s a KdTree from the g iven s e t o f
po in t s .

2 ∗ I t has to be implemented by the c l a s s implementing t h i s
3 ∗ a b s t r a c t c l a s s .
4 ∗ @param po in t s The s e t o f po in t s to be repre sen t ed by the
5 ∗ KdTree .
6 ∗/
7 protected abstract void bui ldTree (PgPointSet po in t s) ;

Listing 3.1: An abstract method to force the user of the class
to implement a constructor-like method. Note that this method
still needs to be called by the user in the constructor of the class
implementing the abstract Kd-Tree.

Apart from the stated method in Listing 3.1, the abstract Kd-tree provides
the methods listed in Listing 5.1. They are either generic or related to the
procedure of finding nearest neighbors and hence will be explained in Section
5.3.

3.3.3 Sorting

During the process of building a Kd-Tree, the median of the point set ac-
cording to a given dimension has to be determined. This can be done quite
trivially by sorting the set using the lexicographical comparator presented
in Section 3.3.1. Assume that the point set is sorted using the correct order
and has n elements, then the median is the bn/2cth element. We could now
in each recursion step sort the considered subset. However, we aim for a
slightly more elaborate approach.
Assume that the Kd-Tree is to handle d-dimensional data. Then the idea is
to initially create d lists L1, . . . , Ld, each containing the whole point set and
each list Li is sorted using Algorithm 5 on startDimension i. Now when the
median m is to be determined on dimension j, we easily find it as the bn/2cth
element of the list Lj. For the recursion step, each list Li, i 6= j, has to be
partitioned in a way such that all bn/2c elements smaller than m are put in
front of the median and allbn/2c elements larger than m are stored behind
the median in Li. Here, ”smaller” and ”larger” refer to the order induced
by Algorithm 5 with startDimension j. However, the elements on Li are
moved in a way such that any two points below the median are still ordered
according to the order obtained with startDimension i. We formalize this

41

3.3 Implementations Martin Skrodzki

in Algorithm 6. The whole class implementation is given in Appendix C.
Finally note that if storage was an issue we could in this procedure also store
the indices of points in the list and work on them.

3.3.4 Median

Sorting of a list containing n elements can be done inO(n log(n)), see [SW11].
However, we will see in Chapter 6 that sorting is not the fastest way to
determine the median. Hence apart from a Kd-Tree implementation that
simply sorts its points to build it, we also offer an implementation that
actually computes the median from the list in each recursion step. The
advantages are obvious: We have no need for storing a list for each dimension,
but we only need to work on the original point cloud. Also the overhead of
sorting the lists, as outlined in the previous section, is unnecessary. Since we
do not want to settle for a particular median algorithm at the start, we use
the strategy design pattern as given in [Gam+94]. That is, we provide an
interface for a median algorithm as shown in Listing 3.2 and provide the Kd-
Tree during its building process with an instance implementing this interface.
See Chapter 6 for the offered instances.

1 public interface IMedianAlgorithm {
2 public PdVector median (PdVector [] po ints , int dim) ;
3 }

Listing 3.2: Interface to use the Strategy design pattern for median
computation

The whole code of the Kd-Tree class using median computation is given in
Appendix D. Note that computing the median still requires partition on the
point set to be able to recursively find medians on the lower and upper halves.
However, only one partition has to be performed and not dimension many
partitions as in Section 3.3.3.

42

3.3 Implementations Martin Skrodzki

Algorithm 6 Build Kd-Tree Sorting

1: procedure BuildSorting(P ,d) //Point set P of dimension d
2: for int i = 0;i < d;i++ do
3: Create a List Li to hold all points from P and sort it lexicograph-

ically with start dimension i.
4: end for
5: RecursiveBuild(L1, . . . , Ld,0,0,|P | − 1)
6: end procedure
7:

8: procedure RecursiveBuild(L1, . . . , Ld,j,s,e)//Sorted Lists Li, cur-
rent dimension j, start index s, end index e

9: if e < s thenreturn NULL
10: else if s = e thenreturn Leaf storing the Lj(s).
11: end if
12: mi ← b(s+ e)/2c //index of the median
13: m← Lj(mi) //find the median
14: for all Lists Li, i 6= j do
15: Partition(Li,m,j,s,e)
16: end for
17: `← RecursiveBuild(L1, . . . , Ld,j + 1 mod d,s,mi − 1)
18: r ← RecursiveBuild(L1, . . . , Ld,j + 1 mod d,mi + 1,e)
19: return Node storing m with left child ` and right child r
20: end procedure
21:

22: procedure Partition(Li,m,j,s,e)//List Li ordered on dimension i, me-
dian m obtained in order on dimension j, start and end index s and e

23: Create a queue Q
24: k ← s
25: for all points p in Li from s to e do
26: if p <j m then//Compare using Algorithm 5
27: p is stored at position k in Li and k ← k + 1.
28: else if p >j m then//Compare using Algorithm 5
29: Add p to Q.
30: end if
31: end for
32: Place m at index b(s+e)/2c in Li, put all elements of Q to the places
b(s+ e)/2c, . . . , e in Li, keeping their order from Q.

33: end procedure

43

3.3 Implementations Martin Skrodzki

44

Chapter 4

Two more Spatial Data
Structures

In Chapter 3 we introduced the general idea of neighborhood computation
on spatial data structures. We did also introduce the data structure of a
Kd-Tree. In this chapter, we will present two more data structures that are
used in similar applications as the Kd-Trees. For both present structures we
will reason why they are inferior to Kd-Trees in our application.

4.1 Quadtree and Octree

Quadtrees are spatial data structures that split a d-dimensional space recur-
sively into 2d equally sized cells. In the three dimensional case they are also
called Octrees. Since the generalization to the third dimension is straight
forward, we will present it along the way of giving the concept for two di-
mensions.
Given a point set P , the construction of a two-dimensional quadtree starts
with a bounding square around P , which will be the initial cell of the
quadtree. Recursively, each cell is subdivided into four equally sized square
cells until every cell of the Quadtree only contains one point pι of the input
set P . In the two-dimensional case, the cells are usually labeled according to
the respective cardinal direction, i.e. North-East (NE), North-West (NW),
South-West (SW), and South-East (SE). For Octrees and higher dimensional
Quadtrees, the cells are usually numbered, as shown in Figure 4.1.

This procedure gives a tree, where the root corresponds the initial bounding
square. Each internal node now has four children, corresponding to the four
equally sized square cells that the cell corresponding to the considered node

45

4.1 Quadtree and Octree Martin Skrodzki

Figure 4.1: The labeling of a Quadtree and an Octree, cf [Bri05] and [Eri05].

is split up into. The leafs of the tree either represent a point from the input
set P or are empty. An example for a Quadtree and its building process is
given in Figure 4.2.

1
2

3
45

6
7

8

9

NW
NE SW

SE

5

9 6 7 8 4 2

3 1

Figure 4.2: A set of nine points is recursively put into a Quadtree data
structure. The final Quadtree is also shown. Note how some of the leafs are
empty and the tree is not balanced. Compare to [Bri05].

For a more thorough introduction see [Bri05] and for implementation detail
see [Eri05]. For details on nearest neighbor procedures on Quadtrees see

46

4.2 R-Tree Martin Skrodzki

[Vai89]. From the example in Figure 4.2 it already becomes obvious that
an Octree is not balanced. On the contrary, for any distribution of points
apart from a uniform distribution, we expect an Octree to be unbalanced.
The difference of depth of certain leafs can be arbitrary high already for an
Octree on three points. To see this consider the points

p1 =

(
1

4
,
1

4

)
, p2 =

(
2k+1 − 3

2k+1
,
2k+1 − 1

2k+1

)
, p3 =

(
2k+1 − 1

2k+1
,
2k+1 − 3

2k+1

)
.

(4.1)

For k ∈ N, k ≥ 1, the Quadtree representing these three points has height k.
For an illustration see Figure 4.3. Although this is a theoretical example and

k = 1 k = 2 k = 3 k = 4

Figure 4.3: From left to right: Different Quadtrees for the points p1, p2, p3

as given in (4.1) for values k = 1, 2, 3, 4. Note how the Quadtree has exactly
depth k in each illustration.

in terms of our application as outlined in Chapter 2 these extreme behaviors
of a Quadtree will not arise, we still dismiss the concept of the Quadtree in
favor of Kd-Trees which are always balanced.
To end this section on Quadtress note that they do possess a big advantage
over Kd-Trees. Namely insertion and deletion of points can be efficiently
done in a Quadtree, while a Kd-Tree in general has to be re-built. However,
in the application given in Chapter 2 we do not need our data structure to
change, since we fix a neighborhood at the beginning of the computation and
do not change it throughout the algorithm, see Section 2.1.3.

4.2 R-Tree

The indexing structure of R-Trees has been proposed by [Gut84]. It is a
generalization of B-Trees [Com79]. By design the R-Tree is to handle a
spatial database, which consists of index record entries of the form

((pmin, pmax), id),

47

4.2 R-Tree Martin Skrodzki

where the pair pmin, pmax ∈ Rn defines an n-dimensional rectangular bounding
box containing a spatial object O and id is an identifier for O. Note here
that for O = p ∈ Rn a single point, p can be stored in the degenerated
hyper-rectangle pmin = pmax. While the records introduced above are stored
in the leafs of an R-Tree, the internal nodes store similar records

((pmin, pmax), child),

where the pair pmin, pmax ∈ Rn again defines an n-dimensional rectangular
bounding box and child is a pointer to a child of the internal node. The key
properties of an R-Tree are given by [Gut84] to be

1. Every leaf of the R-Tree stores between m and M many records unless
it is the root.

2. For each record ((pmin, pmax), id) in a leaf node, (pmin, pmax) is the small-
est hyper-rectangle that contains the object O identified by id.

3. Every internal node has between m and M many children unless it is
the root.

4. For each record ((pmin, pmax), child) in an internal node, (pmin, pmax) is
the smallest hyper-rectangle that contains all rectangles in the given
child node.

5. The root has at least two children unless it is a leaf.

6. All leafs appear on the same level.

Note that the hyperrectangles of internal nodes and leafs can be pairwise
overlapping. An illustration of the R-Tree concept is provided in Figure 4.4.

R-Trees provide search algorithms that output all ids whose rectangles over-
lap with a search rectangle (smin, smax). Furthermore new objects can be
inserted into the tree and objects from the tree can be deleted. In the first
case nodes might be split to satisfy they have between m and M many chil-
dren. Different splitting strategies and a full description of the algorithms on
R-Trees can be found in [Gut84], [GUW02], as well as in [SC03] where also
different models as R+-Trees and R*-Trees are discussed. For an explicit
description about a nearest neighbor algorithm using R-Trees, see [RKV95].
In [Els+12] several data structures are compared according to their per-
formance on nearest-neighbor search strategies. The authors come to the
following conclusion:

48

4.3 Choice of a Data Structure, Curse of Dimensionality Martin Skrodzki

The R-tree library SpatialIndex performs about on par to the
STANN library. Both were generally slower than the Kd-Tree
implementations.

Therefore we dismiss R-Trees as possible data structures for our application
as outlined in Chapter 2. It is also worth mentioning [Jun11], where it is
shown that on the chosen benchmark example of the thesis, a static Kd-Tree
performs 221, 608 writing operations while the R-Tree from [Gut84] performs
1, 539, 451 writing operations during the same example.

4.3 Choice of a Data Structure, Curse of Di-

mensionality

In Sections 4.1 and 4.2 we gave reasons for our choice to pick the data struc-
ture of a Kd-Tree over a Quadtree or an R-Tree. Our reasoning was mostly
based on assumptions and experimental data as presented in [Els+12]. At
this point we would like to pose the question:

For a set of points P in dimension d, what is the fastest data
structure to use in order to perform nearest neighbor queries on
P?

Sadly, there is no final answer to this question. This is mainly because the
dimension here is variable. That is to answer the question above we would
need to find a data structure that behaves good independent of both the
dimension of the ambient space and the dimension of the embedded point
set. However, as dimension grows, new phenomena can be observed. For
example it was shown in [Bey+99] that

assuming the distance distribution behaves a certain way (...) the
difference in distance between the query point and all data points
becomes negligible.

In other words, if dmax = maxpi,pj∈P ‖pi − pj‖ and dmin = minpi,pj∈P ‖pi − pj‖,
then

lim
d→∞

dmax

dmin

→ 1

for certain conditions on the distribution of the pi and the size of P as given
in [Bey+99]. This has an immediate effect on the nearest neighbor procedure
as outlined in 3.1. The advantage of the procedure lies in an expectedly large

49

4.3 Choice of a Data Structure, Curse of Dimensionality Martin Skrodzki

cut off of points from P , i.e. we hope not to have to consider all points of P ,
but only a certain subset. As the fraction dmax−dmin

dmax
becomes smaller, less and

less points from P can be cut off and have to be considered when looking for
nearest neighbors.
Another effect of high dimensions is the formation of so called hubs in the
point set P . A hub is a point pι ∈ P that appears as a nearest neighbor to
unusually many points xj ∈ P . For a formal description of the phenomenon
see [RNI10]. It is interesting since it can be shown to be an inherent property
of data distributions in high-dimensional vector space and thus also appears
in real-world data. The emergence of hubs with growing dimension strongly
effects the structure of the directed k-nearest-neighbor-graph and thereby
has a strong impact on any algorithm for k nearest neighbor search.
Because of the presented reasons we are not able to give one analysis that
once and for all settles the question for a best suited data structure for nearest
neighbor computation on point sets. This explains why we have to retreat
to experimental data in our reasoning about the choice of a data structure.

50

4.3 Choice of a Data Structure, Curse of Dimensionality Martin Skrodzki

Figure 4.4: An R-Tree in R2 and the corresponding rectangles. The dot-
ted drawn rectangles correspond to internal nodes of the R-Tree, while the
fully drawn rectangles are rectangles storing the actual objects. In R8 the
corresponding object is shown. See [Gut84].

51

4.3 Choice of a Data Structure, Curse of Dimensionality Martin Skrodzki

52

Chapter 5

Nearest Neighbor Search

In Chapter 3 we gave the general idea of nearest neighbor computation in
Algorithm 1. In this chapter we will now use this idea, to set up a Nearest
Neighbor Search algorithm on Kd-Trees. Recall that nearest neighbor com-
putation can be naively done by just iterating over all points. This leads to
the following algorithm. Note that we do not require the input point to be

Algorithm 7 Naive Nearest Neighbor

1: procedure NaiveNearestNeighbor(P = {xj | j = 0, . . . , n − 1},p)
//point set P , point p, not necessarily element of P

2: min← x0

3: for j = 0; j = |P | − 1; j + + do
4: if ‖p− xj‖ < min then
5: min← xj
6: end if
7: end for
8: return min
9: end procedure

an element of the point set P . We will maintain this throughout the chap-
ter. However, in the practical application outlined in Chapter 2 we want
to query for nearest neighbors of a point pι ∈ P and we do not want pι to
be reported as the nearest neighbor. We will describe solutions to this in
Section 5.3. Finally keep in mind that Algorithm 7 has a runtime of O(n),
that is, determining a nearest neighbor for each point xj of the point set
P takes O(n2). In the remainder of the chapter we want to give two more
algorithms on how to compute nearest neighbors. The first will be given in
Section 5.1 and will be using Principal Component Analysis. The second will
be given in Section 5.2 and will be a realization of the general idea outlined

53

5.1 Nearest Neighbor using PCA Martin Skrodzki

in Algorithm 1. We will then explain how that realization is implemented in
JavaView, which will be done in Section 5.3 and finally in Section 5.4 we try
to modify the Kd-Tree slightly to obtain even better results for the nearest
neighbor algorithm.
Before we get into the algorithms note, that these algorithms will determine
ε− k−neighborhoods. That is, as described in Section 2.1.1, given a queried
point pι of a point set P : The intersection of P ∩ Bε(pι) and the k sample
points from P closest to pι. To find the nearest neighbor, it suffices to set
k = 1 and ε to e.g. the diameter of the axis aligned bounding box of P .

5.1 Nearest Neighbor using PCA

The following approach to a computation of nearest neighbors uses Princi-
pal Component Analysis (PCA) as given e.g. in [Han10]. We first give a
description of the procedure, than formalize it as Algorithm 8. A JavaView
implementation is given in Appendix A.
Given a point set P , we will compute the eigenvalues and eigenvectors of
the covariance matrix of P as defined in (2.8), except we take the sum over
all points in P , not only over a neighborhood of a fixed point. The unit
eigenvector a1 to the largest eigenvalue λ1 of the covariance matrix is the
direction of largest variance in P . The unit eigenvector a2 to the next largest
eigenvalue λ2 is the direction of largest variance in P amongst all those vec-
tors orthogonal to a1. In general ai, the unit eigenvector to the ith largest
eigenvalue is orthogonal to a1, . . . , ai−1 and under this condition gives the
direction of largest variance in P .
In our setting in R3, there will be three principal directions a1, a2, a3. The
vertices of P are now ordered in three lists L1, L2, L3 according to their po-
sition regarding the principal directions. We now iterate through all vertices
pι ∈ P . For a start we determine the smallest index min1 such that the
distance of the points L1(min1) and pι in direction a1 is less or equal to ε.
For the lists L2 and L3 we determine indices min2, min3, max2, max3. In-
dicating the range of points whose distance to pι on the direction a2 and a3

respectively is less or equal than ε.
Finally, we iterate over all indices starting at min1. If we come to an index
whose point has larger distance to pι on the direction a1 than ε, there are no
more points to consider. For all points that we consider before running into
this break, we need to check whether their corresponding index on L2 and
L3 lies in [min2,max2] and [min3,max3] respectively. If so, the only thing
left to do is compute the actual euclidean distance of the point to pι, if it is
smaller than ε, the point is added to the list of neighbors. A last thing to

54

5.1 Nearest Neighbor using PCA Martin Skrodzki

do, after the break condition of the iteration is reached, is to check, whether
the list of neighbors contains more than k points and if so, trim it accordingly.

