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ABSTRACT

We formulate and prove a periodic analog of Maxwell’s the-
orem relating stressed planar frameworks and their liftings
to polyhedral surfaces with spherical topology. We use our
lifting theorem to prove rigidity-theoretic properties for pla-
nar periodic pseudo-triangulations, generalizing their finite
counterparts. These properties are then applied to questions
originating in mathematical crystallography and materials
science, concerning planar periodic auxetic structures and
ultrarigid periodic frameworks.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Non-numerical algorithms and problems—Geometric
Problems and Computations; G.2.2 [Discrete Mathemat-
ics]: Graph Theory

Keywords

Maxwell’s theorem, periodic framework, periodic stress, lift-
ings, periodic pseudo-triangulation, expansive motion, aux-
etics, ultrarigidity

1. INTRODUCTION

A remarkable correspondence (see Fig. 1) between planar
stressed graphs, their duals and polyhedral surfaces with a
spherical topology has been established in 1870 by James
Clerk Maxwell:

Maxwell’s Theorem [21] A planar geometric graph (G, p)
supports a mon-trivial stress on its edges iff it has a dual
reciprocal diagram iff it has a non-trivial lifting to 3D as a
polyhedral terrain.
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Definitions are given in Section 2. A closely related in-
stance of this theorem is the classical correspondence be-
tween Voronoi diagrams, Delauney tesselations, and their
3D lifting onto a paraboloid.

Maxwell’s theorem has many applications, more recently
in robustness of geometric algorithms, rigidity theory, poly-
hedral combinatorics and computational geometry [10, 17,
24, 25, 9, 29]. Relevant to our paper is its role in establishing
the existence of planar expansive motions used in the solu-
tion to the Carpenter’s Rule problem [9], and in proving the
expansive properties of pointed pseudo-triangulation mech-
anisms that are central to the algorithm for convexifying
simple planar polygons of [28, 29].

Figure 1: A finite planar stressed graph and a Maxwell
lifting.

Our results. In this paper we prove the following periodic
analog of Maxwell’s theorem.

Main Theorem Let (G,T',p,m) be a planar non-crossing
periodic framework. A stress induced by a periodic lifting
is a periodic stress and conversely, any periodic stress is
induced by a periodic lifting, determined up to an arbitrary
additive constant.

The precise definitions, previewed in Fig. 2, will be given
in Section 3. Non-crossing periodic graphs can be seen as
graphs embedded on the flat torus. However, as it will be-
come clear from our proof, to reason on a fixed torus would
be too restrictive a perspective. The most important ingre-
dient that makes possible this result is our recent definition



Figure 2: (a) A stressed periodic framework. Vertex
and edge orbits are similarly colored. (b) Coloring the
faces helps visualize its 3D lifting as a periodic arrange-
ment of cubes.

[2] of periodic rigidity, which allows the periodicity lattice to
deform. The corresponding dual concept of periodic stress
from [2] turns out to be precisely the notion of stress that is
needed for the Main Theorem. It is more constrained than
the classical self-stress based solely on equilibrium at all ver-
tices; to maintain a proper distinction, we refer to the latter
one as an equilibrium stress.

This result was motivated by questions from mathematical
crystallography and computational materials science. We
demonstrate its power with two applications: ultrarigid and
auxetic frameworks.

Ultrarigidity of periodic frameworks. Our proof of
the correspondence between periodic liftings and periodic
stresses will proceed by showing how to obtain a transpar-
ent, algebraic matching of all the concepts involved after a
sufficient relazation of periodicity. Such relaxations are also
essential tools for estimating the asymptotic behavior of a
periodic framework. Fig. 3 illustrates the concept.

Figure 3: A periodic framework and a 2 x 1 relaxation
of its lattice.

By definition [4], a periodic framework is ultrarigid if it is
and remains infinitesimally rigid under arbitrary relaxations
of periodicity to subgroups of finite index. Our new proof
techniques will lead to an infinite family of ultrarigid exam-
ples, obtained from:

Periodic pseudo-triangulations. We use the Main The-
orem to study a new class of planar non-crossing periodic
frameworks called periodic pointed pseudo-triangulations or
shortly periodic pseudo-triangulations. They are a natural
analog of the finite version defined and studied in [28, 29]
and possess mutatis mutandis many outstanding character-
istics related to rigidity and deformations [28, 29, 26, 27].

