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Abstract A flexible bar-and-joint framework is said to be moving expansively if the
distance between any two of its joints either increases or stays the same. Expansive
motions of finite 2D frameworks have been fully characterized. Here, we investigate
their periodic counterparts. The key to their understanding is a family of one-degree-
of-freedom mechanisms called periodic pointed pseudo-triangulations. Expansive
infinitesimal motions for mechanisms with several degrees of freedom form a poly-
hedral cone whose extremal rays are obtained from different completions of the
framework to pseudo-triangulations. We illustrate its structure on a framework as-
sociated to a stellated tiling of the plane.
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1 Introduction

In this paper we study the kinematics of a remarkable family of planar periodic bar-

Fig. 1: A periodic
bar-and-joint frame-
work.

and-joint frameworks: those which possess periodic expansive
deformations. For instance, we show that the periodic frame-
work from Fig. 1 has locally a smooth 4-dimensional space of
periodic deformations and all directions for expansive trajec-
tories are contained in a polyhedral cone which has a natural
geometric description and can be determined with precision. By
definition, a one-parameter deformation of a flexible framework
is expansive if the distance between any pair of joints either in-
creases or stays the same. Taken in reverse, an expansive motion
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is contractive. Of particular interest are those one-degree-of-freedom (1dof) mech-
anisms which are expansive in some neighborhood of the initial configuration. We
show that all expansive deformations are, infinitesimally, linear combinations with
non-negative coefficients of underlying 1dof expansive mechanisms.

Expansion is a type of kinematic behavior with multiple applications which in-
clude deployable structure design and nano-mechanics. A popular example of a truss
structure with reversible expansion/contraction properties is Hoberman’s sphere [8].
Kovacs et al. [9] describe a kinematic model of a virus and argue that it has expan-
sive properties. More recently, Tanaka et al. [17, 18] study repetitive assemblies
with expanding properties. Expanding or auxetic features, as considered in the ma-
terials science literature [4–6, 10, 12] have been shown in [3] to be implied by the
stronger expansive property as defined above. In dimension two, finite expansive
framework deformations have applications to robot arm motion planning [14, 15]
and are well-understood mathematically [13–15]. One-degree-of-freedom expan-
sive frameworks arise from a planar pointed pseudo-triangulation with a convex hull
edge removed [15]. In the expansive interval, such a framework has a smooth config-
uration space. Infinitesimal expansive motions of mechanisms with more than one
degree-of-freedom form a polyhedral cone [13] whose extremal rays correspond to
refinements with just 1dof of the given linkage. Our purpose here is to demonstrate
a similar structure underlying planar periodic frameworks.

2 Preliminaries: periodic frameworks and deformations

Planar periodic frameworks. A periodic bar-and-joint framework (G,Γ , p,π) in
the plane is given by an infinite graph G, a periodicity group Γ acting on G, a
placement p of the vertices of G in the Euclidean plane and a representation π of
the periodicity group Γ by a lattice of translations. The edges are viewed as rigid
bars: they may rotate freely around their incident joints, and maintain their lengths
during framework deformations. The graph G = (V,E) has an infinite set of vertices
V and (unoriented) edges E and is connected. The periodicity group Γ is a free
Abelian group of rank two acting on G without fixed vertices or fixed edges. We
assume that the quotient multigraph G/Γ is finite, and denote the number of vertex
and edge orbits by n = |V/Γ | and m = |E/Γ |. For example, the periodic framework
in Fig. 1 has 6 vertex orbits and 9 edge orbits. The function p : V→ R2 gives a
specific placement of the vertices as points in the plane, in such a way that any
two vertices joined by an edge in E are mapped to distinct points. The placement is
periodic in the obvious sense that the abstract action of the periodicity group Γ is
replicated by the action of the periodicity lattice Λ = π(Γ ) on the placed vertices.