Algorithm 8 Nearest Neighbor using PCA

1: procedure NearestNeighborPCA(P = {xj | j = 0, . . . , n− 1}, ε, k)
//point set P , influence ε, max. valence k

2: M ←computeCovariance(P)
3: [a1, a2, a3]←computeEigenvectors(M)
4: for j = 0, . . . , n− 1 do
5: Li.add(〈xj, ai〉), i = 1, 2, 3
6: end for
7: Sort(Li), i = 1, 2, 3//Order the points on the principal directions
8: for ι = 0, . . . , n− 1 do //Find NN for all points pι
9: mini ← min{j | Li(j) ≤ ε}, i = 1, 2, 3
10: maxi ← max{j | Li(j) ≤ ε}, i = 2, 3
11: for h = min1, . . . , n− 1 do
12: if ι < j and L1(h)− L1(ι) > ε then
13: Break the for loop
14: end if
15: if (Index of xj in L2 < min2 or > max2) or (Index of xj in L3

< min3 or > max3) then
16: Continue with the next iteration in the for loop
17: end if
18: d← ‖pι − xj‖
19: if d > ε then
20: Continue with the next iteration in the for loop
21: end if
22: neigh.add(xj)
23: end for
24: if Length(neigh)> k then
25: Trim neigh to size k keeping the k points closest to pι.
26: end if
27: end forreturn neigh
28: end procedure

This algorithm will serve as a benchmark in Chapter 8 for the procedures of
the following section.

55

5.2 Nearest Neighbor Search using Kd-Trees Martin Skrodzki

5.2 Nearest Neighbor Search using Kd-Trees

In Section 3.1 we already gave a general idea on how data structures can
speed up the procedure of finding nearest neighbors. We will now make this
explicit for the data structure of Kd-Trees. In our presentation we follow
[Moo91], but divert slightly, since [Moo91] considers Kd-Trees to be Binary
Trees, while we work on AVL Trees.
The algorithm works recursively. Given a query point pι it traverses the Kd-
Tree to the leaf that would store the point pι, if it was stored in a leaf of the
tree. Note that this leaf is uniquely determined since the leafs of the Kd-Tree
partition the whole space. Already during this traversal, the points xj from
the internal nodes are stored as possible candidates for nearest neighbors of
pι, if they satisfy ‖xj − pι‖ < ε. However, only k points are stored in an order
corresponding to increasing distance to pι. In case of a (k+1)-th point being
added, the point xj that has largest distance to pι, amongst the possible
nearest neighbor candidates, is deleted from the candidate list. Once the leaf
representing the region, where pι lies, is reached, the point of the leaf is also
stored as a possible candidate. The tree is traversed back to the root, where

• at each internal node v the following check is performed. If in the list
of current candidates for nearest neighbors less than k elements are
stored, or the distance of pι to the hyperplane represented by v is less
than the distance of pι to the furthest point from the current candidate
list. That is, the other side of the hyperplane is examined if and only
if the list still needs points or the other side of the hyperplane might
contain a point closer to pι than some element from the current list. If
the check is done successfully, the subtree on the other side of the node
is inspected recursively.

• at each leaf ` the point x` stored in ` is added if the current candidate
list does not have k points yet, or ‖x` − pι‖ < ‖xj − pι‖ where xj is
the point from the current candidate list that is furthest from pι.

Note that the recursive traversal of a subtree of the Kd-Tree is performed in
the same as the whole procedure is: At first the algorithm traverses to the
leaf closest to pι and then goes back to the root of the subtree, performing
the check outlined above. We give an example of this procedure in Figures
5.1 to 5.6 for the search of one neighbor in R2 with an ε such that all given
points are within influence radius. Figure 5.1 shows a set of seven points in
R2 and their corresponding Kd-Tree as well as the queried point p for which
we search a nearest neighbor.

56

5.2 Nearest Neighbor Search using Kd-Trees Martin Skrodzki

p1

p2

p3

p4

p5

p6

p7

p

p4

p3

p2 p1

p7

p5 p6

Current best: ∅

Figure 5.1: Initial point set and its Kd-Tree with the query point p.

Figure 5.2 shows how, according to our procedure, we start to traverse the
Kd-Tree at its root, p4, which is stored as currently closest point to p.

p1

p2

p3

p4

p5

p6

p7

p

p4

p3

p2 p1

p7

p5 p6

Current best: p4

Figure 5.2: Root is examined and stored as nearest neighbor.

Figure 5.3 illustrates how the traversal continues in the direction of p, that
is to the left side of the hyperplane of p4 and considers the point p3, which
is closer to p than p4 and is hence the new nearest neighbor.

In Figure 5.4 we see the initial traversal coming to an end at the leaf of the
Kd-Tree storing p1. The procedure considers p1, but keeps p3 as currently
closest neighbor to p.

The traversal is now reversed and the hyperplane at p3 is examined, see
Figure 5.5. Since the distance of p to the hyperplane at p3 is smaller than
the distance of p to its currently nearest neighbor, p3, the other side of the
hyperplane is also considered. But the only node in the other subtree is p2,
which is further to p than p3, hence p3 is kept as nearest neighbor.

57

5.2 Nearest Neighbor Search using Kd-Trees Martin Skrodzki

p1

p2

p3

p4

p5

p6

p7

p

p4

p3

p2 p1

p7

p5 p6

Current best: p3

Figure 5.3: Traversal continues to p3 which is new nearest neighbor.

p1

p2

p3

p4

p5

p6

p7

p

p4

p3

p2 p1

p7

p5 p6

Current best: p3

Figure 5.4: Traversal stops in leaf p1, but keeps p3 as nearest neighbor.

p1

p2

p3

p4

p5

p6

p7

p

p4

p3

p2 p1

p7

p5 p6

Current best: p3

Figure 5.5: In the internal node p3, its subtree containing p2 is examined,
but p2 is further from p than p3.

In the last Figure 5.6 we see that the traversal reached the root of the Kd-
Tree again and examines the corresponding hyperplane at p4. But since this
hyperplane is further from p than its current nearest neighbor, the whole
subtree to the right of p4 is not examined anymore and recursion comes to a
halt reporting p3 as nearest neighbor of p.

As we saw in the example, the big advantage of the procedure outlined is
that under the right circumstances a whole subtree can be discarded from

58

5.2 Nearest Neighbor Search using Kd-Trees Martin Skrodzki

p1

p2

p3

p4

p5

p6

p7

p

p4

p3

p2 p1

p7

p5 p6

Current best: p3

Figure 5.6: The right subtree of p4 is rejected since the hyperplane through
p4 is further from p than the current nearest neighbor p3.

the search. In general, if |Nk(pι)| is small compared to |P | we expect to be
able to discard many subtrees from the search. We make the description of
our procedure explicit in Algorithm 9.

Note that in line 21 we do not have to check whether the hyperplane of r has
distance less than ε to p, since this follows by transitivity from the condition
in place and the fact that ‖L.furthest− p‖ < ε by definition of L.
The only question remaining now is about the runtime of Algorithm 9. For
this discussion we will consider the simplified case of k = 1 and ε large
enough such that all points stored in the Kd-Tree are possible nearest neigh-
bors. Furthermore assume that the Kd-Tree stores n points. Then at least
O(log n) visits of nodes in the tree are necessary, since the algorithm tra-
verses down to leaf-level and the tree is balanced. On the other side, it can
make at most n visits to nodes, since afterwards, the algorithm traversed
every node in the Kd-Tree. The two important figures to look at here is the
worst case run time as well as the average case run time. Figure 5.7 gives
an example for a worst case example in which almost every leaf of the tree
needs to be examined.

Concerning the average case runtime, we turn to [FBF77]. Within their
paper they prove the following theorem.

Theorem 4. The expected search time for the k nearest neighbors of a pre-
specified query point p in d-dimensional space is proportional to log n, where
n is the number of points stored in the Kd-Tree.
In particular, the expected search time is independent of the distribution ρ(P)
of points in space.

59

5.2 Nearest Neighbor Search using Kd-Trees Martin Skrodzki

Algorithm 9 Nearest Neighbor Kd-Trees

1: procedure NNKdTree(p, r, ε, k) //Query point p, Root r of the tree,
influence ε, max. valence k

2: L← empty list //List to store the neighbor candidates, gives furthest
neighbor so far.

3: return NNKdTreeRek(p,r,ε,k,L)
4: end procedure
5:

6: procedure NNKdTreeRek(p,r,ε,k,L)//Query point p, current posi-
tion r, influence ε, max. valence k, current best neighbors L

7: if r == null then
8: //The currentPosition is null, nothing can be done here, return

the currently known nearest neighbors
9: return L
10: else
11: //The current Position contains a point, since it is either a leaf or

an internal node
12: Extract the point xj from r and store it in L. If L becomes to

large, delete furthest point in L.
13: if r is a leaf then
14: return L
15: else
16: //If the currentPosition is not a Leaf, we can apply recursion

to (possibly) both sides of the hyperplane
17: NNKdTreeRek(p,subtree of r, ε,k,L)
18: if |L| < k and ‖p− r.hyperplane‖ < ε then
19: //There are still neighbors missing and the other side of

the hyperplane is still within influence radius
20: NNKdTreeRek(p,other subtree of r, ε,k,L)
21: else if ‖L.furthest− p‖ > ‖p− r.hyperplane‖ then
22: //There are no neighbors missing, but we might find closer

points to p on the other side of the hyperplane
23: NNKdTreeRek(p,other subtree of r, ε,k,L)
24: end if
25: return L
26: end if
27: end if
28: end procedure

60

5.2 Nearest Neighbor Search using Kd-Trees Martin Skrodzki

Figure ���

Generally during a nearest

neighbour search only a few

leaf nodes need to be in	

spected�

Figure ���

A bad distribution which

forces almost all nodes to

be inspected�

�	��

Figure 5.7: A figure from [Moo91], showing how a bad distribution of points
can, for certain query points, lead to the necessity of examining almost all
nodes of the Kd-Tree.

The general idea of the proof is to use the estimated size of the regions
represented by the leafs of the Kd-Tree. The size of the region is derived from
the number of points in P and the regions are fit into small d-dimensional
hypercubes. When searching for nearest neighbors of the query point p, the
algorithm traverses to the leaf representing the region that contains p. This
takes O(log n). Now the number of those hypercubes, which have to be
investigated is estimated. It comes to be independent of the file size N and
the probability distribution of the points in P , but only depends on k and
d. Note at this point, that for large values of k and d, compared to n, the

61

5.3 Implementation in JavaView Martin Skrodzki

theorem becomes meaningless. For a thorough proof see [FBF77].

5.3 Implementation in JavaView

We will now briefly present the implementation of Algorithm 9 within the
JavaView framework. The nearest neighbor computations are performed by
the abstract Kd-Tree class as introduced in Section 3.3.2. Apart from the
method given in Listing 3.1 the abstract Kd-Tree provides the methods given
in Listing 5.1.

1 //Nearest Neighbor f o r g i ven k
2 public Prior ityQueue<PdVector>

getNearestNeighborsQueueByNumber (PdVector input , int
count , Boolean inc lude Input) ;

3 public PiVector getNearestNeighborsVectorByNumber (PdVector
input , int count , Boolean inc lude Input) ;

4 protected Prior ityQueue<PdVector>
getNumberOfNearestNeighbors (PdVector input , int count ,
Prior ityQueue<PdVector> currentBest , Node
cur r entPos i t i on , Boolean inc lude Input) ;

5 //Nearest Neighbor Stack f o r g iven i n f l u en c e rad ius
6 public Stack<PdVector> getNeares tNe ighborsStackByInf luence (

PdVector input , double i n f l u enc e , Boolean inc lude Input)
;

7 protected Stack<PdVector> getStackOfNearestNeighbors (
PdVector input , double i n f l u enc e , Stack<PdVector> stack
, Node cur r en tPos i t i on , Boolean inc lude Input) ;

8 //Nearest Neighbor Vector f o r g iven i n f l u en c e rad ius
9 public PiVector getNeares tNe ighborsVectorByInf luence (

PdVector input , double i n f l u enc e , Boolean inc lude Input)
;

10 protected PiVector getVectorOfNearestNeighbors (PdVector
input , double i n f l u enc e , PiVector vector , Node
cur r entPos i t i on , Boolean inc lude Input) ;

11 //Nearest Neighbor f o r g i ven k and i n f l u en c e rad ius
12 public Prior ityQueue<PdVector>

getNearestNeighborsQueueByNumberAndInfluence (PdVector
input , int count , double i n f l u enc e , Boolean
inc lude Input) ;

13 public PiVector
getNearestNeighborsVectorByNumberAndInfluence (PdVector
input , int count , double i n f l u enc e , Boolean
inc lude Input) ;

14 protected Prior ityQueue<PdVector>
getInf luencedNumberOfNearestNeighbors (PdVector input ,
int count , double i n f l u enc e , Prior ityQueue<PdVector>
currentBest , Node cur r en tPos i t i on , Boolean inc lude Input)
;

Listing 5.1: Methods provided by the abstract Kd-Tree class

All methods in Listing 5.1 compute nearest neighbors for an input point p,
always given as a PdVector. However, three different ways to set up the

62

5.4 Alternative Pivot Policies for the Kd-Tree Martin Skrodzki

neighborhood Nk(p) are treated separately.

1. Case: The number k of neighbors is given. In the terms of Chapter 2,
the influence radius ε is larger than maxpι,pj∈P ‖pι − pj‖. This means
no point is neglected as possible nearest neighbor, because it is has
distance larger ε to the input point.

2. Case: The influence radius ε is given. This means that all points xj ∈ P
are reported as nearest neighbors of the input point p, if ‖xj − p‖ ≤ ε.

3. Case: Both a number k of neighbors and an influence radius ε is given.
In this case, the neighborhood of the input point p is given by the
intersection of the neighborhoods of Case 1 and Case 2.

For all three cases we furthermore provide two methods each. The first
method provides a data structure which actually contains the nearest neigh-
bors as PdVectors. This is either a PriorityQueue<PdVector>, provided
with an appropriate comparator, or a Stack<PdVector>. For the documen-
tation of these data structures, see [Ora]. The second method provided does
not give the actual points, but a set of indices corresponding to these points.
The result is provided in form of a PiVector from the JavaView framework.
Although all six methods generally work in the same way, i.e. they construct
the necessary data structure and call a protected recursive function to fill
the data structure, we decided to rather provide six methods than one. This
is mainly because the different used data structure can hardly be accessed by
one common interface as they provide different functionality. Furthermore,
the PiVectors could be obtained from the corresponding PriorityQueue or
Stack, but this would involve iteration over the whole data structure. By
providing a method that immediately returns a PiVector, we save this time.
Since the last method getInfluencedNumberOfNearestNeighbors realizes
the third case from above, i.e. incorporates the first and second case, we
provide this method in Appendix E. The other methods are implemented
similarly.

5.4 Alternative Pivot Policies for the Kd-Tree

The tree building algorithms from Section 3.3 require the median of the point
set within a certain dimension to be found by either sorting or a more elabo-
rate algorithm. Using the median, the point set is split, while the dimensions
are iterated in a cyclic manner. The benefit of this method is the fact that the
resulting Kd-Tree is always a balanced tree. That is, if n points are stored
in the tree, traversing to a leaf takes time O(n log(n)). However, this pivot

63

5.4 Alternative Pivot Policies for the Kd-Tree Martin Skrodzki

policy of splitting at the median and iterate through dimensions does not
necessarily provide well shaped regions for nearest neighbor search. In the
context of nearest neighbor search we aim for regions that are approximately
of cubical form, which in Algorithm 9 minimizes the regions to be consid-
ered. However, the use of perfectly cubical regions degenerates the Kd-Tree
to a Quad-, respectively Octree, which was dismissed in Section 4.1. In order
to maintain a balanced tree, but still obtain well shaped regions, [Omo87]
suggests to split the point set at the median, but not iterate through dimen-
sions. The dimension is rather chosen in each recursion step as the dimension
within which the spread of the point set is maximal. Although this seems
to be a good approach, [Moo91] found that the obtained regions are still far
from optimal, see Figure 5.8.

We saw that neither Quad-, respectively Octrees, nor balanced trees, even
with the more sophisticated pivot policy of [Omo87] are a perfect choice
for the nearest neighbor procedures. Note that this is mainly, because the
data cannot be assumed to be uniformly distributed. If it was, the policy of
[Omo87] would perform much better. As a consequence, [Moo91] suggests
a different pivot policy that lies between the ”median of the most spread
dimension” policy and the usage of Quad-, respectively Octrees.
The proposed pivot policy splits the point set on the most split dimension,
just as [Omo87] does. However, it is not split at the median, but at the point
closest to the middle of the range along this dimension. That is the pivot
element a is chosen from the point set P as

i = arg max
j=1,...,d

(
max
p,q∈P

|pi − qi|
)
,

m =

(
min
p∈P

pi + max
q∈P

qi

)
/2,

a = arg min
p∈P

|pi −m| .

(5.1)

This pivot policy, according to [Moo91] does create only slightly unbalanced
trees, while the regions of the Kd-Tree seem to be more cubical. The effect
of this pivot policy is illustrated in Figure 5.9. An implementation is given
in Appendix F.

In Chapter 8 we will compare the presented pivot policies.