Figure 4: A periodic pseudo-triangulation.

Here we focus on the ezpansive one-degree-of-freedom mech-
anisms they provide and on the noteworthy property, in the
periodic setting, of becoming ultrarigid after one edge-orbit
insertion.

Deformations: auxetic and expansive behavior. The
significance of expansive motions is well recognized in the fi-
nite setting [9, 29, 27]: when the distance between any pair
of vertices cannot decrease, self-collision of the framework
is avoided. Periodic expansive motions have not yet been
explored, although a related, yet weaker notion of auzetic
behavior, has recently attracted a lot of attention in mate-
rials science [11, 18, 23]. Since these concepts arise in such
different fields, we include a brief and necessarily selective
overview of the relations existing between the purely geo-
metric theory pursued in this paper and the larger context
explored in crystallography, solid state physics and materials
science [19, 30].

The notion of auzetic behavior is formulated using the con-
cept of negative Poisson’s ratio [12, 11], which relies on phys-
ical properties of the material: when two forces pull in op-
posite directions along an axis, most materials are expected
to expand along this axis and to contract along directions
perpendicular to it. Auxetic behavior refers to the rather

Figure 5: The “reentrant” honeycomb is the emblematic
auxetic example.

counter-intuitive lateral widening upon application of a lon-
gitudinal tensile strain. A purely geometric expression of
this behavior is not anticipated in all situations. However,
for periodic frameworks, we have recently proposed the gen-
eral geometric notion of auzetic path in the deformation
space of the periodic framework [6]. Relying on this for-
mulation, we prove that an expansive deformation path is
necessarily an auxetic path. Periodic pseudo-triangulations



thus exhibit auxetic behavior and offer an infinite supply of
planar examples of “auxetic frameworks”. By contrast, only
a few, sporadic auxetic periodic examples have appeared in
the literature (see Fig. 5).

Organization. In Sect. 2 we formulate the correspondence
between liftings and stresses in (finite or infinite) graphs,
and introduce the standard example that differentiates be-
tween the equilibrium and periodic versions of stress. Sect. 3
specializes these concepts to periodic liftings and stresses.
Sect. 4 completes the proof of our Main Theorem by provid-
ing the link with periodic rigidity. The theorem is then ap-
plied in Sect. 5 to prove that periodic pseudo-triangulations
have expansive paths. The connections with auxetic behav-
ior and ultrarigidity conclude the paper.

2. LIFTINGS AND STRESSES

To formulate and prove our Main Theorem, we start with
those concepts and properties that do not depend (yet) on
periodicity, which is introduced in the next section.

Planar graphs and frameworks. A graph G = (V, E) is
given by a (discrete) set of vertices V and a set of edges E.
We consider only locally finite, simple, unoriented graphs.
A placement or (straight-line) realization of G in R? is given
by a mapping p : V — R? of the vertices to points in R?,
such that the two endpoints of any edge e € F are mapped
to distinct points in R? and an edge {u,v} is mapped to
a segment [p(u),p(v)]. We assume that all placements are
locally finite maps in R? or R®, and we use the term pla-
nar placement for R%, when the distinction is necessary. A
framework or geometric graph (G,p) is a graph G together
with a placement p.

A planar placement is non-crossing if any pair of edges
induces disjoint closed segments, with the possible excep-
tion of the common endpoint, if the edges are adjacent. A
graph G is planar if it admits a non-crossing placement.’
We will consider only connected graphs, therefore a non-
crossing placement (G, p) induces a connected subset of the
plane. A face U is a connected component of the comple-
ment, and is described combinatorially by the cyclic collec-
tion of its boundary vertices or edges. When referring to a
planar graph G, we assume that the choice of face cycles F’
has already been decided: G now denotes the entire collec-
tion G = (V, E, F) of vertices V, edges E and face cycles F'.
We assume that the boundary of each face is a simple finite
polygon.