Periodic deformations. A one-parameter periodic deformation is a family of place-
ments and a family of lattices parametrized by time (p(t),π(t))t , such that all bar
lengths are maintained and the same abstract periodicity group Γ acts on all the
frameworks of the deformed family. A periodic framework is rigid if it has no pe-
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riodic deformations other than the trivial ones resulting from Euclidean isometries.
The configuration space of the periodic framework is obtained from the placements
of vertex orbits, subject to the algebraic constraints of prescribed (squared) lengths
for edges. We factor out the 3-dimensional space of planar rigid transformations.
This concept of periodic deformation was introduced in [1]. A framework is rigid
when corresponding to an isolated point of the configuration space; otherwise it is
flexible. After choosing vertex representatives for all vertex orbits and two gener-
ators for the periodicity lattice, the Jacobean matrix at a given placement p is a
(2n+ 4)×m matrix (called the periodic rigidity matrix and denoted by R) whose
rank thus cannot exceed 2n+ 1. At a regular point the rank of the Jacobean equals
the dimension of the configuration space in a small neighborhood. We say that a pe-
riodic framework is infinitesimally rigid if its periodic rigidity matrix has the max-
imum rank of 2n+ 1. In this case, the framework must have at least 2n+ 1 edges,
properly placed. In [2], we have characterized the graphs which are periodically
minimally rigid, when generically placed. A finite graph is said to be of “2n− 2”-
sparsity type if it has exactly 2n− 2 edges (where n is its number of vertices), and
any of its subsets of n′ ≤ n vertices spans at most 2n′−2 edges.

Theorem 1 [2] A (multi)graph with 2n+ 1 edges (on n vertices) is the quotient
graph of a minimally rigid periodic framework if and only if it contains a subgraph
of 2n−2 sparsity type spanning all the vertices.

A framework is minimally rigid if it is infinitesimally rigid and the removal of any
edge turns it into a flexible framework. Classical arguments can be used to show
that infinitesimal (periodic) rigidity implies (periodic) rigidity and that, if a periodic
framework is obtained from a minimally rigid one by the removal of k edges then
the rank of its rigidity matrix is 2n+1− k and its deformation space has dimension
k in a neighborhood of the given placement. We say, in this case, that the framework
has k degrees of freedom.

Periodic expansive motions. A one-parameter deformation (p(t),π(t))t∈(−ε,ε) of a
flexible framework is said to be expansive if, as the time t increases, all the distances
between pairs of vertices increase or stay the same. Here, (p(0),π(0)) gives the
initial framework and the corresponding infinitesimal deformation is the tangent
vector to the deformation space given by the derivative at 0.

We describe now a family of planar periodic frameworks distinguished by two
elementary and easy to verify properties.

Non-crossing periodic graphs. A periodic framework is non-crossing if all pairs of
non-incident bars are disjoint (they do not cross, touch or overlap). All the frame-
works illustrated in this paper are non-crossing. A non-crossing framework subdi-
vides the plane into two-dimensional regions, called faces. The periodicity group of
the given framework also acts on its set of faces. The examples in Fig. 2 have 3, 2,
3 and 3 face orbits, colored distinctly. Euler’s formula n−m+ f = 0 for the torus
relates the numbers n,m and f of vertex, edge and face orbits.

Periodic pseudo-triangulations. A pseudo-triangle is a simple closed planar poly-
gon with exactly three internal angles smaller than π . A set of vectors is pointed if
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no subset allows a linear combination with strictly positive coefficients that sums
to 0. Equivalently, for a pointed set of vectors, some consecutive pair (in the circu-
lar rotational order around the common vertex) induces an angle larger than π . A
planar non-crossing periodic framework is a periodic pointed pseudo-triangulation
when all faces are pseudo-triangles and the framework is pointed at every vertex.
An illustration for n = 3 is given in Fig. 2(d).

Proposition 2 [3] A periodic pseudo-triangulation has m = 2n, that is, the number
of edge orbits m = card(E/Γ ) is twice the number of vertex orbits n = card(V/Γ ).

Combined with Theorem 1, this proposition shows that periodic pointed pseudo-
triangulations have the right number of edges to be smooth one-degree-of-freedom
periodic mechanisms. The fact that this is indeed the case was proved in [3] based
on our generalization to the periodic setting of Maxwell’s Theorem [11] on liftings
and stresses of planar bar-and-joint frameworks, where we showed that a periodic
pseudo-triangulation cannot have nontrivial periodic stresses.