64

5.4 Alternative Pivot Policies for the Kd-Tree Martin Skrodzki

Figure ����

A �d tree balanced using

the �median of the most

spread dimension� pivoting

strategy�

Figure ����

A �d tree balanced using

the �closest to the centre of

the widest dimension� piv	

oting strategy�

�	��

Figure 5.8: A figure taken from [Moo91], illustrating the short-comings of
the ”median of the most spread dimension” pivot policy of [Omo87], namely
the creation of many slim regions.

65

5.4 Alternative Pivot Policies for the Kd-Tree Martin Skrodzki

Figure ����

A �d tree balanced using

the �median of the most

spread dimension� pivoting

strategy�

Figure ����

A �d tree balanced using

the �closest to the centre of

the widest dimension� piv	

oting strategy�

�	��

Figure 5.9: A figure taken from [Moo91], illustrating the alternative pivot
policy ”closest to the center of the most spread dimension”, compare to
Figure 5.8.

66

Chapter 6

Median

For a set of points P , we defined the median of P in Definition 3. The
building process of Kd-Trees as given in Section 3.2 makes heavy use of the
median. We already mentioned in Section 3.3.4 that finding the median in an
ordered sequence is trivial. However, sorting a set P containing n elements
comes with the cost of O(n log(n)). In this chapter, we will investigate al-
ternatives to sorting.

6.1 Randomization

A good class of algorithms for finding the median are randomized algorithms.
They are in general based on the idea of the quicksort algorithm. That is,
a pivot element p is chosen from the set P and we partition P according
to p by placing all elements smaller than p to the left of p and all elements
larger than p to its right. Now it can be determined on which side of p the
element lies and the algorithm recursively continues on that side of the set.
Obviously this algorithm depends heavily on the choice of the pivot element
p. Assume for example that p is chosen to be the minimum in every step,
then we need to perform (n−1)+(n−2)+ . . .+1 = n(n−1)

2
operations during

the partition, i.e. the worst case runtime is O(n2), even worse than sorting
the set. A simple version of this idea is given in [SW11] and presented as
Algorithm 10.

It is shown in e.g. [Cor+13] that Algorithm 10 has an expected runtime of
O(n), that is an element of rank k, in particular the median, can be found in
expected linear time. The algorithm can actually be made faster by not only
picking one element at random, but three, and using the median of them as

67

6.2 Deterministic Algorithm Martin Skrodzki

Algorithm 10 Randomized Select

1: procedure RandSelect(a0, . . . , an−1,k) //Sequence of element ai, kth
element is sought

2: if n=1 then
3: return a0

4: else
5: Pick x from the ai randomly
6: Partition the ai into a0, . . . , aq−1,aq, . . . , ar−1, and ar, . . . , an−1

such that ai < x for i = 0, . . . , q − 1, ai = x for i = q, . . . , r − 1,
and ai > x for i = r, . . . , n− 1

7: if k < q then
8: return RandSelect(a0, . . . , aq−1,k)
9: else if k < r then
10: return x
11: else
12: return RandSelect(ar, . . . , an−1,k − r)
13: end if
14: end if
15: end procedure

pivot element. This is known as ”Median-of-Three” technique and can be
found e.g. in [SW11].
The algorithm presented in [FR75] is structure-wise equivalent to Algorithm
10. The only difference here is the choice of the pivot element, which is
chosen from a random sample. The algorithm from [FR75] was shown to
have an optimal number of comparisons within lower-order terms, namely it
finds the kth largest of n elements within

n+ min{k, n− k}+O(
√
n).

However, the algorithm as given by [FR75] utilizes certain constants that have
to be optimized depending on the machine that the algorithm is performed
on. This might have been a good idea at the time when the algorithm was
introduced, but nowadays an algorithm should perform well on any machine.

6.2 Deterministic Algorithm

We saw in the previous section that the median of a set can be determined
in expected linear time. In this section we will present an algorithm with
worst case behavior of O(n), see [Blu+73]. The idea is to use Algorithm 10,

68

6.2 Deterministic Algorithm Martin Skrodzki

but pick the pivot element in a correct way. It turns out that the median
of medians of five elements each does the job. Computing the n/5 medians
of blocks of five elements from the original point set can be done in linear
time, since finding the median of 5 points can be performed in constant time.
Finding the median of these medians is now a recursive call to the method
on a set with n/5 points. The obtained median of medians is then used to
partition the set and the algorithm is recursively applied to the side of the
median. See Algorithm 11.

Algorithm 11 Deterministic Select

1: procedure DetSelect(a0, . . . , an−1,k) //Sequence of element ai, kth
element is sought

2: if n < 140 then
3: Sort the sequence and return the median
4: else
5: Compute the dn/5e medians m0, . . . ,mdn/5e−1 of blocks containing

five consecutive ai each
6: m ←DetSelect(m0, . . . ,mdn/5e−1,bdn/5e/2c) //Recursively

compute the median of the medians
7: Partition the ai into a0, . . . , aq−1,aq, . . . , ar−1, and ar, . . . , an−1

such that ai < m for i = 0, . . . , q − 1, ai = m for i = q, . . . , r − 1,
and ai > m for i = r, . . . , n− 1

8: if k < q then
9: return DetSelect(a0, . . . , aq−1,k)
10: else if k < r then
11: return m
12: else
13: return DetSelect(ar, . . . , an−1,k − r)
14: end if
15: end if
16: end procedure

Call the median of medians a. To compute the runtime of this algorithm,
we first give a lower bound on the number of elements larger than a. At
least half of the dn/5e medians initially computed are larger or equal to a,
therefore at least half of the dn/5e groups contributes three elements larger
or equal to a, except a group with less than 5 elements (if n is not divisible

69

6.2 Deterministic Algorithm Martin Skrodzki

by 5) and the group of the a itself. Therefore at least

3

(⌈
1

2

⌈n
5

⌉⌉
− 2

)
≥ 3n

10
− 6

elements is larger than a. Similarly at least 3n
10
− 6 elements are smaller than

a. Therefore, after partitioning, the algorithm is called on at most 7n
10

+ 6
elements. See Figure 6.1 for an illustration.

Figure 6.1: A set of 28 points. An arrow from point p to q indicates that
p was found to be smaller than q. The marked point a is the median of
medians. Note that all points in the gray region are necessarily smaller than
a, which was established directly while computing the medians, or which is
given by transitivity.

Determining the medians of the dn/5e groups and partitioning the point set
takes O(n) time. If we denote the runtime of the algorithm by T (n), then
the recursive call to determine the median of medians takes T (dn/5e) and in

70

6.3 Approximation Martin Skrodzki

recursion step on the larger partitioned part of the point set the algorithm
takes at most time T (7n/10 + 6). We now assume that the median of any
set with n < 140 can be determined in O(1). This assumption seems rather
arbitrary now, but the particular choice will make later calculation easier.
Under the assumption, the runtime T (n) satisfies the following recursion

T (n) ≤

{
O(1) if n < 140,

T (dn/5e) + T (7n/10 + 6) +O(n) if n ≥ 140.
(6.1)

To solve this recursion assume that T (n) ≤ c · n for some large constant c
and n < 140. This is indeed the case for c large enough. Furthermore we
pick a constant a such that the non-recursive term in (6.1) for all n > 0 is
bounded from above by a ·n. If we plug these assumptions into the right side
of (6.1) we get

T (n) ≤ cdn/5e+ c(7n/10 + 6) + an

≤ cn/5 + c+ 7cn/10 + 6c+ an

= 9cn/10 + 7c+ an

= cn+ (−cn/10 + 7c+ an),

which solves to be at most cn, if the inequality

−cn/10 + 7c+ an ≤ 0

is satisfied. For n > 70 this inequality is equivalent to c ≥ 10a(n/(n− 70)).
Since we assume n ≥ 140, it is n/(n − 70) ≤ 2. Picking c ≥ 20a therefore
satisfies the inequality. Hence T (n) ≤ cn.
Note that the choice of 140 is not necessary. Any integer larger than 70 can
be chosen here. The presented calculations are taken from a thorough proof
in [Cor+13]. Furthermore, the constant c in this algorithm is fairly large. For
example, [Epp] computes it to be c = 24. But as final remark, [DZ99] proves
that the median of n elements can be found using at most 2.95n comparisons.

6.3 Approximation

To close this chapter we will briefly mention the possibility of approximating
the median. Using just any random element from the set P as approxima-
tion of the median will result in a fairly bad result. However, using e.g. the
median of a small fixed sample is a better idea. Both approaches take only
a constant number of steps and are therefore considerably faster than the
methods given above. However, good results can only be expected, if the

71

6.3 Approximation Martin Skrodzki

sample size is bound to the size of the input set and therefore, constant time
approximations will not perform very well.
A more elaborate way of approximating the median is presented in [RB90],
where the median is approximated using a sequence of arrays. Data is sorted
into the first array. As soon as it is filled, the median of this array is deter-
mined, saved in a second array and the first array is emptied. This procedure
is iterated until all data has been processed. See Figure 6.2 for an illustration.

Figure 6.2: The process of computing the ”Remedian” median approxima-
tion. The initial data is written into Array 1, until it is filled. Its median is
stored in Array 2 and Array 1 is emptied, more initial data is written into it.
This process is iterated over all Arrays and all initial data, until finally the
median of the last used Array gives the approximation of the median.

72

6.3 Approximation Martin Skrodzki

An obvious downside of approximating the median within our application
is the loss of balance of the Kd-Tree. Since in general an approximation of
the median will have different numbers of elements smaller and larger than
itself, the Kd-Tree resulting from the usage of median approximations will
not be balanced. This will effect further applications on the Kd-tree as the
nearest neighbor search. Hence, despite runtime advantages, we will not
utilize approximation of the median.

73

6.3 Approximation Martin Skrodzki

74

Chapter 7

The Program

In this chapter we will briefly describe the program used in Chapter 8. It
implements the techniques presented in Chapter 2 and Chapter 5. Imple-
mentation is done in Java using the JavaView Framework [Pol+]. We will
here explain the general procedure of how to use the program, present an
example and give details for all possible settings.

7.1 General Procedure

So far the program is available as a Java file PaPointCloud with a corre-
sponding launch configuration DevApps_PaPointCloud. In Eclipse run the
file using its launch configuration. The initial start up screen is shown in
Figure 7.1.

Now start by selecting the entry ”Smooth Surface” in the Scene Graph. Via
the Load Model Dialog, browse the computer to load a model. Adjust the
look of the geometries as intended. This can be done using the

Inspector→ Geometry→ Material

dialog. By loading a smooth surface the program immediately creates a point
cloud. Select the corresponding entry ”Point Cloud” in the Scene Graph.
Now the smoothing process as given in Chapter 2 is controlled by several
parameters. These can be set in the project panel. See Section 7.3 for details
on these settings.
Obviously, one can already load a noised surface into the program. Assume
that the loaded ”Smooth Surface” is indeed smooth. To demonstrate the
algorithm we now want to add noise to the surface. This can be done by

75

7.2 Example Martin Skrodzki

Figure 7.1: The initial start screen of the program.

browsing to

Method→ Effect→ Noise

and applying noise to the smooth set using this dialog. To actually start the
smoothing process, browse to

Method→ Vector Field→ Evolve.

In the shown dialog select the ”Vertex Vector” option as well as the ”Flip
Direction” box. Finally hit the ”Animate” button to see the smoothing
procedure.

7.2 Example

We will now go through the program alongside an example. Assume that we
want to apply the procedure as given in Section 7.1 to the geometry shown
in Figure 7.2 using the settings as given in Listing 7.1.

76

7.2 Example Martin Skrodzki

Figure 7.2: An example geometry to illustrate the program’s abilities,
namely a point set sample of the Costa surface.

1 Or i g i na l neighbourhood o f smooth su r f a c e
2 Vector Len = 0 .5
3 Vector S i z = 2 .
4
5 Noise :
6 − Nor ,Tan
7 − Amplitude = 0 .3
8
9 Evolve :
10 − Vector
11 − Of f s e t 0 . b i s −0.49
12
13 Pro j ec t :
14 Enabled :
15 Max Valence
16
17 Density : 10
18 In f l u en c e : 1 . 0
19 Max Valence : 10
20 Curvature Thre : 1 . 0
21 Edge Quotient : 30 .
22 Density Leve l : 0 .71

77

7.3 Setting Details Martin Skrodzki

23 Value o f Max Hue : 0 .57533

Listing 7.1: A list of examplary settings to illustrate the program’s
abillities.

In Eclipse we start the PaPointCloud file using the launch configuration
DevApps_PaPointCloud. Select the entry ”Smooth Surface” in the Scene
Graph. Via the Load Model Dialog, browse the computer to load the model
”Costa4918Noise03OrigNeigh.jvx”. To obtain the image shown in Figure 7.2,
go to

Inspector→ Geometry→ Material,

and deselect the checkbox ”Vector Fields”. Leave the Material dialog open.
Select the entry ”Point Cloud” in the Scene Graph. In the Material dialog ad-
just the Vector Length and the Vector Size to 0.5 and 2.0 respectively, as given
above. Now display the Project Panel by selecting Inspector ⇒ Project.
According to the given description in Listing 7.1, mark the ”Maximum Va-
lence” field and set the ”Influence Radius”, ”Maximum Valence”, ”Curvature
Threshold”, ”Edge Quotient” and ”Value of Max Hue” to the given values.
Note that after entering the value into the text field, by pressing Shift+Enter,
you can enter values that would be out of bounds for this field.
To apply noise open

Method→ Effect→ Noise.

As stated in the description, select both ”Normal” and ”Tangential”. Set
the Amplitude to 0.3. The Point Set now has noise. Leave the Noise dialog
by clicking ”ok” and open

Method→ Vector Field→ Evolve.

Switch to the direction ”Vertex Vector”. Mark the ”Flip Direction” box.
Press ”Animate” to start the smoothing process. Different stages of the
animation are shown in Figure 7.3.

7.3 Setting Details

In this section we will briefly explain the different setting possibilities of the
program. First the six checkboxes on top of the project inspector, shown on
the left of Figure 7.1.

• Update Neighbors: Every change of the point set geometry triggers a
new computation of the neighborhoods.

78

7.3 Setting Details Martin Skrodzki

Figure 7.3: The images show from left to right and top to bottom: The orig-
inal point cloud, the point cloud with noise applied, the smoothing process
with animation offset 0.2, and the smoothing process with animation offset
0.4. Note how the points become darker during the animation, indicating
that their position becomes more and more fixed.

• Maximum Valence: Not all points within influence radius of the input
contribute to the neighborhood, but only as many as the parameter
maximum valence is set to (see below).

• Z-Density: The point set is dissolved along the z-axis according to the
Z-Density Level set (see below).

• Sharp Cutoff: Utilize the function gsharp
ιj as defined in (2.31) within

the anisotropic Laplacian. gιj then only depends on the Edge Quotient

(see below).

• Constrain Interior: Depending on the Interior Threshold, cer-
tain points are considered to be point on the interior of a flat surface
and are not moved by the smoothing procedure.

79

7.3 Setting Details Martin Skrodzki

• Adjust Max Hue: Automatically set the Value of Max Hue parame-
ter.

Apart from these options, several parameters are to be chosen using sliders.
The parameters are

• Influence Radius: This is the parameter called ε in Chapter 2. It
determines the maximum distance of neighbors.

• Maximum Valence: This is the parameter called k in Chapter 2. It is
only active if the Maximum Valence checkbox is set. It limits the size
of each neighborhood.

• Curvature Threshold: This is the parameter called λ in Chapter 2.
It determines when a point is considered to be a feature which is not
to be smoothed as in (2.31) and (2.32).

• Interior Threshold: If the Constrain Interior checkbox is selected,
this parameter determines when a point is considered to be in the in-
terior of a flat surface.

• Edge Quotient: This is the parameter called Q in Chapter 2. As
defined in (2.33), it incorporates principal curvature directions into the
anisotropic smoothing process.

• Z-Density Level: Density of the point cloud along the z-axis. Effect
is illustrated in Figure 7.4.

• Values of Max Hue: Maximum Hue of the different coloring schemes
as listed below.

• Torus Density: Changing this parameter creates a Torus as smooth
surface of set density.

Next, the vertex color can be chosen. The program offers the following
possibilities. They are illustrated in Figure 7.5.

• Mean: Colors the vertices according to the mean curvature.

• Max Princ: Colors the vertices according to the maximum principal
curvature.

• CovQuotient: Colors the vertices according to the covariance quotient.

• MeanAni: Colors the vertices according to the mean curvature, consid-
ering the anisotropic cut-off.

80

7.3 Setting Details Martin Skrodzki

Figure 7.4: The effect of the Z-Density Level parameter on the point cloud
of the Costa surface.

• PrincQuotient: Colors the vertices according to the principal curva-
ture quotient.

• MaxCov: Colors the vertices according to maximum covariance.

Below the vertex color, the program shows one text field.

• Min Neighbors: This field shows the smallest neighborhood according
to the given parameters, i.e. all neighborhoods are computed accord-
ing to the Influence Radius and Maximum Valence. The size of the
smallest neighborhood is shown in the textfield. This enables easy set
up of good parameters for a given geometry.

The last settings concern the use of Kd-Trees.

• Use Kd-Tree for NNSearch: This enables the use of Kd-Trees for
nearest neighbor search rather than the covariance method given in
Section 5.1.

Three types of Kd-Trees can be chosen.

• Sorting: The Kd-Tree initially sorts the points and passes the sorting
on during its recursive building process. See Section 3.3.3.

• Median: The Kd-Tree computes the median in each step of the recur-
sive building process. The method for median computation is specified
below. See Section 3.3.4.