The dual G* = (V*,E*,F*) of a (finite or infinite) pla-
nar graph G is defined as the abstract planar graph whose
vertices V* correspond to the faces F of G (V* = F), and
whose edges E* are in one-to-one correspondence with the
edges E of G, as follows: if two faces U and W share an edge
e, then the dual vertices U* and W* are connected by the
dual edge e*. We note that even when the underlying graph
G = (V,E,F) of a framework (G,p) is a planar graph, the
particular placement p of the framework may have crossings:
we still may refer to the realization of a face, although it may
be a self-intersecting polygon.

!Note that we use planar for the graph, as is customary
in graph theory, and non-crossing for the framework. Our
use of planar framework is customary in rigidity theory, and
refers to a placement in the plane.

An edge {u,w} of a planar non-crossing framework induces
a segment [p(u), p(w)], and it belongs to the boundary of ez-
actly two faces, say U and W. In the dual graph G* = (F, E)
these two faces U and W represent two vertices connected
by the unoriented edge {U, W} dual to {u,w}. Later on,
we will need to match an oriented edge in the primal graph
G = (V,E) with an orientation of its dual edge in G* =
(F, E). We use the following convention. The oriented edge
segment [p(u), p(w)] gives opposite senses for going around
face U and face W, say counter-clockwise around W and
clockwise around U. Then the matching orientation of the
edge in the dual graph G* is from U to W. This match-
ing orientation on a pair of dual edges gives a well-formed
double pair ((u,w), (U, W)), or simply a tetrad (u, w, U, W).
In computational geometry, these tetrads are implicit in the
quad-edge data structure used for representing general sur-
faces [16]. Reversing orientation on the edge gives the tetrad
(w,u, W,U). Below, we will refer to cycles (called face-
cycles) of oriented edges in the dual graph G* = (F, F): the
orientation rule described above gives an unambiguous cor-
respondence with oriented edges (u,v) in the primal graph
G and their corresponding edge vectors p(v) — p(u) in a ge-
ometric placement p of G.

Stressed frameworks. An equilibrium stress or, shortly, a
stress on a planar (finite or infinite, possibly crossing) frame-
work? is an assignment s : E — R of scalar values {s.}cer
to the edges E of G in such a way that the edge vectors
incident to each vertex v € V, scaled by their corresponding
stresses, are in equilibrium, i.e. sum up to zero:

Z se(p(v) —p(u)) =0, forfixedueV (1)
e={u,v}€E

When all s, are zero, the stress s is trivial; when all s, # 0,
the stress is called nowhere zero. The space of all equilibrium
stresses of a framework is a vector space, so if a framework
has a non-trivial stress, then it is not unique; in particular,
any rescaling of it is also a stress.

Lifting. A lifting of the planar framework (G,p) is a con-
tinuous function H : R? — R whose restriction to any face is
an affine function. The lifting assigns a height H(q) to each
point ¢ in R? (seen as the plane z =0 in ]RB)7 in such a way
that the lifted polygonal faces are flat (all cycle vertices lie
in the same plane) and connect continuously along the edge
segments. The height function is completely determined by
the values H(p(v)) at the vertices of the framework, and its
graph appears as a polyhedral surface or terrain over the
face-tiling in the reference plane. A lifting is trivial if all
its faces lie in the same plane, and strict if no two adjacent
faces are coplanar.

We now move on to the correspondences involved in Maxwell’s
theorem.

Stress associated to lifting. Let H be a lifting of a frame-
work (G,p). With usual dot product notation, the expres-
sion of H restricted to a face U takes the form H(q) =
vy -q+Cy, for ¢ € U C R?, where vy € R? is the projection
on the reference plane of the normal to face U and Cy € R.