Proposition 3 [3] The local deformation space of a periodic pseudo-triangulation
is smooth and one-dimensional and continues to be so as long as the deformed
framework remains a pseudo-triangulation. This is true for any relaxation of peri-
odicity Γ̃ ⊂ Γ of finite index.

Finally, we have proved the following, most remarkable property of periodic pseudo-
triangulations.

Theorem 4 [3] Let (G,Γ , p,π) be a planar periodic pseudo-triangulation. Then
the framework has a one-parameter periodic deformation, which is expansive for
the entire open interval where it remains a pseudo-triangulation.

In the rest of this paper, we extend this result from periodic pointed pseudo-
triangulations to arbitrary pointed and non-crossing periodic frameworks and show
how to design expansive trajectories for them. Ultimately, we obtain a complete
characterization of the frameworks which support expansive motions. In addition,
we give a precise procedure for calculating the set of all possible infinitesimal ex-
pansive motions of a given framework, which we show to be a polyhedral cone,
called the cone of expansive infinitesimal motions. Expansive trajectories can be ob-
tained by integrating an appropriate vector field of expansive infinitesimal motions
belonging, at each point, to the corresponding cone.

3 Designing expansive trajectories: examples

We illustrate the theory presented so far with the four periodic frameworks from
Fig. 2, where they are depicted with colored face orbits and highlighted face rep-
resentatives to facilitate the visual identification of the periodicity lattice. These
examples are the stellated planar tilings of [7] (page 239). They are all non-crossing
and pointed, but only (d) is a pseudo-triangulation.
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(a) (b) (c) (d)
Fig. 2: Four pointed periodic tilings from [7].

Counting degrees of freedom. An argument similar to the one used in [3] (based
on our periodic extension of Maxwell’s Theorem) can be applied to show that none
of the examples in Fig. 2 (more generally, no periodic non-crossing and pointed
framework) supports a periodic stress. In particular, this implies that Theorem 1 can
be applied to compute their degrees of freedom, as follows.

Framework (a) has n = 6,m = 9, f = 3, and k = 2n+ 1−m = 4 dofs. Frame-
work (b) has n = 4,m = 6, f = 2, and k = 2n+ 1−m = 3 dofs. Framework (c)
has n = 6,m = 9, f = 3, and k = 2n+ 1−m = 4 dofs. Framework (d), which has
n= 3,m= 6, f = 3, and k= 2n+1−m= 1, has a well-defined one-parameter expan-
sive trajectory. This framework is a deformed configuration of the familiar Kagome
framework [3,16]. Our goal now is to explain our approach for designing expansive
trajectories for the other three frameworks (a), (b) and (c).

Fig. 3: The periodic framework from Fig. 2(a) can be
turned into pointed pseudo-triangulations by the addi-
tion of three edges on the large stellated face, placed in
14 distinct ways (shown here up to symmetries).

Subdividing faces. The faces of a
periodic non-crossing and pointed
framework which are not pseudo-
triangles can be subdivided by
new edges which maintain non-
crossing and pointedness. This is
always possible (Thm. 5 below),
but not uniquely. Fig. 3 illustrates
three of the ways in which the
large stellated face of the frame-

work from Fig. 2(a) can be subdivided; the others are obtained by applying appro-
priate symmetries to these three types of constructions, for a total of 14 possibilities.

Designing expansive trajectories. For the example under discussion, each of the 14
pseudo-triangulations induces a distinct expansive trajectory of the original frame-
work. However, these are not the only possibilities. One may imagine the following
scenario: start with one pseudo-triangulation and deform the original framework for
a small time step δ t according to its induced trajectory. Since the points have not
moved too much, there will still be 14 ways of pseudo-triangulating the deformed
framework, so now we may choose a different one. This can be continued for as
long as each of the intermediate pseudo-triangular frameworks retains its pointed-
ness. We remark that no crossings of edges will occur during an expansive motion:
joints move away from each other, by definition, and the same holds for arbitrary
points on the edges.
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This scenario can be further refined. If we make the time step δ t infinitesimally
small, we may look not just at the finite motions induced by the pointed pseudo-
triangular completions of the original framework, but also at the corresponding in-
finitesimal expansive motions.