• Middle of most spread Dim: The Kd-Tree splits at the point closest
to the middle of the most spread dimension as given in Section 5.4.

In case of the Median-Kd-Tree being utilized, the type of median finding
algorithm can be specified from the following options.

81

7.3 Setting Details Martin Skrodzki

Figure 7.5: The effect of the different vertex colorings, from left to right and
top to bottom: Mean, MaxPrinc, CovQuotient, MeanAni, PrincQuotient,
MaxCov.

• Sorting: The set is sorted an the bn/2c-th element is given as median.

• Linear Determin.: The median is computed using the deterministic
linear-time algorithm presented in Section 6.2.

• Floyd-Rivest-Rand.: The median is computed using the randomized
algorithm of Floyd and Rivest as presented in Section 6.1.

82

Chapter 8

Computational Results

In the previous chapters we presented several techniques for nearest neighbor
search. In this chapter we would like to test the presented methods within
the JavaView framework. The test will be performed on three point set
geometries, referred to as Costa, Cylinder and Torus. The geometries are
shown in Figure 8.1. By subdivision using the algorithm of Catmull-Clark,
the number and complexity of the geometries is increased. Figure 8.2 shows
the different complexities used in the benchmarks.

Figure 8.1: From left to right: A sampled version of the Costa surface, a
cylinder intersected with a plane segment, and a torus.

Geometry #Vertices 1 subd. 2 subd.
Costa 4918 28311 112041
Cylinder 5249 30977 123393
Torus 4851 19404 77616

Figure 8.2: The different geometries and their number of vertices originally
and after one, respectively two subdivisions.

In [SS] it was shown that the benefit, for the building times of a Kd-Tree and

83

8.1 Building Times and Tree Depths Martin Skrodzki

nearest neighbor computation times, of storing a general point p′ as defined in
(3.3) is marginal compared to computing it on the fly from the original vertex
p of the point set. Since our setup focuses on building Kd-Trees for nearest
neighbor searches, we therefore compute all composite coordinates from (3.2)
when needed. This allows us to store only the d-dimensional points p ∈ P
and not d × d-matrices p′. Although it does not affect our setup, note that
computing composite coordinates for each point during the building process
did prove to be beneficial in the application of region queries, see [SS]. The
corresponding experimental results, taken from [SS], are given in Figure 8.3.

Task Type Data Duration Result

Build Store Average 3070ms On average the Storing
Median 3202ms classes took 114ms

Compute Average 3184ms longer to be built, i.e.
Median 3307ms 3.7% longer.

Region Store Average 4669ms On average the Computing
query Median 4867ms classes took 3975ms

Compute Average 8644ms longer to perform the
Median 7570ms query, i.e. 85.1% longer.

Nearest Store Average 273379ms On average the Computing
Neighbor Median 198103ms classes took 5408ms

Query Compute Average 267971ms longer to perform the 2%
Median 194846ms query, i.e. 2% longer.

Figure 8.3: The shown data is taken from [SS] and was established by per-
forming 100 build operations, 1000 region queries and 1000 nearest neighbor
searches on a geometry with 69649 vertices. The two compared Kd-Tree
implementations either determine all composite coordinates from Definition
4 during the building process and save them (Store) or determine the coor-
dinates on the fly when needed in queries (Compute).

8.1 Building Times and Tree Depths

At first we will compare the times for the building process of the different
Kd-Tree implementations developed throughout this thesis. We will refer to
the Kd-Tree as presented in Section 3.3.3 by ”Sorting”. The Kd-Trees as
presented in Section 3.3.4 will be denoted by ”Median”, followed by a speci-
fication of the used algorithm as presented in Chapter 6. Namely these will

84

8.1 Building Times and Tree Depths Martin Skrodzki

be ”Median (Sorting)”, ”Median (Lin.Det)” (see Section 6.2), and ”Median
(Floyd-Rivest)” (see Section 6.1).
To avoid side effects from other processes on the computer, the trees were
build 1000 times each on all three geometries. The obtained data can be
found in Figure 8.8. Furthermore, the building times for the original ge-
ometries are plotted in Figure 8.4, while the times for the once and twice
subdivided geometries are plotted in Figure 8.5 and Figure 8.6 respectively.

Costa Cylinder Torus

5

10

15

20

B
u
il
d
in

g
T

im
e

[m
s]

Sorting
Median (Sorting)
Median (Lin.Det.)

Median (Floyd-Rivest)
Closest to Middle

Figure 8.4: Building time of the different Kd-Tree implementations on the
original geometries as shown in Figure 8.1.

We see that the Kd-Tree implementation, which determines the median using
the randomized algorithm of Floyd and Rivest has the shortest building time.
Furthermore note that the construction of a Kd-Tree that uses the ”Closes to
middle of most spread dimension” pivot rule (see Section 5.4) takes up to ten
times as long as the construction of the ”Median (Floyd-Rivest)” Kd-Tree.
We know that all Kd-Trees set up by ”Sorting” or one of the ”Median”
implementations have the same height on each geometry, since these imple-
mentations always create a balanced AVL Tree. However, the ”Closest to
Middle” implementation does not necessarily create a balanced tree. There-
fore we monitored the depth of the resulting Kd-Tree on the different ge-
ometries. The numbers are given in Figure 8.7. They already suggest that
any operation on these trees will be costly due to the high depths of the trees.

85

8.1 Building Times and Tree Depths Martin Skrodzki

Costa Cylinder Torus

20

40

60

80

100

120

140

160

B
u
il
d
in

g
T

im
e

[m
s]

Sorting
Median (Sorting)
Median (Lin.Det.)

Median (Floyd-Rivest)
Closest to Middle

Figure 8.5: Building time of the different Kd-Tree implementations on the
geometries, each subdivided once using Catmull-Clark.

Costa Cylinder Torus

0

500

1,000

1,500

2,000

B
u
il
d
in

g
T

im
e

[m
s]

Sorting
Median (Sorting)
Median (Lin.Det.)

Median (Floyd-Rivest)
Closest to Middle

Figure 8.6: Building time of the different Kd-Tree implementations on the
geometries, each subdivided twice using Catmull-Clark.

86

8.2 Kd-Tree vs. PCA Martin Skrodzki

Costa Costa1 Costa2 Cyl. Cyl.1 Cyl.2 Torus Torus1 Torus2

0

1,000

2,000

3,000

4,000

5,000

6,000

T
re

e
d
ep

th
s

Closest to Middle

Costa Costa1 Costa2
Balanced 12 14 16
Closest to Middle 243 1403 5596

Cylinder Cylinder1 Cylinder2
Balanced 12 14 16
Closest to Middle 287 694 2162

Torus Torus1 Torus2
Balanced 12 14 16
Closest to Middle 238 1373 5453

Figure 8.7: Development of the depth of the Kd-Trees obtained using the
”Closest to middle of most spread dimension” pivot strategy on the original
geometries as well as on their respective subdivisions.

8.2 Kd-Tree vs. PCA

We will now turn to nearest neighbor search. First we will compare the
performance of our Kd-Tree implementation with the nearest neighbor al-
gorithm using PCA as given in Section 5.1. In order to do so, we let both,
the Kd-Tree ”Sorting” and the PCA algorithm run on the original Cylinder

87

8.2
K
d
-T
ree

v
s.

P
C
A

M
artin

S
k
ro
d
zk
i

Costa Costa 1 Costa 2
Average Median Average Median Average Median

Sorting 9.21 8 62.50 61 328.61 326
Median (Sorting) 10.73 11 90.57 89 498.18 496
Median (Linear Det.) 15.78 15 119.91 119 630.47 629
Median (Floyd-Rivest) 5.41 5 37.33 37 200.32 198
Closest to Middle 5.07 5 110.53 110 2057.34 2046

Cylinder Cylinder 1 Cylinder 2
Average Median Average Median Average Median

Sorting 10.36 10 77.46 76 355.84 353
Median (Sorting) 13.08 13 123.64 122 588.76 586
Median (Linear Det.) 19.81 19 155.64 155 735.98 733
Median (Floyd-Rivest) 6.46 6 46.20 46 203.67 201
Closest to Middle 11.66 12 109.31 108 499.23 498

Torus Torus 1 Torus 2
Average Median Average Median Average Median

Sorting 6.62 6 32.71 32 162.29 160
Median (Sorting) 8.17 8 50.82 50 263.01 261
Median (Linear Det.) 14.90 14 76.97 76 377.20 377
Median (Floyd-Rivest) 5.45 5 23.77 23 107.40 106
Closest to Middle 4.57 4 71.11 70 1092.47 1089

Figure 8.8: Building times of the different Kd-Tree implementations. All times are given in ms. The columns
Costa, Cylinder, Torus give the times for the original geometries, while the other columns give the times for the
once, respectively twice subdivided geometries. The numbers are plotted in Figures 8.4, 8.5, and 8.6.

88

8.2 Kd-Tree vs. PCA Martin Skrodzki

geometry. We choose some influence radius ε in such a way that all points
of the geometry are considered in every neighborhood. Then we vary the
Max Valence parameter from k = 1 to 400. That is, in each run, both the
Kd-Tree and the PCA method try to find k nearest neighbors to each point
p in the point set. Results are given in Figure 8.9.

0 50 100 150 200 250 300 350 400

0

1,000

2,000

3,000

4,000

5,000

max. Neighborhood Size

T
im

e
[m
s]

Kd-Tree
PCA

Figure 8.9: Neighborhood computation times for different maximal neigh-
borhood sizes and a fixed (large) influence radius. The Kd-Tree implemen-
tation shown is ”Sorting”.

Recall that the geometry used in Figure 8.9 has 5249 vertices, hence our
neighborhood computation includes neighborhoods of size up to 7.62% of
the whole geometry. In any practical application, the neighborhoods will be
a lot smaller, i.e. a small two-digit constant. Therefore from Figure 8.9 we
already see that the Kd-Tree method improves neighborhood computation
times drastically. Up to a maximum neighborhood size of 100, the Kd-Tree
is more than 3.3 times faster than the PCA method.

89

8.2 Kd-Tree vs. PCA Martin Skrodzki

We will now alter the setup of our experiment slightly. While before we fixed
an influence radius and varied the maximum neighborhood size, we will now
do the opposite. There will be no restrictions on the size of the neighborhood
and we will vary the influence radius. The cylinder geometry has a diame-
ter of 2.09, which is the length of the diagonal of the smallest axis-parallel
bounding box of the geometry. We will vary the influence radius from 0.002
up to 0.33, which is 15% of the diameter of the geometry. Again, in any
practical application, the influence radius will be chosen smaller. During the
experiment, in each run, both the Kd-Tree and the PCA method try to find
all neighbors to each point p in the point set, that lie within influence radius.
Results are given in Figure 8.10.

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35

0

100

200

300

400

500

600

Influence Radius

T
im

e
[m
s]

Kd-Tree
PCA

Figure 8.10: Neighborhood computation times for different influence radii
and no restriction on the neighborhood size. The Kd-Tree implementation
shown is ”Sorting”.

As for the different valences, also when varying the influence radius, our Kd-

90

8.3 ”Middle of most spread Dim.” vs. Median Martin Skrodzki

Tree implementation performs better than the PCA-approach within the
given range. In the following we will therefore restrict our experiments to a
maximum neighborhood size of k ∈ [0, 300] and an influence radius ε of up
to 15% of geometry’s diameter.

8.3 ”Middle of most spread Dim.” vs. Me-

dian

Recall that the implementations ”Sorting” and ”Median” (independent of
the used median algorithm) produce the same balanced Kd-Tree. Solely the
Kd-Tree implementation utilizing the ”Closest to middle of most spread di-
mension” pivot rule does produce a different Kd-Tree. In this section we will
perform several nearest neighbor queries on these two types of Kd-Trees to
determine which approach provides faster results.
At first we perform the same experiment as we did on the Kd-Tree and
the PCA method. That is, we use both the ”Sorting” and the ”Closest to
Middle” implementation to determine neighborhoods of different size on the
Cylinder. Neighborhood sizes are varied from k = 1 to 100. As above, we
set the influence radius to a high value that ensure all points to qualify for
possible neighborhood membership. The results of this experiment are plot-
ted in Figure 8.11.

We repeat the experiment in a similar fashion, except this time, we run it on
the original Costa surface and we repeat it five times to exclude any inter-
ference with other processes. Figure 8.12 shows for each neighborhood size
the median of the obtained running times.

To finish the comparison between the balanced Kd-Trees and the trees ob-
tained by the ”Closest to middle of most spread dimension” pivot rule, we
repeat the second experiment from Section 8.2. On the original torus ge-
ometry and its once subdivided form, we do not impose any restrictions on
the size of the neighborhood and vary the influence radius in 100 steps from
one per mill of the geometry’s diameter to 10% of the geometry’s diameter.
Results are given in Figure 8.13.

91

8.3 ”Middle of most spread Dim.” vs. Median Martin Skrodzki

0 10 20 30 40 50 60 70 80 90 100

0

1,000

2,000

max. Neighborhood Size

T
im

e
[m
s]

Kd-Tree
Closest to Middle

0 10 20 30 40 50 60 70 80 90 100

0

1

2

·104

max. Neighborhood Size

T
im

e
[m
s]

Kd-Tree
Closest to Middle

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8
·104

max. Neighborhood Size

T
im

e
[m
s]

Kd-Tree
Closest to Middle

Figure 8.11: Times for the computation of different sized neighborhoods
using Kd-Tree ”Sorting” and the ”Closest to Middle” implementation. On
the top the times on the original cylinder geometry, in the middle the times on
the geometry after one subdivision, and on the bottom after two subdivisions.

92

8.4 Conclusion from computational results Martin Skrodzki

0 10 20 30 40 50 60 70 80 90 100

0

500

1,000

1,500

2,000

max. Neighborhood Size

T
im

e
[m
s]

Kd-Tree
Closest to Middle

Figure 8.12: Times for the computation of different sized neighborhoods us-
ing Kd-Tree ”Sorting” and the ”Closest to Middle” implementation. Times
are taken on the original Costa surface without subdivision and the experi-
ment was repeat five times. The plot shows the median.

8.4 Conclusion from computational results

We saw in Section 8.2 that the usage of Kd-Trees can speed up the process of
nearest neighbor computations drastically, compared to the method outlined
in Section 5.1 and therefore also compared to any naive method. Hence, Kd-
Trees should be used for neighborhood computations in point cloud settings.
Concerning the different implementations of Kd-Trees we saw that building
a balanced Kd-Tree by using the median as pivot element and determining
the median using a randomized algorithm is faster than any other shown
implementation. This coincides with the general observation that, although
theoretically faster, deterministic algorithms are in practice often slower than
randomized algorithms.
Finally, we can not reproduce the results from [Moo91]. In all three tested
applications, the ”Closest to Middle” implementation of Kd-Trees performed
worse or on par with the Kd-Trees producing a balanced Kd-Tree.

93

8.4 Conclusion from computational results Martin Skrodzki

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

100

200

300

max. Neighborhood Size

T
im

e
[m
s]

Kd-Tree
Closest to Middle

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.5

1

1.5

·104

max. Neighborhood Size

T
im

e
[m
s]

Kd-Tree
Closest to Middle

Figure 8.13: Neighborhood computation times for different influence radii
and no restriction on the neighborhood size using the ”Sorting” and ”Closest
to Middle” implementations.

94

Chapter 9

Conclusion and Further
Research

In this thesis we presented an application for neighborhood computation in a
point cloud setting, namely the smoothing of point clouds. We gave different
approaches on how to implement the presented nearest neighbor methods
and experimentally showed that the fastest choice from the presented im-
plementations is a randomized median algorithm in a balanced Kd-Tree for
both fast building and neighborhood computation.
Nonetheless certain aspects are left for further research. For example note
that the smoothing algorithm as presented in [LP05] does not include au-
tomatic feature detection. Further research for compatible feature detection
mechanisms should be conducted and a suitable procedure should be included
in the presented program.
It was already mentioned in [LP05] that smoothing behaves amazingly well if
the neighborhood is given from the final smooth object already. This poses
an interesting question on how well neighborhoods can be obtained from
point clouds at all and whether the presented methods can be improved.
Already in the Introduction we dismissed, for the course of this thesis, smooth-
ing approaches that use meshes. The main disadvantage of meshes is the time
used to actually compute the mesh. However, meshes do have certain advan-
tages. Assume that the point cloud is a scan of a very thin surface. Using
the presented nearest neighbor search techniques, points from one side of
the surface might, depending on the thickness of the surface, the influence
radius, and the maximum valence, be considered as neighbors of the other
side of the surface. Meshes do not pose these problems and they are to be
taken seriously in further research.
In Chapter 4 we dismissed Quadtrees and R-Trees in favor of Kd-Trees. Al-
though this decision stands, an interesting question is the following: Can

95

Martin Skrodzki

a probability distribution be found that mimics point clouds obtained from
surface scans? And can such a probability distribution be used to make any
statements on the efficiency of different data structures, beside computa-
tional results?
In [Moo91], the pivot strategy ”Closest to middle of most spread dimension”
was introduced as beneficial for the nearest neighbor search. We have not
been able to reproduce this results. Further tests could reveal the reasons
for this phenomenon.
Finally, in a Quadtree when looking for nearest neighbors it is possible to
search in four directions. Our Kd-Tree implementation only offers to traverse
the tree. By introducing links on the leaf-level which connect the leafs of the
tree horizontally, one would be able to peek into neighboring subtrees. Also
the process could be parallelized into traversing the tree in three directions.
However, not too many links apart from the suggested ones can be intro-
duced, before the Kd-Tree actually collapses into a Quadtree.