The vectors and constants H = (vy,Cu)uer are subject to
the compatibility conditions on edges {u, v} shared by pairs

2Also called a self-stress in the rigidity theory literature.
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Figure 6: The normals to two adjacent lifted faces in-
duce the dual orthogonal edge.

of adjacent faces {U,V'}:
vy p(u)+Cu = vy p(u)+Cv, vu-p(v)+Cu = vy -p(v)+Cv

(2)
We infer that the vector vy — vy is orthogonal to the edge
vector p(v) — p(u). Fig. 6 illustrates the relationship.

Given a tetrad (u,v,U, V) of dual edges, and using the no-
tation (z,y)" = (—v, z) for the clockwise rotation with /2
of a vector (x,y) € R? we define the stress on the edge
{u,v} € E, associated to the lifting H, as being the propor-
tionality factor s,, given by

vy — vy = Suu(p(v) — p(u)) ™ (3)

Since the sum involves the vectors around a closed polygon
(the face-cycle around a vertex), the equilibrium condition
(1) is satisfied. We have shown:

PROPOSITION 1. For any lifting H of a planar non-crossing

framework (G, p), there exists a canonically associated stress
on the framework.

This correspondence between liftings and stresses is essen-
tially the one given by Maxwell, who formulated it through
the following geometric construction. The normal direction
to the planar

region corresponding to a face U € F' in the lifted ter-
rain is given by Ny = (vy,—1) € R®, U € F. When all
these normal vectors are taken through the point (0,0,1),
they intersect the reference plane z = 0 in the system of
points {vy € R2}U€F. The classical “theorem of the three
perpendiculars” implies the orthogonality observed above
(v — 1) - (p(v) — plu)) = 0.

Reciprocal diagram. A framework (G*,p*) associated to
the dual graph G* of a planar framework (G, p) is called a
reciprocal diagram if the corresponding primal-dual edges are
perpendicular. If in the previous construction we join the
points {vy € R? | U € F} by edges dual to the primal ones,

we obtain a reciprocal diagram associated to the lifting H.
We note that it is possible for several vertices v to coincide,
and this happens precisely when the planar regions in the
lifting have identical normal directions. An extreme case
arises for liftings with globally affine functions H. They
give a planar (trivial) terrain over the reference plane, have
constant vy and induce the trivial stress {s¢}ecr = 0.

From stresses to liftings. The direction from stresses to
Maxwell liftings requires more work.

PROPOSITION 2. Let s = (Se)eck be an equilibrium stress
for the framework (G, p). Then there exists a lifting H which
induces s, determined up to addition of a global affine func-
tion.

Proof: We have to find a set of parameters (vy, Cv), indexed
by faces and satisfying the face compatibility and orthogo-
nality conditions (2 and 3) in terms of the given placement
p. Let us choose an initial face Uy with an arbitrary lifting
(vuy,Cuy) = (vo,Co). We show that once this initial choice
has been made, the lifting is then uniquely determined by
the stress values and p.

We solve the linear system (2) in a step-by-step manner,
progressing from face to adjacent face, starting at Uy. We
consider a path through adjacent faces labeled Uy, Uy, ..., Un,
with corresponding liftings (v;,C;) and successive tetrads
(pi, ¢i, Ui, Ui+1). The common edge between faces U; and
Uit is [pi, ¢i], with the proper orientation. The given stress
on this edge is denoted here by s;. The previous relationship
between the stress on an edge and its pair of reciprocal edge
vectors implies:

k
Cr1=Cr — (Vk41 — Vk) - = Ci — Zsi(qi —pi)"pi
i=0
and
k
V41 = Vg + Z Si(Qi 7pi)L (4)
1=0

Using the identity (q; — pi)* - pi = det(q; pi) = |qi pil, the
expression of the height function becomes:

H(p)=vn -p+Cn =

(V0+i3i(q'i*pi)L)'p‘i’(CO*iS”qi pil) (5)

It remains to check that the expression (5) is independent of
the face-path chosen from Uy to U,,. To verify this property,
we have to check that the following sums vanish for any
face-cycle:

Z si(gi —pi) =0 and Z

face—cycle face—cycle

silgi pil =0 (6)

It suffices to verify these relations over face-cycles corre-
sponding to simple topological loops. In this case, Jordan’s
simple curve theorem gives a set of vertices inside the loop.
When we take the sum over these vertices of the identities
(1) and
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Figure 7: (a) A Delauney framework (in black) corresponding to a periodic set with four site orbits under
maximal translational symmetry. Dual vertices are shown as colored centers of the faces. Primal-dual edge
pairs are orthogonal. (b) The equilibrium stress induced by the reciprocal diagram (c) has a non-periodic
lifting to the paraboloid z = 2® + y*>. (c) The reciprocal diagram of the periodic graph (a) is the Voronoi

diagram of the periodic sites.