Cone of infinitesimal expansive motions. Given an infinitesimal deformation and
a pair of vertices, the condition expressing the infinitesimal increase of the squared
distence between the vertices is a linear inequality: infinitesimal deformations on
one side of the equality subspace produce infinitesimal increase and on the other side
infinitesimal decrease. It follows that all expansive infinitesimal motions must lie in
a polyhedral cone with the apex at the origin which is the intersection of all half-
spaces determined by pairs of vertices. The extremal rays of this cone correspond

Fig. 4: A section of
the cone of infinitesi-
mal expansive motions
for the 4dof framework
from Fig. 2(a).

to the possible refinements of the framework to periodic
pseudo-triangulations. For the example in Fig. 2(a) there are
14 possibilities (Fig. 3), hence a section of the cone away
from the origin will result in a convex polyhedron in R3, with
14 vertices (Fig. 4). The combinatorics of this polyhedron
can be explained as follows: each face corresponds to adding
one more (non-crossing, pointedness respecting) edge-orbit
to the given framework (in 9 ways); an edge of the poly-
hedron corresponds to adding two edge-orbits to the frame-
work (21 ways), and a vertex of the polyhedron corresponds
to adding three edges, i.e. to one of the 14 ways in which the
framework can be completed to a pseudo-triangulation.

Convex faces and rigid components. The frameworks (b)
and (c) in Fig. 2 each have a convex face with more than 3

vertices. Such faces can be subdivided in many ways, but when all the possible edges
have been added, the result is a triangulation of the convex face. Since each triangle
is rigid, the triangulated face becomes a (periodically repeated) rigid component.
The pseudo-triangulation ultimately obtained will expand in a manner that does not
depend on how the convex face was triangulated. Therefore, although the framework
in Fig. 2(b) can be extended in 4 ways (two ways for the convex face and 2 ways
for the non-convex face) to a pseudo-triangulation, only two of them lead to distinct
expansive trajectories. The framework in Fig. 2(c) has only one face that can be
further subdivided, and it is convex: this framework supports exactly one expansive
trajectory, in spite of the fact that it can also be pseudo-triangulated in 14 ways.

4 Kinematics of periodic expansive motions

We now present a complete characterization of the frameworks which support ex-
pansive motions. First, we who that any periodic non-crossing and pointed frame-
work can be extended to a pointed pseudo-triangulation by subdividing faces. The
next goal is to understand the rigid components, as we have already seen in the
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previous examples that they play a role in determining the expansive behavior of a
periodic non-crossing and pointed framework.

Extending a periodic non-crossing pointed framework to a pseudo-triangulation.
There is a simple procedure for designing frameworks similar to those shown in
Fig. 3: start with an arbitrary periodic point set in general position (i.e. triplets of
points are collinear only when they belong to the same orbit). Then insert edge rep-
resentatives, one by one, maintaining non-crossing and pointedness, and replicate
them periodically. The following theorem proves the correctness of this procedure.

(a) (b) (c) (d)

Fig. 5: Extending a periodic pointed non-crossing framework which is not a pseudo-triangulation.
(a) All graph cycles are trivial homology cycles. (b) Cycles span a one-dimensional homology
subspace. (c, d) Cycles span the full (rational) homology group of the torus.

Theorem 5 Let G be a non-crossing and pointed periodic framework which is not a
pseudo-triangulation. Then there exists a new edge orbit which can be added, while
maintaining the non-crossing and pointedness of the framework.