96

Appendices

97

Appendix A

PCA Nearest Neighbor
JavaView Implementation

1 protected void computeNeighbourByCovariance (PgPointSet geom
,

2 double i n f l u enc e , int nov) {
3 int dim = geom . getDimOfVertices () ;
4 PdVector [] ve r tex = geom . g e tVe r t i c e s () ;
5 PiVector neigh = new PiVector (nov) ;
6 double i n f l u en c e 2 = i n f l u e n c e ∗ i n f l u e n c e ;
7
8 PdVector [] bndbox = geom . getBounds () ;
9 i f (bndbox == null) {
10 // i f (PsDebug .WARNING) PsDebug . warning (” miss ing

bndbox o f geometry = ”+geom . getName ()) ;
11 return ;
12 }
13 PdMatrix covMat = computeCovariance (null , ve r tex) ;
14 i f (covMat == null) {
15 i f (PsDebug .WARNING) PsDebug . warning (”miss ing

v e r t i c e s to compute covar iance matrix , geom = ”+
geom . getName ()) ;

16 return ;
17 }
18 PdVector [] eVector = PdVector . r e a l l o c (null , dim , dim) ;
19 PdVector eValue = new PdVector (dim) ;
20 int [] spec = computeCovarianceSpectrum (covMat ,

eVector , eValue) ;
21
22 // Sort e i g enva l u e s by magnitude , pr inc [0] i s eVector

i f the l a r g e s t eValue .
23 PdVector [] p r inc = new PdVector [dim] ;
24 for (int j =0; j<dim ; j++)
25 pr inc [j] = eVector [spec [dim−1− j]] ;
26
27 PdVector diag = pr inc [0] ;
28 PdVector diag2 = pr inc [1] ;
29 PdVector diag3 = pr inc [2] ;
30

99

Martin Skrodzki

31 // Use index vec t o r to i d e n t i f y p o s i t i o n a long
d i r e c t i o n

32 int [] index = new int [nov] ;
33 double [] he ight = new double [nov] ;
34 for (int i =0; i<nov ; i++)
35 he ight [i] = PdVector . dot (diag , ver tex [i]) ;
36 PuMath . heapsort (nov , height , index) ;
37 // For each v e r t e x s t o r e i t s p o s i t i o n in the h e i g h t

v e c t o r
38 int [] indexInv = new int [nov] ;
39 for (int i =0; i<nov ; i++)
40 indexInv [index [i]] = i ;
41
42 int [] index2 = new int [nov] ;
43 double [] he ight2 = new double [nov] ;
44 for (int i =0; i<nov ; i++)
45 he ight2 [i] = PdVector . dot (diag2 , ver tex [i]) ;
46 PuMath . heapsort (nov , height2 , index2) ;
47 // For each v e r t e x s t o r e i t s p o s i t i o n in the h e i g h t

v e c t o r
48 int [] indexInv2 = new int [nov] ;
49 for (int i =0; i<nov ; i++)
50 indexInv2 [index2 [i]] = i ;
51
52 int [] index3 = new int [nov] ;
53 double [] he ight3 = new double [nov] ;
54 for (int i =0; i<nov ; i++)
55 he ight3 [i] = PdVector . dot (diag3 , ver tex [i]) ;
56 PuMath . heapsort (nov , height3 , index3) ;
57 // For each v e r t e x s t o r e i t s p o s i t i o n in the h e i g h t

v e c t o r
58 int [] indexInv3 = new int [nov] ;
59 for (int i =0; i<nov ; i++)
60 indexInv3 [index3 [i]] = i ;
61
62 int maxValence = m maxValence . getValue () ;
63 int [] indexNeigh = new int [nov] ;
64 double [] d i s tNe igh = new double [nov] ;
65
66 // Larges t index sma l l e r than i such t ha t d i s t (v e r t e x [

indMin] , v e r t e x [i])<i n f l u en c e .
67 int currMin = 0 ;
68 m minNeighCnt = In t eg e r .MAXVALUE;
69 for (int i =0; i<nov ; i++) {
70 while (he ight [index [i]]− he ight [index [currMin]] >

i n f l u e n c e)
71 currMin++;
72
73 // In d i r e c t i o n 2 and 3 we compute i n t e g e r bounds

currMinI and currMaxI
74 // which enc l o s e a l l v e r t i c e s o f the i n f l u en c e

i n t e r v a l o f the curren t
75 // v e r t e x index [i] (currMinI and currMaxI both be long

to the i n f l u en c e
76 // i n t e r v a l too) . The va l u e s currMinI and currMaxI

are i n d i c e s o f
77 // the index2 and index3 array .
78
79 // Find in 2 d i r e c t i o n currMin2 and currMax2

100

Martin Skrodzki

80 int currMin2 = indexInv2 [index [i]] −1 ;
81 while (currMin2>=0 &&
82 he ight2 [index [i]]− he ight2 [index2 [currMin2]]<

i n f l u e n c e) {
83 currMin2−−;
84 }
85 currMin2++;
86
87 int currMax2 = indexInv2 [index [i]] ;
88 while (currMax2<nov &&
89 he ight2 [index2 [currMax2]]− he ight2 [index [i]] <

i n f l u e n c e) {
90 currMax2++;
91 }
92 currMax2−−;
93
94 // Find in 3 d i r e c t i o n currMin3 and currMax3
95 int currMin3 = indexInv3 [index [i]] ;
96 while (currMin3>=0 &&
97 he ight3 [index [i]]− he ight3 [index3 [currMin3]] <

i n f l u e n c e) {
98 currMin3−−;
99 }
100 currMin3++;
101
102 int currMax3 = indexInv3 [index [i]] ;
103 while (currMax3<nov &&
104 he ight3 [index3 [currMax3]]− he ight3 [index [i]] <

i n f l u e n c e) {
105 currMax3++;
106 }
107 currMax3−−;
108
109 int numNeigh = 0 ;
110 for (int j=currMin ; j<nov ; j++) {
111 // Must f i r s t check i f we are s t i l l in the 1−

i n t e r v a l
112 // s ince t h i s i s the on ly p l ace when we break .
113 i f (i<j && he ight [index [j]]− he ight [index [i]]>

i n f l u e n c e)
114 break ;
115 // Check o f index [j]− v e r t e x l i e s in 2− i n f l u en c e

i n t e r v a l o f index [i]
116 i f (indexInv2 [index [i]]< currMin2 | | currMax2<

indexInv2 [index [i]])
117 continue ;
118 i f (indexInv3 [index [i]]< currMin3 | | currMax3<

indexInv3 [index [i]])
119 continue ;
120 i f (j == i)
121 continue ;
122
123 double d i s t = PdVector . sq rD i s t (ver tex [index [i]] ,

ve r tex [index [j]]) ;
124 i f (d i s t > i n f l u en c e 2)
125 continue ;
126
127 neigh . m data [numNeigh] = index [j] ;
128 d i s tNe igh [numNeigh] = d i s t ;

101

Martin Skrodzki

129 numNeigh++;
130 }
131 i f (numNeigh < m minNeighCnt)
132 m minNeighCnt = numNeigh ;
133 i f (! m bEnableMaxValence) {
134 m neigh [index [i]] . s e t S i z e (numNeigh) ;
135 m neigh [index [i]] . copy (0 , neigh , 0 , numNeigh) ;
136 } else {
137 // Get the neares t ne ighbours
138 PuMath . heapsort (numNeigh , d istNeigh , indexNeigh) ;
139
140 numNeigh = Math . min (numNeigh , maxValence) ;
141 m neigh [index [i]] . s e t S i z e (numNeigh) ;
142 for (int j =0; j<numNeigh ; j++)
143 m neigh [index [i]] . m data [j] = neigh . m data [

indexNeigh [j]] ;
144 }
145 }
146 for (int i =0; i<nov ; i++) {
147 ver tex [i] . setName (St r ing . valueOf (m neigh [i] . g e tS i z e ()

)) ;
148 }
149 }

Listing A.1: Implementation of the technique outlined in Section
5.1.

102

Appendix B

PCA Nearest Neighbor
JavaView Implementation

1 import java . s e c u r i t y . Inval idParameterExcept ion ;
2 import java . u t i l . Comparator ;
3
4 import jv . vecmath . PdVector ;
5
6 /∗∗
7 ∗ This c l a s s r e a l i z e s a Comparator f o r PdVectors o f

a r b i t r a r y dimension . Within i t s compare method , two
8 ∗ v e c t o r s are compared l e x i c o g r a p h i c a l l y wi th r e s p e c t to

the startDimension s e t in the comparator .
9 ∗ For example , i f the dimension i s 3 and startDimension i s

1 , the v e c t o r s are compared in t h e i r
10 ∗ components y , z , x .
11 ∗ @author Martin Skrodzk i
12 ∗ @see Comparator
13 ∗ @see PdVector
14 ∗ @version 30 .09 .14 , 1 . 0 . 0 crea t ed (ms)
15 ∗/
16 public class Lexicographica lComparator implements

Comparator<PdVector> {
17
18 /∗∗
19 ∗ The dimension to s t a r t the l e x i c o g r a p h i c a l comparison

at .
20 ∗/
21 protected int startDimens ion ;
22
23 /∗∗
24 ∗ The dimension o f the v e c t o r s compared us ing the

comparator
25 ∗/
26 protected int dimension ;
27
28 /∗∗
29 ∗ Creates a new Lex i cog raph i ca l Comparator to compare

two PdVectors l e x i c o g r a p h i c a l l y .
30 ∗ @param startDimension The dimension where the

l e x i c o g r a p h i c a l comparison i s s t a r t e d at ,

103

Martin Skrodzki

31 ∗ some va lue >=0 and <= dimension−1.
32 ∗ @param dimension The dimension o f the Vectors t ha t are

compared , some va lue >0.
33 ∗ @throws Inva l idParameterExcept ion I f e i t h e r

startDimension <0, dimension<=0 or startDimension >=
dimension .

34 ∗/
35 public Lexicographica lComparator (int startDimension , int

dimension) throws Inval idParameterExcept ion {
36 super () ;
37 i f (startDimens ion < 0 | | dimension <= 0) {
38 throw new Inval idParameterExcept ion (”Can only

i n i t i a l i z e a Lex i cog raph i ca l Comparator on
startDimens ion ”

39 + ” g r ea t e r equal to 0 and dimension g r e a t e r than
0 , but was g iven startDimens ion ”+
startDimens ion

40 +” and dimension ”+dimension+” . ”) ;
41 }
42 i f (startDimens ion >= dimension) {
43 throw new Inval idParameterExcept ion (”Can only

i n i t i a l i z e a Lex i cog raph i ca l Comparator on a
startDimens ion ”

44 + ” l e s s than dimension , but was g iven dimension ”
+dimension+” and startDimens ion ”

45 +startDimens ion+” . ”) ;
46 }
47 this . s tartDimens ion = startDimens ion ;
48 this . dimension = dimension ;
49 }
50
51 /∗ (non−Javadoc)
52 ∗ @see java . u t i l . Comparator#compare (java . lang . Object ,

java . lang . Object)
53 ∗/
54 @Override
55 public int compare (PdVector arg0 , PdVector arg1) {
56 i f (arg0 . g e tS i z e () != arg1 . g e tS i z e ()) {
57 throw new ClassCastExcept ion (”

Lexicographica lComparator can only compare two
vec to r s o f s i z e same s i z e , ”

58 + ”but ve c to r s have s i z e s ”+arg0 . g e tS i z e ()+” and
”+arg1 . g e tS i z e ()+” . ”) ;

59 }
60 i f (arg0 . g e tS i z e () != this . dimension) {
61 throw new Inval idParameterExcept ion (”

Lexicographica lComparator o f dimension ”+this .
dimension+

62 ” can only compare ve c to r s o f accord ing dimension
, but was g iven ve c t o r s o f dimension ”+

63 arg0 . g e tS i z e ()+” . ”) ;
64 }
65 int d = startDimens ion ;
66 //Compare the e n t r i e s o f the Vectors accord ing to the

g iven startDimension o f t h i s comparator
67 i f (arg0 . getEntry (d) < arg1 . getEntry (d)) {
68 return −1;
69 } else
70 i f (arg0 . getEntry (d) > arg1 . getEntry (d)) {

104

Martin Skrodzki

71 return 1 ;
72 } else {
73 d = (d+1) % dimension ;
74 // I t e r a t e c y c l i c a l l y through a l l o ther dimensions

u n t i l the s tartDimension i s reached again
75 while (d != startDimens ion) {
76 i f (arg0 . getEntry (d) < arg1 . getEntry (d)) {
77 return −1;
78 } else
79 i f (arg0 . getEntry (d) > arg1 . getEntry (d)) {
80 return 1 ;
81 }
82 d = (d+1) % dimension ;
83 }
84 //The v e c t o r s have the same en t r i e s , t e l l them apart by

t h e i r hash codes .
85 i f (arg0 . hashCode () > arg1 . hashCode ()) {
86 return 1 ;
87 } else i f (arg0 . hashCode () < arg1 . hashCode ()) {
88 return −1;
89 }
90 return 0 ;
91 }
92 }
93
94 /∗∗
95 ∗ @return the startDimension , i . e . the dimension where

the l e x i c o g r a p h i c a l comparison i s s t a r t e d at ,
96 ∗ some va lue >=0 and <dimension .
97 ∗/
98 public int getStartDimens ion () {
99 return startDimens ion ;
100 }
101
102 /∗∗
103 ∗ @param startDimension s e t the dimension to s t a r t the

l e x i c o g r a p h i c a l comparison at . Po s s i b l e va l u e s l i e
in the

104 ∗ range [0 , dimension −1].
105 ∗ @throws Inva l idParameterExcept ion I f the g iven

startDimension parameter i s < 0 or g r ea t e r equa l to
the s e t dimension .

106 ∗/
107 public void setStartDimens ion (int startDimens ion) throws

Inval idParameterExcept ion {
108 i f (startDimens ion < 0) {
109 throw new Inval idParameterExcept ion (”Can only s e t

startDimens ion to a value g r e a t e r equal than 0 , ”
110 + ”but was g iven value ”+startDimens ion+” . ”) ;
111 }
112 i f (startDimens ion >= dimension) {
113 throw new Inval idParameterExcept ion (”Can only s e t a

startDimens ion s t r i c t l y l e s s to the dimension , ”
114 + ”but was s e t dimension ”+dimension+” and given

startDimens ion ”+startDimens ion+” . ”) ;
115 }
116 this . s tartDimens ion = startDimens ion ;
117 }
118

105

Martin Skrodzki

119 /∗∗
120 ∗ @return the dimension , i . e . the dimension o f the

v e c t o r s t ha t can be compared us ing t h i s comparator .
121 ∗/
122 public int getDimension () {
123 return dimension ;
124 }
125
126 /∗∗
127 ∗ @param dimension Set the dimension o f the v e c t o r s t ha t

are to be compared by t h i s l e x i c o g r a p h i c a l
comparator ,

128 ∗ p o s s i b l e va l u e s must be s t r i c t l y l a r g e r than 0 .
129 ∗ @throws Inva l idParameterExcept ion I f the g iven

dimension parameter i s <= 0 or s t r i c t l y l e s s than
the s e t s tartDimension .

130 ∗/
131 public void setDimension (int dimension) throws

Inval idParameterExcept ion {
132 i f (dimension <= 0) {
133 throw new Inval idParameterExcept ion (”Can only s e t

dimension to a value s t r i c t l y g r e a t e r than 0 , ”
134 + ” but was g iven value ”+dimension+” . ”) ;
135 }
136 i f (startDimens ion >= dimension) {
137 throw new Inval idParameterExcept ion (”Can only s e t a

dimension s t r i c t l y g r e a t e r to the startDimension ,
”

138 + ” but was g iven dimension ”+dimension+” and s e t
startDimens ion ”+startDimens ion+” . ”) ;

139 }
140 this . dimension = dimension ;
141 }
142
143 }

Listing B.1: Implementation of the Lexicographical Order as
described in Section 3.3.1.

106

Appendix C

Kd-Tree Sorting Class

1 package devMS . kdTree ;
2
3 import java . s e c u r i t y . Inval idParameterExcept ion ;
4 import java . u t i l . ArrayList ;
5 import java . u t i l . Co l l e c t i o n s ;
6 import java . u t i l . Comparator ;
7 import java . u t i l . L inkedLis t ;
8
9 import devMS . comparators . LexicographicalComparator ;
10
11 import jv . geom . PgPointSet ;
12 import jv . vecmath . PdVector ;
13
14 /∗∗
15 ∗ This c l a s s implements the a b s t r a c t c l a s s {@link KdTree } .

On top o f the f u n c t i o n a l i t y o f the a b s t r a c t c l a s s ,
16 ∗ t h i s c l a s s can a c t u a l l y b u i l d a KdTree . This i s done v ia

an i n i t i a l s o r t o f the po in t s in th r ee l i s t s :
17 ∗ One s o r t i n g accord ing to each dimension o f the po in t s .