S sulp(v) plu)] =

{u,v}€eE

| Y su(pv) = p(w)) p(u)| =0, for fixed u,
{u,v}eE

the stress condition (1) implies that terms cancel in pairs for
adjacent vertices and leave exactly the desired identities (6).
Since the initial choice (vo,Co) was arbitrary, the lifting H
is determined only up to a global affine function. [

Mountain-valley edge liftings and stress signs. A non-
flat edge in the lifting is a mountain edge if the terrain is
concave in its neighborhood, and a walley otherwise. The
correspondence between stresses and liftings can be further
refined by this well-known property [10] (Fig. 1):

PRrROPOSITION 3. The Maxwell correspondence between
stressed graphs and liftings takes planar edges with a negative
stress to mountain edges in the 3D lifting, those with positive
stress to valley edges and those with zero stress to flat lifted
edges.

We conclude this section with a noteworthy example, which
will be used to illustrate the critical distinction between
equilibrium stress and periodic stress.

ExaMPLE 1  (Periodic Voronoi/Delauney pair).
The classical Voronoi-Delauney duality, applied to infinite
point sets, in particular to periodic ones, yields a dual pair
of frameworks whose corresponding dual edges are orthogo-
nal. The classical lifting on the paraboloid shows that these
frameworks support an equilibrium stress. See Fig. 7.

3. EQUILIBRIUM AND PERIODIC STRESS
OF A PERIODIC FRAMEWORK

We extend now the relationships obtained in the previous
section to infinite periodic frameworks, as defined in [2, 3]
and specialized to connected, non-crossing frameworks in the
plane.

Periodic frameworks. A periodic framework, denoted as
(G,T,p,7), is given by an infinite graph G, a periodicity

group [ acting on G, and geometric realizations p and 7 of
these two objects. The graph G = (V, E) is simple (has no
multi-edges and no loops) and connected, with an infinite
set of vertices V' and undirected edges E. The periodicity
group I' C Aut(G) is a free Abelian group of rank two acting
on G without fixed points. We consider only the case when
the quotient multigraph G/I' (which may have loops and
multiple edges) is finite, and use n = |[V/T'| and m = |E/T|
to denote the number of vertex and edge orbits. The func-
tion p : V. — R? gives a specific placement of the vertices
as points in the plane, in such a way that any two vertices
joined by an edge in E are mapped to distinct points. The
injective group morphismm : T — T(R?) gives a faithful rep-
resentation of I" by a lattice of translations w(I') = A of rank
two in the group of planar translations 7(R?) = R?. The
placement is periodic in the obvious sense that the abstract
action of the periodicity group I is replicated by the action
of the periodicity lattice A = 7(T") on the placed vertices:
p(yv) =7(7)(p(v)), forally el veV.

Non-crossing periodic frameworks. We consider now
periodic frameworks which are, as infinite frameworks, non-
crossing. We have an underlying periodic planar graph G =
((V,E,F),T) on which the periodicity group I' acts. The
dual periodic planar graph G* = ((V*,E*,F*),I') is ob-
tained from the abstract dual of the infinite graph G =
(V,E, F), defined as above. Since the periodicity group I'
acts on it in the same manner as it acts on the primal graph
G, G* is itself a periodic planar graph. If we denote by
n* = card(F/T") the number of face orbits under I', then
Euler’s formula for the torus R?/A D G/T' gives the rela-
tion: n —m +n* =0, that isn +n" = m.

