DGD One-bit sigma-delta modulation on a closed loop
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Numerical experiments & discussion

Overview of the problem

Our task:

» For K-bandlimited signals whose domain is T = {z € C : |z| = 1}, perform
1-bit 2A modulation

Why is it challenging?
» > A modulator requires causality, hence we have mismatch at the

initialization point and consequently large reconstruction error — need to
fix that!

Why is it useful?

» |f domain is extended from 1D to 2D closed manifolds, 1-bit 2/ modulation
can be used as a digital halftoning technique for 3D color printing

1-bit >~ A modulation

First order 1-bit XA scheme:

Vh = Vp—1 _|_yn — dn
gn = sign(v,_1 + y,)
initialize v_1 := 0

¥, - samples (input)
g» - quantized values (output) (1)
v, - state variables

Assumptions for signal f:
> f c L*(T), ie., fis 2m-periodic
> [l < 1
> fis K-bandlimited, i.e., f € [-K, K]
» samples y, = f(ziN”) .n=20,...,N—1, where
N = 2\K + 1 with oversampling parameter A > 1

Signal reconstruction

Sampling theorem & reconstructed signal:

where the reconstruction kernel is the Dirichlet kernel

sin((2K + 1)5)

@K(f)_ sin(%)
Reconstruction error:
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Can we get rid of the second term in the above estimate? Yes!

Proposed modification of XA scheme

. . . . |V/\/_ ’
> Aim: get rid of additional error term =7k ||

> ldea: run XA for updated samples , := y, + 9, where 6 = —~~ (2)

and reconstruct from resulting output g, using the Dirichlet kernel

Theorem (Krause-Solberg, Graf, Krahmer)

Using 1-bit ¥ A modulation scheme (1) on updated samples (y,), leads to
(V) with vy_1 = 0.

Reconstruction error after modification

From updated samples we get

1 = 27N
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Consider signal f(t) = 0.1sin(5t) cos(10t) + 0.2 with bandwidth 2K = 30.

Reconstruction error for first order > /A scheme
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Figure 1. Reconstruction error for classical first order scheme (dashed) and for modified
scheme (solid)

» Error is now distrubuted evenly, no large error at initialization point
» [°° norm of the error is reduced

Outlook: Reconstruction error for higher order > A schemes [2]
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Figure 2. Reconstruction error behavior for classical and for modified schemes

» Updates are higher order variants of (2)
» Error keeps oscillating around 0, constant shifts of (9(%) cannot be avoided

» Modified scheme optimizes oscillation amplitude around a constant shift,
thus leading to less visible artifacts

Halftoning via 1-bit ZA

-0.5

Halftoning via Error Diffusion
(classical algorithm)

-0.5
0

Figure 3. Representation of colors on a surface using digital halftoning

» 1-bit 2 A modulation as digital halftoning technique: works well because
error is a high-pass sequence while human eye acts as a low-pass filter [3]

» Major challenge in 3D digital halftoning: surfaces to be colored are closed

» 3D digital halftoning can be utilized in 3D printing tecnhologies which
rely on voxel-wise printing (e.g. HP Multi Jet Fusion) [4]
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