The s o r t i n g s are maintained during the b u i l d i n g
proces s

18 ∗ and the reby i t i s t r i v i a l to f i nd the median .
19 ∗ @author Martin Skrodzk i
20 ∗/
21 public class KdTree Sorting extends KdTree {
22
23 /∗∗
24 ∗ Creates a KdTree from the g iven s e t o f po in t s by

c a l l i n g the method {@link #bu i ldTree (PgPointSet) } .
25 ∗ @param po in t s The s e t o f po in t s t h a t are to be

repre sen t ed by t h i s KdTree .
26 ∗ @throws Inva l idParameterExcept ion i f the g iven po in t

s e t i s NULL.
27 ∗/
28 public KdTree Sorting (PgPointSet po in t s) throws

Inval idParameterExcept ion {
29 super (po in t s) ;
30 bui ldTree (po in t s) ;
31 }
32
33 /∗ (non−Javadoc)

107

Martin Skrodzki

34 ∗ @see devMS . kdTree . KdTree#createTree (j v . geom . PgPointSet
)

35 ∗/
36 protected void bui ldTree (PgPointSet po in t s) {
37 int l ength = po in t s . getNumVertices () ;
38 //Create ArrayLis t s t h a t can be so r t ed l a t e r on us ing

the Co l l e c t i o n s . s o r t () method
39 ArrayList<ArrayList<PdVector>> s o r t i n g s = new ArrayList

<ArrayList<PdVector>>(dimension) ;
40 for (int i =0; i<dimension ; i++) {
41 s o r t i n g s . add (new ArrayList<PdVector>(l ength)) ;
42 }
43 // F i l l the ArrayLis t s wi th the po in t s from the base

geometry
44 for (int j =0; j<l ength ; j++) {
45 for (int i =0; i<dimension ; i++) {
46 s o r t i n g s . get (i) . add (po in t s . getVertex (j)) ;
47 }
48 }
49
50 // Sort the l i s t s
51 for (int i =0; i<dimension ; i++) {
52 Co l l e c t i o n s . s o r t (s o r t i n g s . get (i) , new

Lexicographica lComparator (i , dimension)) ;
53 }
54
55 //TODO Is so r t ed i n s e r t i o n f a s t e r than i n s e r t i o n and

s o r t i n g ?
56
57 this . root = r e cu r s i v eBu i l d (s o r t i ng s , 0 , 0 , length −1) ;
58 }
59
60 /∗∗
61 ∗ Recur s i v e l y b u i l d s a KdTree from a s e t o f po in t s . The

po in t s are g iven to the method in th r ee so r t ed l i s t s
.

62 ∗ The method f i n d s the median in the curren t s p l i t
dimension , s p l i t s a l l t h r e e l i s t s accord ing to the
median

63 ∗ and passes the l i s t s on r e cu r s i v e l y , wh i l e s t a t i n g on
what par t o f the l i s t s the recur s ion shou ld ac t .

64 ∗ @param so r t i n g s A l i s t o f s o r t ed l i s t s , where each
l i s t s r e a l i z e s a s o r t i n g a long a c e r t a i n dimension .

65 ∗ @param sp l i tDim The dimension in which to search f o r
the median .

66 ∗ @param s t a r t The s t a r t i n g index from where to work on
the l i s t s .

67 ∗ @param end The ending index where to end working on
the l i s t s .

68 ∗ @return A node r ep r e s en t i n g the roo t o f a KdTree
s t o r i n g a l l po in t s between s t a r t and end in the
g iven l i s t s .

69 ∗/
70 private Node r e cu r s i v eBu i l d (ArrayList<ArrayList<PdVector

>> s o r t i ng s , int spl itDim , int s t a r t , int end) {
71
72 //TODO Rewrite t h i s not to r e s o r t in the same place ,

but use an array tw ice as long and so r t in the
f i r s t and second h a l f a l t e r n a t i n g .

73

108

Martin Skrodzki

74 //No element has been passed to the method , re turn nu l l
75 i f (end < s t a r t) {
76 return null ;
77 }
78 //Only one element has been passed to the method ,

c r ea t e a l e a f con ta in ing t h i s e lement
79 i f (s t a r t == end) {
80 Node r e s u l t = new Node (null , null , Node .

noHyperplaneValue , spl itDim , s o r t i n g s . get (0) . get (
s t a r t) , true ,

81 indexTable . get (s o r t i n g s . get (0) . get (s t a r t))) ;
82 return r e s u l t ;
83 } else {
84 //There i s more than one element , app ly recur s ion
85 PdVector median = null ;
86 double s p l i tVa l u e = 0 ;
87 int medianIndex = (s t a r t+end) /2 ;
88 //Find the median accord ing to the g iven

sp l i tDimens ion
89 median = s o r t i n g s . get (sp l i tDim) . get (medianIndex) ;
90 sp l i tVa lu e = median . getEntry (spl i tDim) ;
91
92 // Par t i t i on the o ther two l i s t s a c co rd ing l y
93 for (int i =0; i<dimension ; i++) {
94 i f (i != spl i tDim) {
95 p a r t i t i o n (s o r t i n g s . get (i) , median , spl itDim ,

s ta r t , end , medianIndex) ;
96 }
97 }
98
99 //Create a new Node wi th two ch i l d r en be ing the

r e cu r s i v e p roce s s ing o f the r e s t o f the e lements
100 Node l e f t = r e cu r s i v eBu i l d (s o r t i ng s , (sp l i tDim+1) %

dimension , s t a r t , medianIndex−1) ;
101 Node r i g h t = r e cu r s i v eBu i l d (s o r t i ng s , (sp l i tDim+1) %

dimension , medianIndex+1,end) ;
102 Node r e s u l t = new Node (l e f t , r i ght , sp l i tVa lue ,

spl itDim , median , false , indexTable . get (median)) ;
103
104 return r e s u l t ;
105 }
106 }
107
108 /∗∗
109 ∗ Par t i t i o n s a par t o f a g iven l i s t , d e f ined by the

s t a r t and end index around a p i v o t e lement . The
s o r t i n g

110 ∗ o f the l i s t i s kep t i n t a c t wh i l e p a r t i t i o n i n g around
the p i v o t e lement .

111 ∗ @param so r t e dL i s t The so r t ed l i s t which par t i s to be
p a r t i t i o n e d .

112 ∗ @param p i v o t The p i v o t e lement around which to
p a r t i t i o n the i nd i c a t e d par t o f the g iven l i s t .

113 ∗ @param sp l i tDim The dimension accord ing to which the
comparator ac t s to keep the s o r t i n g i n t a c t

114 ∗ @param s t a r t The s t a r t i n g index i n d i c a t i n g where the
par t o f the l i s t s t a r t s t h a t i s to be p a r t i t i o n e d .

115 ∗ @param end The ending index i n d i c a t i n g where the par t
o f the l i s t ends t ha t i s to be p a r t i t i o n e d .

109

Martin Skrodzki

116 ∗ @param medianIndex The index o f the median wi th in the
r e l e v an t par t o f the l i s t .

117 ∗/
118 protected void pa r t i t i o n (ArrayList<PdVector> s o r t edL i s t ,
119 PdVector pivot ,
120 int spl itDim ,
121 int s t a r t ,
122 int end ,
123 int medianIndex) {
124
125 //Create a new Comparator to compare the e lements in

the so r t ed l i s t
126 Comparator<PdVector> comparator = new

Lexicographica lComparator (spl itDim , dimension) ;
127
128 //Create a Queue to s t o r e the e lements in
129 LinkedList<PdVector> queue = new LinkedList<PdVector>()

;
130 // s t o r e the f i r s t p o s i t i o n t ha t i s cons idered or known

to be empty
131 int smallestEmpty = s t a r t ;
132 // I t e r a t e through the so r t ed L i s t up to the medianIndex
133 for (int i=s t a r t ; i<=medianIndex ; i++) {
134 PdVector cur rent = so r t e dL i s t . get (i) ;
135 int comparison = comparator . compare (current , p ivot) ;
136 i f (comparison < 0) {
137 //The element i s sma l l e r than the p i v o t e lement and

has to be p laced on the l e f t
138 s o r t e dL i s t . s e t (smallestEmpty , cur rent) ;
139 smallestEmpty++;
140 }
141 i f (comparison > 0) {
142 //Add the element to the queue
143 queue . add (cur rent) ;
144 }
145 }
146 //Reached the p o s i t i o n o f the median , s t o r e i t here
147 s o r t e dL i s t . s e t (medianIndex , p ivot) ;
148 //Process the r i g h t s i d e o f the median , add a l l

p r e v i o u s l y queued i tems here
149 for (int i=medianIndex+1; i<=end ; i++) {
150 PdVector cur rent = so r t e dL i s t . get (i) ;
151 int comparison = comparator . compare (current , p ivot) ;
152 i f (comparison < 0) {
153 //The element i s sma l l e r than the p i v o t e lement and

has to be p laced on the l e f t
154 s o r t e dL i s t . s e t (smallestEmpty , cur rent) ;
155 smallestEmpty++;
156 } else {
157 i f (comparison > 0) {
158 //Add the element in the queue
159 queue . add (cur rent) ;
160 }
161 }
162 // In any case , p l a ce an element from the queue at

the current p o s i t i o n
163 s o r t e dL i s t . s e t (i , queue . pop ()) ;
164 }
165 }

110

Martin Skrodzki

166 }

Listing C.1: Implementation of a Kd-Tree as outlined in Section
3.3.3.

111

Martin Skrodzki

112

Appendix D

Kd-Tree Median Class

1 package devMS . kdTree ;
2
3 import java . s e c u r i t y . Inval idParameterExcept ion ;
4
5 import devMS . comparators . LexicographicalComparator ;
6 import devMS . median . IMedianAlgorithm ;
7
8 import jv . geom . PgPointSet ;
9 import jv . vecmath . PdVector ;
10
11 /∗∗
12 ∗ This c l a s s implements the a b s t r a c t c l a s s {@link KdTree } .

On top o f the f u n c t i o n a l i t y o f the a b s t r a c t c l a s s ,
13 ∗ t h i s c l a s s can a c t u a l l y b u i l d a KdTree . This i s done v ia

a r e cu r s i v e method t ha t f i n d s the median o f a po in t
14 ∗ s e t and p a r t i t i o n s the po in t s e t around the median .
15 ∗ @author Martin Skrodzk i
16 ∗/
17 public class KdTree Median extends KdTree {
18
19 /∗∗
20 ∗ An a lgor i thm to determine the median o f a s e t .
21 ∗/
22 protected IMedianAlgorithm medianAlgorithm ;
23
24 /∗∗
25 ∗ Severa l Lex i cog raph i ca l Comparators t ha t are used in

the r e cu r s i v e run o f
26 ∗ {@link #recu r s i v eBu i l d (PdVector [] , in t , in t , i n t)}

which are s t o r ed as a f i e l d o f the c l a s s to not
27 ∗ have to i n i t i a l i z e them in every run o f the recur s ion .
28 ∗/
29 protected Lexicographica lComparator [] dimComparator ;
30 protected Lexicographica lComparator comparator ;
31
32 /∗∗
33 ∗ Creates a KdTree from the g iven s e t o f po in t s by

c a l l i n g the method {@link #bu i ldTree (PgPointSet) } .
During

34 ∗ the b u i l d i n g proces s i t i s necessary to determine the
Median o f a s e t . This i s done by the g iven

113

Martin Skrodzki

35 ∗ median Algorithm .
36 ∗ @param po in t s The s e t o f po in t s which are to be

repre sen t ed by t h i s KdTree .
37 ∗ @param medianAlgorithm An a lgor i thm to determine the

median o f a s e t .
38 ∗ @throws Inva l idParameterExcept ion I f the g iven

dimension i s s t r i c t l y l e s s than 1 .
39 ∗/
40 public KdTree Median (PgPointSet points , IMedianAlgorithm

medianAlgorithm) throws Inval idParameterExcept ion {
41 super (po in t s) ;
42 i f (dimension <= 0) {
43 throw new Inval idParameterExcept ion (”Can not bu i ld a

KdTree on dimension < 1 , ”
44 + ”but was g iven dimension ”+dimension+” . ”) ;
45 }
46 this . medianAlgorithm = medianAlgorithm ;
47
48 // Set up a Lex i cog raph i ca l Comparator f o r each

dimension
49 for (int i =0; i<dimension ; i++) {
50 this . dimComparator [i] = new Lexicographica lComparator

(i , dimension) ;
51 }
52
53 //Bui ld the a c t ua l t r e e
54 bui ldTree (po in t s) ;
55 }
56
57 /∗ (non−Javadoc)
58 ∗ @see devMS . kdTree . KdTree#bu i ldTree (j v . geom . PgPointSet)
59 ∗/
60 protected void bui ldTree (PgPointSet po in t s) {
61 this . root = r e cu r s i v eBu i l d (po in t s . g e tVe r t i c e s () , 0 , 0 ,

po in t s . getNumVertices ()−1) ;
62 }
63
64 /∗∗
65 ∗ Recur s i v e l y b u i l d s a KdTree from a s e t o f po in t s . The

method f i n d s the median in the curren t s p l i t
66 ∗ dimension and p a r t i t i o n s the s e t a c co rd ing l y . I t i s

s p e c i f i e d by the i n d i c e s l e f t and r i g h t on what par t
67 ∗ o f the s e t the method ac t s .
68 ∗ @param po in t s The s e t o f po in t s to be repre sen t ed by

the KdTree t h i s method b u i l d s .
69 ∗ @param sp l i tDim The dimension in which to s p l i t the

se t , i . e . to f i nd the median ; a va lue >=0 and <
dimension .

70 ∗ @param l e f t The l e f tmo s t index o f the par t o f the
po in t s e t on which the method cu r r en t l y works .

71 ∗ @param r i g h t The r i gh tmos t index o f the par t o f the
po in t s e t on which the method cu r r en t l y works .

72 ∗ @return The roo t o f a KdTree r ep r e s en t i n g the g iven
po in t s .

73 ∗/
74 private Node r e cu r s i v eBu i l d (PdVector [] po ints , int

spl itDim , int l e f t , int r i g h t) {
75 //No po in t to be represented , i . e . roo t s t a y s NULL.
76 i f (l e f t > r i g h t) {

114

Martin Skrodzki

77 return null ;
78 } else
79 //Only one po in t to be represented , i . e . c r ea t e a l e a f

con ta in ing the s i n g l e po in t .
80 i f (l e f t == r i gh t) {
81 return new Node (null , null , Node . noHyperplaneValue ,

spl itDim , po in t s [l e f t] , true , indexTable . get (
po in t s [l e f t])) ;

82 } else {
83 // Switch to the co r r e c t comparator t ha t i s used to

compare the po in t s to the found median .
84 comparator = dimComparator [sp l i tDim] ;
85 int i = l e f t ;
86 int j = r i gh t ;
87 int m = (l e f t+r i gh t) /2 ;
88 PdVector median = medianAlgorithm . median (points ,

sp l i tDim) ;
89 //Proceed from l e f t to r i g h t and from r i g h t to l e f t

s imu l t aneous l y . I f po in t s on the l e f t are l a r g e r
90 // than the median or po in t s on the r i g h t are sma l l e r

than the median , exchange them .
91 while (i < j) {
92 while (comparator . compare (po in t s [i] , median) < 0) {

i++; }
93 while (comparator . compare (po in t s [j] , median) > 0) {

j++; }
94 PdVector temp = po in t s [i] ;
95 po in t s [i] = po in t s [j] ;
96 po in t s [j] = temp ;
97 }
98 // Recur s i v e l y c r ea t e a node s t o r i n g the median with a

l e f t and a r i g h t su b t r e e ho l d ing the po in t s
99 //which have been pa r t i t i o n e d to the l e f t or r i g h t o f

the median r e s p e c t i v e l y .
100 return new Node (r e cu r s i v eBu i l d (po ints , (sp l i tDim+1) %

dimension , l e f t , m−1) ,
101 r e cu r s i v eBu i l d (po ints , (sp l i tDim+1) %

dimension , m+1, r i g h t) ,
102 median . getEntry (spl i tDim) , spl itDim , median ,

false , indexTable . get (median)) ;
103 }
104 }
105 }

Listing D.1: Implementation of a Kd-Tree as outlined in Section
3.3.4.

115

Martin Skrodzki

116

Appendix E

Nearest Neighbor Computation
in abstract Kd-Tree

1 /∗∗
2 ∗ A recu r s i v e search f o r the input po in t w i th in the

KdTree i s performed . I t ends in a l e a f
3 ∗ o f the KdTree r ep r e s en t i n g the p o s i t i o n in t o which the

input po in t would have been s t o r ed .
4 ∗ From here the t r e e i s t r a v e r s ed backwards up to the

root , where every not ye t accessed sub t r e e
5 ∗ i s cons idered i f and only i f the sub t r e e might s t i l l

conta in po in t s c l o s e r to the input
6 ∗ po in t than the po in t s found so f a r and the sub t r e e i s

s t i l l w i t h in i n f l u en c e rad ius .
7 ∗ @param input A po in t around which to search f o r

ne i ghbor s .
8 ∗ @param count Number o f ne i ghbor s to be found .
9 ∗ @param in f l u en c e In f l u ence rad ius around the input

po in t to be cons idered .
10 ∗ @param currentBes t L i s t o f c u r r en t l y c l o s e s t po in t s

found .
11 ∗ @param cur ren tPos i t i on Node in the KdTree t ha t i s

c u r r en t l y examined .
12 ∗ @return A queue con ta in ing the found neighbors , where

the head o f the queue i s the one wi th the l a r g e s t
d i s t ance .