Equilibrium stress on periodic frameworks. A stress
s of the planar periodic framework (G,p,T', ) is called a I'-
invariant equilibrium stress if it is invariant on edge orbits
E/T. A T-invariant equilibrium stress can be calculated by
solving a finite linear system of equations of type (1), where
the unknowns are the stresses for the edge representatives in
E/T and the equations correspond to equilibrium conditions
for the vertex representatives in V/I'.

Periodic liftings. A lifting H for the planar periodic frame-
work (G,T,p,7) is called periodic if it is I'-invariant, i.e. if



(a)

(c)

Figure 8: The Voronoi diagram from Fig. 7(c) is a periodic framework supporting different types of stresses.
(a) (Not I'-invariant) Each of the “aligned” infinite paths supports a one-dimensional stress (equal on each edge
of the path and illustrated here with the oblique colored diagonals). The stress values can be independently
chosen on each diagonal path. Thus they yield equilibrium stresses, such as the one depicted here, which
are not I-invariant. (b) (Non-periodic I'-invariant) A I'-invariant stress assigns the same stress value on all
edges in an edge orbit. Illustrated here is a stress where all stress orbits have the same sign; this cannot be
a periodic stress. (c) A periodic stress, as the one shown here, must have both positive and negative stresses

on edge orbits.

H(q+)\) = H(q), for all ¢ € R? and A € A = 7(T'), where
translation by periods A has been written additively.

Not all liftings of periodic frameworks are I'-invariant. An
example arises from the classical lifting of points (z,y) to
points (z,y, x> +y*) on a paraboloid, which lifts the Voronoi
diagram (and its dual Delauney tessellation) to a polyhe-
dral surface tangent to, resp. inscribed into the paraboloid.
An important observation is that I'-invariant equilibrium
stresses do mot mecessarily yield periodic liftings. Indeed,
considerations of symmetry show that the periodic Voronoi
diagram in Fig. 7 has a I'-invariant equilibrium stress, but
the induced lifting onto the paraboloid is obviously not pe-
riodic.

Since I'-invariant stresses may not always correspond to I'-
invariant liftings, additional properties are needed to char-
acterize stresses induced by I'-invariant liftings. We proceed
now to find them.

Stress induced by a periodic lifting. When expressed as
the system H = (vy, Cu)uer, a periodic lifting has constant
coefficients vy on I'-orbits of faces. Thus, the corresponding
placement of the dual graph (i.e. the reciprocal diagram)
has at most n* = card(F/T") distinct vertices.

For a closer investigation of the associated stress, we in-
troduce the following notational conventions. A face-path
from a face U to a face V' will be indicated by U — V| in
particular, a face-path from U to its translate U + A will be
indicated by U — U+ \. Sums over face-paths or face-cycles
are assumed to be written according to the orientation rule
given through tetrads.

With this convention, we rewrite the relations (4) obtained
in Section 2 as:

vy = vy + Z si(qi —pi)J'
U—V

and

Cy =Cy — Z silgi pil (7)

U=V

The transition formula (5) applied to a periodic lifting H
gives the identity

voia - (p+A) +Cugr =

(VU+ Z Sl(ql_pz)L)(p+)\)+CU+>\:yUp+CU
U—=U+X

for all p € U. Thus, the stress s must satisfy the following
two conditions:

> silai—pi) =0 (®)

U—=U+X

Z silgi pil = Cu — Cuqr =vu - A 9)

U—=U+X\

We summarize these observations as:

ProPOSITION 4. If the planar periodic framework
(G,T',p,7) has a periodic lifting H = (vu,Cu)uer, then
the associated I'-invariant equilibrium stress s satisfies con-
ditions (8) and (9) for any face U and period vector A €
A =n(T).

From constrained stress to periodic lifting. The two
conditions (8) and (9) are also sufficient for determining a
periodic lifting (the proof is given in the full paper):

PROPOSITION 5. Let s = (Se)eck be aI'-invariant equilib-
rium stress for the planar non-crossing periodic framework
(G,T,p, 7). If, for some face Uy and generators A1, A2 of the



period lattice A = w(T"), the stress s satisfies the additional
conditions that:

> silai—pi) =0,

Uo—Uo+Aj

then the lifting H = (vu, Cu) defined, for all A € A, by:

j=1,2 (10)

vy A= Z silgi pi| = Cu — Cu4a

U—U+X\

is determined up to a choice of constant Co = Cy,, and is a
periodic lifting inducing s.