Proof. Compared to the proof for finite pseudo-triangulations [15], in the periodic
setting we have to show that it is not possible that the only non-crossing edges that
could be inserted have endpoints in the same orbit. The proof proceeds through a
case analysis of three possible situations, differentiated by the nature of the cycles
of the quotient graph G/Γ , when viewed as a graph embedded on the (flat) torus:
(a) all graph cycles are trivial homology cycles; (b) cycles span a one-dimensional
homology subspace and (c) cycles span the full homology group of the torus. We
now reason in the Euclidean plane and for the infinite framework G. In case (a),
G is disconnected and all its connected components (which repeat periodically) are
finite frameworks (Fig. 5(a)). Vertices in the same orbit do not belong to the same
component, and the planar subdivision induced by G has exactly one unbounded
face F . If two such connected components are visible to each other, then a standard
geometric argument as in [15], based on (piecewise linear) geodesic paths, shows
the existance of a tangent edge. Since it lies in the unbounded face, the tangent does
not cross any existing edge, and since it is tangent, its endpoints are pointed, hence
it satisfies the conclusion. In case (b) (illustrated in Fig. 5(b)), G is still disconnected
but at least one of its connected components (as a subgraph) is infinite (and so are
all of its periodically repeated copies). The existence of a tangent segment, with
endpoints lying on two different connected components, and not in the same vertex
orbit, follows by taking a geodesic path between two non-adjacent, inner convex
vertices on the infinite face: such a path is piecewise linear and contains at least one
tangent edge. Finally, in case (c) (illustrated in Fig. 5(c, d)) all the face cycles of
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the periodic graph G are finite and thus enclose polygonal regions (which may have
holes). However, such a face cycle may contain vertices belonging to the same orbit
(Fig. 5(c, d)). If such a face is not an empty pseudo-triangle, then it will have an
internal tangent along the geodesic path joining two inner convex vertices. All that
remains to be shown is that the two endpoints of one such tangent are not in the same
vertex orbit. This follows from two observations: (a) on any simple polygonal cycle,
the vertices in the same orbit appear with an inner reflex angle at most once, and (b)
if an edge is tangent to a polygonal chain, then the inner angles of the polygonal
cycle at these endpoints are both reflex.

The examples in Fig. 5 (where vertices of the same color indicate that they are
in the same orbit) have been chosen to illustrate the properties used in the proof of
the theorem. Each subsequent framework is obtained by inserting a tangent in the
previous one.

As a corollary we obtain:

Corollary 6 (Flips in pseudo-triangulations) If we remove an edge orbit from a
periodic pointed pseudo-triangulation, then there always exists a different edge or-
bit that can be added to obtain another pointed pseudo-triangulation.

Fig. 6: A flip in a periodic pointed pseudo-triangulation.

Proof. We use an idea from
finite pointed pseudo-triangu-
lations [15], namely that the
removal of one edge creates
a face with four inner con-
vex angles (as in Fig. 6, mid-
dle), which can be pseudo-
triangulated in two ways by

two distinct tangents (Fig. 6, left and right). The argument from case (c) of Theo-
rem 5 shows that the endpoints of these tangents belong to distinct vertex orbits.

Kinematically equivalent frameworks. A flexible framework decomposes into
rigid parts called rigid components (Fig. 7). Two periodic frameworks on the same
point set are kinematically equivalent if one is obtained from the other by placing
differently the bars inside rigid components, while maintaining them rigid. Such
frameworks have the same configuration space. An example is illustrated in Fig. 7.
Since adding a bar to a rigid component does not change the deformation space, we
assume that our frameworks are non-redundant, i.e. they use the minimum number
of bars on all rigid components.

Proposition 7 A rigid component of a periodic pseudo-triangulation is a finite
pointed pseudo-triangulation; in particular, it is contained in its convex hull.

Proof. We only need to prove that a rigid component is finite. Then we apply a
result from [15] about finite pointed pseudo-triangulations, which are contained in
their convex hulls. An infinite rigid component must be, as an induced graph, pe-
riodically rigid, hence its quotient graph (on n′ vertices) has 2n′+ 1 edges. As an
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induced graph, it is still pointed and non-crossing, hence it has at most 2n′ edges, a
contradiction. Hence there can’t be any infinite rigid components.