13 ∗/
14 protected Prior ityQueue<PdVector>

getInf luencedNumberOfNearestNeighbors (
15 PdVector input , int count , double i n f l u enc e ,

Prior ityQueue<PdVector> currentBest , Node
cur r entPos i t i on ,

16 Boolean inc lude Input) {
17 i f (cu r r en tPo s i t i on == null) {
18 //The cur r en tPos i t i on i s nu l l , noth ing can be done

here , re turn the cu r r en t l y known neares t
ne i ghbor s

19 return currentBest ;
20 } else {
21 //The curren t Pos i t i on conta ins a point , add i t to

the l i s t o f c u r r en t l y known neighbors ,

117

Martin Skrodzki

22 // i f i t f i t s the i n f l u en c e rad ius . I f the l i s t
becomes to large , trim i t

23 i f (inc lude Input | | (cu r r en tPo s i t i on . getPoint () .
hashCode () != input . hashCode ())) {

24 i f (cu r r en tPo s i t i on . getPoint () . d i s t (input) <=
in f l u e n c e) {

25 currentBest . add (cu r r en tPo s i t i on . getPoint ()) ;
26 }
27 i f (cur rentBest . s i z e () > count) {
28 currentBest . p o l l () ;
29 }
30 }
31 // I f the cur r en tPos i t i on i s a Leaf , r ecur s ion comes

to an end and the cu r r en t l y known
32 // neare s t ne i ghbor s are repor t ed
33 i f (cu r r en tPo s i t i on . i s L e a f ()) {
34 return currentBest ;
35 } else {
36
37 int sp l i tDim = cur r en tPo s i t i on . getSpl i tDim () ;
38 double inputSpl i tDimCoordinate = input . getEntry (

spl i tDim) ;
39 double cur rentPos i t i onSp l i tDimCoord inate =

cu r r en tPo s i t i on . getPoint () . getEntry (spl i tDim) ;
40
41 // I f the cur r en tPos i t i on i s not a Leaf , we can

app ly recur s ion to both s i d e s o f the hyperp lane
42 i f (inputSpl i tDimCoordinate <=

currentPos i t i onSp l i tDimCoord inate) {
43
44 //Examine the s i d e where the input po in t l i e s
45 currentBest =

getInf luencedNumberOfNearestNeighbors (
46 input , count , i n f l u enc e , currentBest ,

cu r r en tPo s i t i on . g e tLe f t () , inc lude Input) ;
47
48 i f ((cur rentBest . s i z e () < count)
49 && (i n f l u e n c e >= (Math . abs (

inputSpl i tDimCoordinate −
cur rentPos i t i onSp l i tDimCoord inate)))) {

50 // I f t h e r e are s t i l l ne i ghbor s miss ing and they
s t i l l l i e w i th in i n f l u en c e radius ,

51 //examine the o ther s ide , too
52 currentBest =

getInf luencedNumberOfNearestNeighbors (
53 input , count , i n f l u enc e , currentBest ,

cu r r en tPo s i t i on . getRight () , inc lude Input
) ;

54 } else {
55 // In case the needed amount o f ne i ghbor s has

a l r eady been found , the o ther s i d e i s on ly
examined

56 // i f po in t s might be c l o s e r to the input than
the po in t s found so f a r

57 PdVector currentWorstPoint = currentBest . peek ()
;

58 i f ((currentWorstPoint . d i s t (input) > (Math . abs (
inputSpl i tDimCoordinate −
cur rentPos i t i onSp l i tDimCoord inate)))

118

Martin Skrodzki

59 && (i n f l u e n c e >= (Math . abs (
inputSpl i tDimCoordinate −
cur rentPos i t i onSp l i tDimCoord inate)))) {

60 currentBest =
getInf luencedNumberOfNearestNeighbors (

61 input , count , i n f l u enc e , currentBest ,
cu r r en tPo s i t i on . getRight () ,
inc lude Input) ;

62 }
63 }
64 } else {
65
66 //Examine the s i d e where the input po in t l i e s
67 currentBest =

getInf luencedNumberOfNearestNeighbors (
68 input , count , i n f l u enc e , currentBest ,

cu r r en tPo s i t i on . getRight () , inc lude Input) ;
69
70 i f ((cur rentBest . s i z e () < count)
71 && (i n f l u e n c e >= (Math . abs (

inputSpl i tDimCoordinate −
cur rentPos i t i onSp l i tDimCoord inate)))) {

72 // I f t h e r e are s t i l l ne i ghbor s missing , examine
the o ther s ide , too

73 currentBest =
getInf luencedNumberOfNearestNeighbors (

74 input , count , i n f l u enc e , currentBest ,
cu r r en tPo s i t i on . g e tLe f t () , inc lude Input)
;

75 } else {
76 // In case the needed amount o f ne i ghbor s has

a l r eady been found , the o ther s i d e i s on ly
examined

77 // i f po in t s might be c l o s e r to the input than
the po in t s found so f a r

78 PdVector currentWorstPoint = currentBest . peek ()
;

79 i f ((currentWorstPoint . d i s t (input) > (Math . abs (
inputSpl i tDimCoordinate −
cur rentPos i t i onSp l i tDimCoord inate)))

80 && (i n f l u e n c e >= (Math . abs (
inputSpl i tDimCoordinate −
cur rentPos i t i onSp l i tDimCoord inate)))) {

81 currentBest =
getInf luencedNumberOfNearestNeighbors (

82 input , count , i n f l u enc e , currentBest ,
cu r r en tPo s i t i on . g e tLe f t () ,
inc lude Input) ;

83 }
84 }
85 }
86 return currentBest ;
87 }
88 }
89 }

Listing E.1: Implementation of the nearest neighbor algorithm as
given in Algorithm 9.

119

Martin Skrodzki

120

Appendix F

Implementation of alternative
Pivot Rules

1 import java . s e c u r i t y . Inval idParameterExcept ion ;
2
3 import jv . geom . PgPointSet ;
4 import jv . vecmath . PdVector ;
5
6 import devMS . comparators . LexicographicalComparator ;
7
8 /∗∗
9 ∗ This c l a s s implements the a b s t r a c t c l a s s {@link KdTree } .

On top o f the f u n c t i o n a l i t y o f the a b s t r a c t c l a s s ,
10 ∗ t h i s c l a s s can a c t u a l l y b u i l d a KdTree . This i s done v ia

a r e cu r s i v e b u i l d i n g method . The Tree i s b u i l d
11 ∗ us ing the po in t c l o s e s t to the middle o f the l a r g e s t

spread dimension as p i v o t e lement .
12 ∗ @author Martin Skrodzk i
13 ∗/
14 public class KdTree ClosestToMiddle extends KdTree {
15
16 public KdTree ClosestToMiddle (PgPointSet po in t s)
17 throws Inval idParameterExcept ion {
18 super (po in t s) ;
19 i f (dimension <= 0) {
20 throw new Inval idParameterExcept ion (”Can not bu i ld a

KdTree on dimension < 1 , ”
21 + ”but was g iven dimension ”+dimension+” . ”) ;
22 }
23 //Bui ld the a c t ua l t r e e
24 bui ldTree (po in t s) ;
25 }
26
27 /∗ (non−Javadoc)
28 ∗ @see devMS . kdTree . KdTree#bu i ldTree (j v . geom . PgPointSet)
29 ∗/
30 protected void bui ldTree (PgPointSet po in t s) {
31 PdVector minBound = new PdVector (po in t s .

getDimOfVertices ()) ;

121

Martin Skrodzki

32 PdVector maxBound = new PdVector (po in t s .
getDimOfVertices ()) ;

33 PdVector [] pointArray = new PdVector [po in t s .
getNumVertices ()] ;

34 for (int j =0; j<po in t s . getDimOfVertices () ; j++) {
35 minBound . setEntry (j , po in t s . getVertex (0) . getEntry (j))

;
36 maxBound . setEntry (j , po in t s . getVertex (0) . getEntry (j))

;
37 }
38 for (int i =0; i<po in t s . getNumVertices () ; i++) {
39 pointArray [i] = po in t s . getVertex (i) ;
40 for (int j =0; j<po in t s . getDimOfVertices () ; j++) {
41 i f (pointArray [i] . getEntry (j) < minBound . getEntry (j

)) {
42 minBound . setEntry (j , pointArray [i] . getEntry (j)) ;
43 }
44 i f (pointArray [i] . getEntry (j) > maxBound . getEntry (j

)) {
45 maxBound . setEntry (j , pointArray [i] . getEntry (j)) ;
46 }
47 }
48 }
49 this . root = r e cu r s i v eBu i l d (pointArray , minBound ,maxBound

, 0 , po in t s . getNumVertices ()−1) ;
50 }
51
52 /∗∗
53 ∗ Recur s i v e l y b u i l d s a KdTree from a s e t o f po in t s . The

po in t s are g iven to the method in an array .
54 ∗ The method f i n d s the po in t c l o s e s t to the middle o f

the l a r g e s t spread dimension , s p l i t s the array
55 ∗ accord ing to t h i s po in t and passes the l i s t s on

r e cu r s i v e l y , wh i l e s t a t i n g on what par t o f the array
56 ∗ the recur s ion shou ld ac t .
57 ∗ @param po in t s Points to be s t o r ed in the t r e e
58 ∗ @param minBound One o f the d e f i n i n g po in t s o f the

bounding box o f the po in t s e t .
59 ∗ @param maxBound The second d e f i n i n g po in t o f the

bounding box o f the po in t s e t .
60 ∗ @param l e f t Lef tmost index o f the po in t s array to be

inc luded .
61 ∗ @param r i g h t Rightmost index o f the po in t s array to be

inc luded .
62 ∗ @return Root o f a Kd−Tree s t o r i n g a l l p o in t s from the

g iven array .
63 ∗/
64 private Node r e cu r s i v eBu i l d (PdVector [] po ints , PdVector

minBound , PdVector maxBound , int l e f t , int r i g h t) {
65 //No po in t to be represented , i . e . roo t s t a y s NULL.
66 i f (l e f t > r i g h t) {
67 return null ;
68 } else
69 //Only one po in t to be represented , i . e . c r ea t e a l e a f

con ta in ing the s i n g l e po in t .
70 i f (l e f t == r i gh t) {
71 return new Node (null , null , Node . noHyperplaneValue ,

Node . noHyperplaneDim , po in t s [l e f t] , true) ;
72 } else {

122

Martin Skrodzki

73 //Find the l a r g e s t spread dimension
74 int largestSpreadDim = 0 ;
75 for (int i =1; i<minBound . g e tS i z e () ; i++) {
76 i f (Math . abs (maxBound . getEntry (i)−minBound . getEntry

(i))
77 > Math . abs (maxBound . getEntry (largestSpreadDim)−

minBound . getEntry (largestSpreadDim))) {
78 largestSpreadDim = i ;
79 }
80 }
81
82 //Determine the sp l i tVa l u e , i . e . middle o f the

l a r g e s t spread dimension
83 double s p l i tVa l u e = maxBound . getEntry (

largestSpreadDim)+minBound . getEntry (
largestSpreadDim) /2 ;

84
85 //Find the po in t c l o s e s t to the middle o f the l a r g e s t

spread dimension
86 PdVector p ivot = po in t s [l e f t] ;
87 int pivotIndex = l e f t ;
88 for (int i=l e f t +1; i<=r i gh t ; i++) {
89 double cur r en tD i s t = po in t s [i] . getEntry (

largestSpreadDim)−s p l i tVa lu e ;
90 double p ivo tD i s t = pivot . getEntry (largestSpreadDim

)−s p l i tVa lu e ;
91 i f (Math . abs (cu r r en tD i s t) < Math . abs (p ivo tD i s t)) {
92 p ivot = po in t s [i] ;
93 p ivotIndex = i ;
94 }
95 }
96 // Par t i t i on the s e t accord ing to the p i v o t e lement
97 int i = l e f t +1;
98 int j = r i gh t ;
99 LexicographicalComparator comparator = new

Lexicographica lComparator (largestSpreadDim ,
minBound . g e tS i z e ()) ;

100 //Place the p i v o t e lement in the f i r s t p l a ce
101 po in t s [p ivot Index] = po in t s [l e f t] ;
102 po in t s [l e f t] = p ivot ;
103 //Proceed from l e f t to r i g h t and from r i g h t to l e f t

s imu l t aneous l y . I f po in t s on the l e f t are l a r g e r
104 // than the median or po in t s on the r i g h t are sma l l e r

than the median , exchange them .
105 while (i < j) {
106 while ((i<j) && (comparator . compare (po in t s [i] ,

p ivot) <= 0)) { i++; }
107 while ((i<j) && (comparator . compare (po in t s [j] ,

p ivot) > 0)) { j−−; }
108 PdVector temp = po in t s [i] ;
109 po in t s [i] = po in t s [j] ;
110 po in t s [j] = temp ;
111 }
112 po in t s [l e f t] = po in t s [j] ;
113 po in t s [j] = p ivot ;
114 PdVector rightMinBound = PdVector . copyNew(minBound) ;
115 PdVector rightMaxBound = PdVector . copyNew(maxBound) ;
116 maxBound . setEntry (largestSpreadDim , sp l i tVa lu e) ;

123

Martin Skrodzki

117 rightMinBound . setEntry (largestSpreadDim , sp l i tVa lu e) ;
118
119 // Recur s i v e l y c r ea t e a node s t o r i n g the median with a

l e f t and a r i g h t su b t r e e ho l d ing the po in t s
120 //which have been pa r t i t i o n e d to the l e f t or r i g h t o f

the median r e s p e c t i v e l y .
121 return new Node (r e cu r s i v eBu i l d (po ints , minBound ,

maxBound , l e f t , j−1) ,
122 r e cu r s i v eBu i l d (po ints , rightMinBound ,

rightMaxBound , j +1, r i g h t) ,
123 p ivot . getEntry (largestSpreadDim) ,

largestSpreadDim , pivot , fa l se) ;
124 }
125 }
126 }

Listing F.1: Implementation of a Kd-Tree utilizing the alternative
pivot rule from [Moo91].

124

List of Figures

1.1 A 3D Scanner and a 3D printer. Picture taken from [Pro]. . . 1

2.1 The affine tangential plane TpS + p on a regular surface S
according to Definition 1. 8

2.2 Given a point pι and its neighborhood N4(p) = {x1, . . . , x4}
with the corresponding barycenter b. The tangent plane Tι
given by (2.4) includes b and has normal vector n. The points
x2 and x4 lie below the plane, while x1, x3, and in particular
pι lie above the plane. 9

2.3 On the left the usual smooth ∇ in red on a smooth surface S.
On the right the approximation (∇)|pι in red on a point set. . 14

2.4 On the left a vector field F : (x, y) 7→ (2x, 2y), with divF =
2 + 2 = 4. In the middle a vector field G : (x, y) 7→ (−y, x)
with divG = 0. On the right a point pι and a vector v that
is expressed in terms of the neighborhood of pι, defining the
divergence, i.e. the flow of pι in direction v. 15

2.5 Smoothing a noised cube with the the process from (2.18)
and the Laplacian as given in (2.16). The picture shows the
original noised point set as well as the smoothed point set after
60, 390, and 890 iterations. 23

2.6 Smoothing a noised cube with the the process from (2.18) and
the anisotropic Laplacian as given in (2.30). The picture shows
the original noised cube as well as the smoothed cube after 30,
80, and 150 iterations. The faces of a triangulation are only
shown for better feature visibility and the triangulation is not
used in the actual procedure, where only the underlying point
set is used. 25

2.7 A figure taken from [LP05] to illustrate the benefits of using
a neighborhood from a smooth point set. From left to right
the noised sample points and the smoothed point set after 15
respectively 50 iterations. 26

125

List of Figures Martin Skrodzki

3.1 A balanced Binary Search Tree for the first seven prime num-
bers. Circular shapes denote stored median values, while rect-
angular shapes denote stored input numbers ri. 30

3.2 A Binary Tree T which is queried for values a and b. The
value a is actually stored in a leaf α = a of the tree, while the
search path for value b in T ends in leaf β. Compare [Ber+08]. 33

3.3 An AVL Tree for the first seven prime numbers. 34

3.4 A set of eight points is recursively split with four hyperplanes
that define the corresponding Kd-Tree, which is also shown.
Note that the internal representing p6 has only one child. . . . 35

4.1 The labeling of a Quadtree and an Octree, cf [Bri05] and [Eri05]. 46

4.2 A set of nine points is recursively put into a Quadtree data
structure. The final Quadtree is also shown. Note how some
of the leafs are empty and the tree is not balanced. Compare
to [Bri05]. 46

4.3 From left to right: Different Quadtrees for the points p1, p2, p3

as given in (4.1) for values k = 1, 2, 3, 4. Note how the Quadtree
has exactly depth k in each illustration. 47

4.4 An R-Tree in R2 and the corresponding rectangles. The dotted
drawn rectangles correspond to internal nodes of the R-Tree,
while the fully drawn rectangles are rectangles storing the ac-
tual objects. In R8 the corresponding object is shown. See
[Gut84]. 51

5.1 Initial point set and its Kd-Tree with the query point p. . . . 57

5.2 Root is examined and stored as nearest neighbor. 57

5.3 Traversal continues to p3 which is new nearest neighbor. . . . 58

5.4 Traversal stops in leaf p1, but keeps p3 as nearest neighbor. . . 58

5.5 In the internal node p3, its subtree containing p2 is examined,
but p2 is further from p than p3. 58

5.6 The right subtree of p4 is rejected since the hyperplane through
p4 is further from p than the current nearest neighbor p3. . . . 59

5.7 A figure from [Moo91], showing how a bad distribution of
points can, for certain query points, lead to the necessity of
examining almost all nodes of the Kd-Tree. 61

5.8 A figure taken from [Moo91], illustrating the short-comings
of the ”median of the most spread dimension” pivot policy of
[Omo87], namely the creation of many slim regions. 65

126

List of Figures Martin Skrodzki

5.9 A figure taken from [Moo91], illustrating the alternative pivot
policy ”closest to the center of the most spread dimension”,
compare to Figure 5.8. 66

6.1 A set of 28 points. An arrow from point p to q indicates that
p was found to be smaller than q. The marked point a is the
median of medians. Note that all points in the gray region
are necessarily smaller than a, which was established directly
while computing the medians, or which is given by transitivity. 70

6.2 The process of computing the ”Remedian” median approxi-
mation. The initial data is written into Array 1, until it is
filled. Its median is stored in Array 2 and Array 1 is emptied,
more initial data is written into it. This process is iterated
over all Arrays and all initial data, until finally the median of
the last used Array gives the approximation of the median. . . 72

7.1 The initial start screen of the program. 76

7.2 An example geometry to illustrate the program’s abilities,
namely a point set sample of the Costa surface. 77

7.3 The images show from left to right and top to bottom: The
original point cloud, the point cloud with noise applied, the
smoothing process with animation offset 0.2, and the smooth-
ing process with animation offset 0.4. Note how the points
become darker during the animation, indicating that their po-
sition becomes more and more fixed. 79

7.4 The effect of the Z-Density Level parameter on the point cloud
of the Costa surface. 81

7.5 The effect of the different vertex colorings, from left to right
and top to bottom: Mean, MaxPrinc, CovQuotient, MeanAni,
PrincQuotient, MaxCov. 82

8.1 From left to right: A sampled version of the Costa surface, a
cylinder intersected with a plane segment, and a torus. 83

8.2 The different geometries and their number of vertices origi-
nally and after one, respectively two subdivisions. 83

127

List of Figures Martin Skrodzki

8.3 The shown data is taken from [SS] and was established by
performing 100 build operations, 1000 region queries and 1000
nearest neighbor searches on a geometry with 69649 vertices.
The two compared Kd-Tree implementations either determine
all composite coordinates from Definition 4 during the building
process and save them (Store) or determine the coordinates on
the fly when needed in queries (Compute). 84

8.4 Building time of the different Kd-Tree implementations on the
original geometries as shown in Figure 8.1. 85

8.5 Building time of the different Kd-Tree implementations on the
geometries, each subdivided once using Catmull-Clark. 86

8.6 Building time of the different Kd-Tree implementations on the
geometries, each subdivided twice using Catmull-Clark. 86

8.7 Development of the depth of the Kd-Trees obtained using the
”Closest to middle of most spread dimension” pivot strategy
on the original geometries as well as on their respective sub-
divisions. 87

8.8 Building times of the different Kd-Tree implementations. All
times are given in ms. The columns Costa, Cylinder, Torus
give the times for the original geometries, while the other
columns give the times for the once, respectively twice sub-
divided geometries. The numbers are plotted in Figures 8.4,
8.5, and 8.6. 88

8.9 Neighborhood computation times for different maximal neigh-
borhood sizes and a fixed (large) influence radius. The Kd-
Tree implementation shown is ”Sorting”. 89

8.10 Neighborhood computation times for different influence radii
and no restriction on the neighborhood size. The Kd-Tree
implementation shown is ”Sorting”. 90

8.11 Times for the computation of different sized neighborhoods
using Kd-Tree ”Sorting” and the ”Closest to Middle” imple-
mentation. On the top the times on the original cylinder ge-
ometry, in the middle the times on the geometry after one
subdivision, and on the bottom after two subdivisions. 92

8.12 Times for the computation of different sized neighborhoods us-
ing Kd-Tree ”Sorting” and the ”Closest to Middle” implemen-
tation. Times are taken on the original Costa surface without
subdivision and the experiment was repeat five times. The
plot shows the median. 93

128

List of Figures Martin Skrodzki

8.13 Neighborhood computation times for different influence radii
and no restriction on the neighborhood size using the ”Sort-
ing” and ”Closest to Middle” implementations. 94

129

List of Figures Martin Skrodzki

130

List of Algorithms

1 NearestNeighbor . 28
2 Binary Search . 29
3 1DimRangeQuery . 31
4 Build Kd-Tree . 36
5 Compare . 40
6 Build Kd-Tree Sorting . 43
7 Naive Nearest Neighbor . 53
8 Nearest Neighbor using PCA 55
9 Nearest Neighbor Kd-Trees 60
10 Randomized Select . 68
11 Deterministic Select . 69

131

List of Algorithms Martin Skrodzki

132

Listings

3.1 An abstract method to force the user of the class to imple-
ment a constructor-like method. Note that this method still
needs to be called by the user in the constructor of the class
implementing the abstract Kd-Tree. 41

3.2 Interface to use the Strategy design pattern for median com-
putation . 42

5.1 Methods provided by the abstract Kd-Tree class 62
7.1 A list of examplary settings to illustrate the program’s abillities. 77
A.1 Implementation of the technique outlined in Section 5.1. . . . 99
B.1 Implementation of the Lexicographical Order as described in

Section 3.3.1. 103

133

Listings Martin Skrodzki

134

Bibliography

[ABK98] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. “A
new Voronoi-based surface reconstruction algorithm”. In:
Proceedings of the 25th annual conference on Computer
graphics and interactive techniques. ACM. 1998, pp. 415–421.

[Ale+03] Marc Alexa et al. “Computing and rendering point set
surfaces”. In: Visualization and Computer Graphics, IEEE
Transactions on 9.1 (2003), pp. 3–15.

[Bär10] Christian Bär. Elementare Differentialgeometrie. German. 2nd.
De Gruyter, 2010. isbn: 978-3-11-022458-0.

[Ber+08] Mark de Berg et al. Computational Geometry. Algorithms and
Applications. English. 3rd. Springer, 2008. isbn:
978-3-540-77974-2.

[Bey+99] Kevin Beyer et al. “When is ?nearest neighbor? meaningful?”
In: Database Theory?ICDT?99. Springer, 1999, pp. 217–235.

[BF05] Chris Boehnen and Patrick Flynn. “Accuracy of 3D scanning
technologies in a face scanning scenario”. In: 3-D Digital
Imaging and Modeling, 2005. 3DIM 2005. Fifth International
Conference on. IEEE. 2005, pp. 310–317.

[Blu+73] Manuel Blum et al. “Time bounds for selection”. In: Journal of
computer and system sciences 7.4 (1973), pp. 448–461.

[Bri05] Thomas Brinkhoff. Geodatenbanksysteme in Theorie und
Praxis. Einführung in objektrelationale Geodatenbanken unter
besonderer Berücksichtigung von Oracle Spatial. German. 1st.
Herbert Wichmann, 2005. isbn: 3-87907-433-X.

[Buc+07] Ursula Buck et al. “Application of 3D documentation and
geometric reconstruction methods in traffic accident analysis:
with high resolution surface scanning, radiological MSCT/MRI
scanning and real data based animation”. In: Forensic science
international 170.1 (2007), pp. 20–28.

135

Bibliography Martin Skrodzki

[CDR00] Ulrich Clarenz, Udo Diewald, and Martin Rumpf. “Anisotropic
geometric diffusion in surface processing”. In: Proceedings of
the conference on Visualization’00. IEEE Computer Society
Press. 2000, pp. 397–405.

[Com79] Douglas Comer. “Ubiquitous B-tree”. In: ACM Computing
Surveys (CSUR) 11.2 (1979), pp. 121–137.

[Cor+13] Thomas H. Cormen et al. Algorithmen - eine Einführung.
German. 4th. Oldenbourg, 2013. isbn: 9783486748611.

[CZ05] Volker Coors and Alexander Zipf. 3D-Geoinformationssysteme.
Grundlagen und Anwendungen. German. 1st. Herbert
Wichmann, 2005. isbn: 3-87907-411-9.

[Des+99] Mathieu Desbrun et al. “Implicit fairing of irregular meshes
using diffusion and curvature flow”. In: Proceedings of the 26th
annual conference on Computer graphics and interactive
techniques. ACM Press/Addison-Wesley Publishing Co. 1999,
pp. 317–324.

[DZ99] Dorit Dor and Uri Zwick. “Selecting the median”. In: SIAM
Journal on Computing 28.5 (1999), pp. 1722–1758.

[Els+12] Jan Elseberg et al. “Comparison of nearest-neighbor-search
strategies and implementations for efficient shape registration”.
In: Journal of Software Engineering for Robotics 3.1 (2012),
pp. 2–12.

[Epp] David Eppstein. Deterministic selection. url:
http://www.ics.uci.edu/~eppstein/161/960130.html.

[Eri05] Christer Ericson. Real-Time Collision Detection. English. 1st.
Elsevier, 2005. isbn: 1-55860-732-3.

[FBF77] Jerome H Friedman, Jon Louis Bentley, and
Raphael Ari Finkel. “An algorithm for finding best matches in
logarithmic expected time”. In: ACM Transactions on
Mathematical Software (TOMS) 3.3 (1977), pp. 209–226.

[Fla98] David Flanagan. Java. In a nutshell. German. 2nd. O’Reilly,
1998. isbn: 3-89721-100-9.

[FR01] Michael S Floater and Martin Reimers. “Meshless
parameterization and surface reconstruction”. In: Computer
Aided Geometric Design 18.2 (2001), pp. 77–92.

136

http://www.ics.uci.edu/~eppstein/161/960130.html

Bibliography Martin Skrodzki

[FR75] Robert W. Floyd and Ronald L. Rivest. “Algorithm 489: The
Algorithm SELECT for Finding the Ith Smallest of N
Elements [M1]”. In: Commun. ACM 18.3 (Mar. 1975),
pp. 173–. issn: 0001-0782. doi: 10.1145/360680.360694. url:
http://doi.acm.org/10.1145/360680.360694.

[Gam+94] Erich Gamma et al. Design patterns: elements of reusable
object-oriented software. Pearson Education, 1994.

[GP11] Markus Gross and Hanspeter Pfister. Point-based graphics.
Morgan Kaufmann, 2011.

[Gut84] Antonin Guttman. R-trees: a dynamic index structure for
spatial searching. Vol. 14. 2. ACM, 1984.

[GUW02] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.
Database Systems. The complete book. English. 1st. Prentice
Hall, 2002. isbn: 0-13-031995-3.

[Han10] Andreas Handl. Multivariate Analysemethoden. Theorie und
Praxis multivariater Verfahren unter besonderer
Berücksichtigung von S-PLUS. German. 2nd. Springer, 2010.
isbn: 978-3-3642-14987-0.

[Her12] Philipp Herholz. “General discrete Laplace operators on
polygonal meshes”. Diploma Thesis. Humboldt-University
Berlin, 2012.

[JDD03] Thouis R Jones, Frédo Durand, and Mathieu Desbrun.
“Non-iterative, feature-preserving mesh smoothing”. In: ACM
Transactions on Graphics (TOG). Vol. 22. 3. ACM. 2003,
pp. 943–949.

[Jun11] Christopher Jung. “Vergleich von Quadtree, kd-tree und r-tree
für statische und dynamische Geodaten”. MA thesis. Cologne
University of Applied Sciences, 2011.

[Lam+02] Christopher Xu Fu Lam et al. “Scaffold development using 3D
printing with a starch-based polymer”. In: Materials Science
and Engineering: C 20.1 (2002), pp. 49–56.

[Leu+05] Barbara Leukers et al. “Hydroxyapatite scaffolds for bone
tissue engineering made by 3D printing”. In: Journal of
Materials Science: Materials in Medicine 16.12 (2005),
pp. 1121–1124.

137

http://dx.doi.org/10.1145/360680.360694
http://doi.acm.org/10.1145/360680.360694

Bibliography Martin Skrodzki

[Lev+00] Marc Levoy et al. “The digital Michelangelo project: 3D
scanning of large statues”. In: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques.
ACM Press/Addison-Wesley Publishing Co. 2000, pp. 131–144.

[Lev04] David Levin. “Mesh-independent surface interpolation”. In:
Geometric modeling for scientific visualization. Springer, 2004,
pp. 37–49.

[LP05] Carsten Lange and Konrad Polthier. “Anisotropic smoothing
of point sets”. In: Computer Aided Geometric Design 22.7
(2005), pp. 680–692.

[Moo91] Andrew Moore. An introductory tutorial on kd-trees. Tech. rep.
Technical Report No. 209, Computer Laboratory, University of
Cambridge. Pittsburgh, PA: Robotics Institute, Carnegie
Mellon University, 1991.

[Omo87] S.M. Omohundro. “Efficient Algorithms with Neural Network
Behavior”. In: Journal of Complex Systems 1.2 (1987),
pp. 273–347.

[Ora] Oracle. Java Platform, Standard Edition 7 API Specification.
url:
http://docs.oracle.com/javase/7/docs/api/overview-

summary.html.

[OW02] Thomas Ottmann and Peter Widmayer. Algorithmen und
Datenstrukturen. Spektrum, Akad. Verlag, 2002.

[Pau+02] Mark Pauly et al. Multiresolution modeling of point-sampled
geometry. Swiss Federal Institute of Technology, Computer
Science Department,[Institute of Visual Computing], Computer
Graphics Lab CGL, 2002.

[Pol+] Konrad Polthier et al. A 3D Geometry Viewer and a
Geometric Software Library written in Java. url:
http://www.javaview.de.

[PR99] Tobias Preußer and Martin Rumpf. “Anisotropic nonlinear
diffusion in flow visualization”. In: Visualization’99.
Proceedings. IEEE. 1999, pp. 325–539.

[Pro] Mathematical Geometry Processing. 3D Scanner. url:
http://www.mi.fu-berlin.de/en/math/groups/ag-

geom/3D_print/index.html.

138

http://docs.oracle.com/javase/7/docs/api/overview-summary.html
http://docs.oracle.com/javase/7/docs/api/overview-summary.html
http://www.javaview.de
http://www.mi.fu-berlin.de/en/math/groups/ag-geom/3D_print/index.html
http://www.mi.fu-berlin.de/en/math/groups/ag-geom/3D_print/index.html

Bibliography Martin Skrodzki

[Pro+03] Octavian Procopiuc et al. “Bkd-tree: A dynamic scalable
kd-tree”. In: Advances in Spatial and Temporal Databases.
Springer, 2003, pp. 46–65.

[RB90] Peter J Rousseeuw and Gilbert W Bassett Jr. “The remedian:
A robust averaging method for large data sets”. In: Journal of
the American Statistical Association 85.409 (1990), pp. 97–104.

[Ren+10] Fabian Rengier et al. “3D printing based on imaging data:
review of medical applications”. In: International journal of
computer assisted radiology and surgery 5.4 (2010),
pp. 335–341.

[RKV95] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent.
“Nearest neighbor queries”. In: ACM sigmod record. Vol. 24. 2.
ACM. 1995, pp. 71–79.

[RNI10] Miloš Radovanović, Alexandros Nanopoulos, and
Mirjana Ivanović. “Hubs in space: Popular nearest neighbors in
high-dimensional data”. In: The Journal of Machine Learning
Research 11 (2010), pp. 2487–2531.

[SC03] Shashi Shekhar and Sanjay Chawla. Spatial Databases. A Tour.
English. 1st. Pearson Education, 2003. isbn: 0-13-017480-7.

[Sed92] Robert Sedgewick. Algorithmen. German. Addison-Wesley,
1992.

[SS] Thomas Stollin and Martin Skrodzki. “Documentation of the
Project Orthogonal Range Searching”. Project Documentation
for the course Scientific Visualization by Konrad Polthier at
FU Berlin in 2013/14.

[SW11] Robert Sedgewick and Kevin Wayne. Algorithms. English. 4th.
Addison-Wesley, 2011. isbn: 978-0-321-57351-3.

[Tau95] Gabriel Taubin. “Estimating the tensor of curvature of a
surface from a polyhedral approximation”. In: Computer
Vision, 1995. Proceedings., Fifth International Conference on.
IEEE. 1995, pp. 902–907.

[Tho79] John A Thorpe. Elementary topics in differential geometry.
Springer, 1979.

[Vai89] Pravin M Vaidya. “An O(n logn) algorithm for the
all-nearest-neighbors problem”. In: Discrete & Computational
Geometry 4.1 (1989), pp. 101–115.

139

Bibliography Martin Skrodzki

[VMM99] Jörg Vollmer, Robert Mencl, and Heinrich Mueller. “Improved
laplacian smoothing of noisy surface meshes”. In: Computer
Graphics Forum. Vol. 18. 3. Wiley Online Library. 1999,
pp. 131–138.

140

	Introduction
	Overview
	Notation

	Point Cloud Smoothing
	Review of the Point Based Model
	Neighborhoods
	Tangent Spaces
	Isotropic Gaussian Fairing

	Curvatures of Point Sets
	Directional Curvatures
	Weingarten Map
	Estimation of weights and Principal Curvatures

	Anisotropic Mean Curvature Flow

	General idea of neighborhood computation and Kd-Trees
	General idea of neighborhood computation
	Theory of Kd-Trees
	Binary Search and linear Range Search
	Kd-Trees in Dimension d
	Generalization to finite d-dimensional point sets

	Implementations
	Lexicographical Order
	Abstract Kd-Tree
	Sorting
	Median

	Two more Spatial Data Structures
	Quadtree and Octree
	R-Tree
	Choice of a Data Structure, Curse of Dimensionality

	Nearest Neighbor Search
	Nearest Neighbor using PCA
	Nearest Neighbor Search using Kd-Trees
	Implementation in JavaView
	Alternative Pivot Policies for the Kd-Tree

	Median
	Randomization
	Deterministic Algorithm
	Approximation

	The Program
	General Procedure
	Example
	Setting Details

	Computational Results
	Building Times and Tree Depths
	Kd-Tree vs. PCA
	"Middle of most spread Dim." vs. Median
	Conclusion from computational results

	Conclusion and Further Research
	Appendix PCA Nearest Neighbor JavaView Implementation
	Appendix PCA Nearest Neighbor JavaView Implementation
	Appendix Kd-Tree Sorting Class
	Appendix Kd-Tree Median Class
	Appendix Nearest Neighbor Computation in abstract Kd-Tree
	Appendix Implementation of alternative Pivot Rules