Theorem 8 A non-redundant periodic framework is an expansive 1dof mechanism
if and only if it is a periodic pointed pseudo-triangulation, or is kinematically equiv-
alent to one. A periodic framework has an expansive deformation if and only if it is
pointed and non-crossing or is kinematically equivalent to one.

Fig. 7: A rigid component in a periodic pseudo-
triangulation and a kinematically equivalent framework.

Proof. Indeed, if a set of points
belong to a rigid component,
the way they are interconnected
does not matter (they stay at the
same distance anyway), so we
can replace the interconnecting
pseudo-triangulation with any
finite minimally rigid (Laman)
graph. The construction may vi-
olate pointedness and it may be
self-intersecting, but only in the

interior region of the rigid component convex hull. Fig. 7 illustrates the idea.

The cone of infinitesimal expansive motions of a periodic non-crossing and
pointed framework. It is possible to compute with precision how many, and which
edges can be used for subdividing a face into pseudo-triangles. This information
is related to a combinatorial characterization of the polyhedral cone of expansive
motions, and is a natural generalization of a similar result for the finite case [13].

Theorem 9 A planar periodic non-crossing and pointed framework with n vertex
orbits and m = 2n− k edge orbits has a smooth local deformation space of dimen-
sion k + 1 and allows expansive deformation trajectories. The set of all possible
directions for these expansive trajectories forms a polyhedral cone in the infinitesi-
mal deformation space of the given framework. This cone of expansive infinitesimal
motions has dimension at most k + 1 and all its extremal rays are obtained from
completions of the framework to periodic pointed pseudo-triangulations.

Proof. (Sketch) The first statement is a direct consequence of the previous discus-
sion and of the results in [2]. The cone of expansive motions is given as the half-
space intersection of the set of all linear inequalities that express the property of
infinitesimal expansiveness for a pair of vertices in the periodic framework. Corol-
lary 6 characterizes the edges of the cone. The extension to faces of all dimensions
is a direct generalization of the argument used in the finite case [13].

As a final remark, we point out that if a non-crossing and pointed periodic frame-
work has convex faces, these faces must be rigid in any expansive deformation. Any
triangulation of a convex face will serve the purpose of rigidifying it.

Conclusion. In this paper, we have characterized those planar non-crossing periodic
bar-and-joint frameworks which allow an expansive deformation trajectory. Those



10 Ciprian S. Borcea and Ileana Streinu

with a single degree of freedom are the periodic pointed pseudo-triangulations or
are obtained from them by simple replacement operations on rigid components.
For several degrees of freedom, we investigated all completions of the framework
to 1dof expansive mechanisms (up to kinematic equivalence). Infinitesimally, they
provide the extremal rays of the cone of infinitesimal expansive motions.

Acknowledgements. The authors are partially supported by National Science Foun-
dation grant CCF-1319366. This research was conducted while visiting Technis-
che Universität München, with funding for the second author from the DFG-
Collaborative Research Center TRR109, Discretization in Geometry and Dynamics.

References

1. Borcea, C.S. and Streinu, I.: Periodic frameworks and flexibility, Proc. Royal Society London
A 466 (2010), 2633-2649.

2. Borcea, C.S. and Streinu, I.: Minimally rigid periodic graphs, Bulletin London Mathematical
Society 46 (2011), 1093-1103. doi:10.1112/blms/bdr044

3. Borcea, C.S. and Streinu, I.: Liftings and stresses of periodic frameworks, to appear, Proc.
30th Annual Symp. on Computational Geometry (SoCG’14), Kyoto, June 2014.

4. Greaves, G.N., Greer, A.I., Lakes, R.S. and Rouxel, T. : Poisson’s ratio and modern materi-
als, Nature Materials 10 (2011), 823-837.

5. Grima, J.N., Alderson, A. and Evans, K.E.: Auxetic behaviour from rotating rigid units, Phys-
ica status solidi (b) 242 (2005), 561-575.

6. Grima J.N., Chetcuti E., Manicaro E., Attard D., Camilleri M., Gatt R. and Evans K.E..: On
the auxetic properties of generic rotating rigid triangles, Proc. Royal Society A 468 (2012),
810830.
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