Figure 9: A periodic 3D lifting for the stressed
framework in Figure 8(c).

In the next subsection we prove that this type of stress is
precisely the periodic stress involved in the deformation the-
ory of periodic frameworks introduced in [2].

4. PERIODIC MOTIONS AND STRESSES

We have arrived at one of the most important aspects
of this paper, which brings in the connection with the in-
finitesimal rigidity of a periodic framework. The application
to periodic pseudo-triangulations and expansive mechanisms
presented in the next section relies on this correspondence.

Periodic deformations. A planar framework (G,T',p, )
was defined by a placement of vertices p : V — R? and
a faithful representation 7 : T' — T(R?) of the periodic-
ity group by a rank two lattice of translations A = w(T),
with the necessary compatibility relation. In the framework,
the edges of the graph are now seen as segments of fixed
length, forming what is called in rigidity theory a bar-and-
joint structure. According to our formulation of a periodic
deformation theory, introduced in [2] and pursued in [3, 5],
a periodic bar-and-joint framework is said to be periodically
flexible if there exists a continuous family, parametrized by
time ¢, of placements p; : V — R? with po = p, which sat-
isfies two conditions: (a) it maintain the lengths of all the

edges e € E, and (b) it maintains periodicity under I', via
faithful representations m; : I' — T(R?) which may change
with t and give an associated variation of the periodicity lat-
tice Ay = m(T).

To represent m; we first choose two generators for the peri-
odicity lattice I. The corresponding lattice generators i (t)
and A\2(t) at time ¢t may be viewed as the columns of a non-
singular 2 x 2 matrix denoted, for simplicity, with the same
symbol Ay € GL(2). The infinitesimal deformations of the
placement (p:, ) are described using a complete set of n
vertex representatives for V/T', i.e. the vertex positions are
parametrized by (R?)™. The m representatives for edges
mod I' are then expressed using the vertex parameters and
the periodicity matrix A. An edge representative S origi-
nates in one of the chosen vertex representatives i = i(53)
and ends at some other vertex representative j = j(3) plus
some period Acg, where cg is a column vector with two in-
teger entries. The edge vectors eg, S € E/I" thus have the
form:

epg = (z; +Acg) —xi, BeEE/T (11)

By taking the squared length of the m edge representatives,
we obtain a map (R?)" x GL(2) — R™. The differential
of this map at the point of (R?)" x GL(2) C R*™ cor-
responding to the framework (p, ), seen as a matrix with
m rows and 2n + 4 columns, is called the rigidity matriz
R = R(G,T',p,7) of the framework. Denoting by e% the
transpose of the column edge vector eg and using an obvi-
ous grouping convention for the columns corresponding to
individual vertices, the row corresponding to the edge £ de-
scribed above is:

(0.0 —ej 0...0 ef 0...0 che cheh) (12)

The vector space of infinitesimal periodic motions of the
given framework (G,T,p,7) can now be described as the
kernel of the rigidity matrix R and the vector space of peri-
odic stresses can be described as the kernel of the transpose
R'. A stress described on the m representatives for E/I is
extended by periodicity to all edges.

Thus, non-trivial periodic stresses express linear dependen-
cies between the rows of the rigidity matrix R. Grouping
these dependencies over groups of columns corresponding
to vertex representatives, we obtain immediately that a pe-
riodic stress satisfies conditions (1) and thus is necessarily
a I-invariant equilibrium stress. However, there are two
additional vector conditions imposed by the columns corre-
sponding to the infinitesimal variation of the periods.

This sets the stage for a comparison of the periodic stresses
reviewed here and the stresses induced by periodic liftings.
For clarity we restate the definition:

Definition 1. [2] A periodic stress for the framework
(G,T,p,7) is a stress induced from an element in the kernel
of the transposed rigidity matrix R, that is, a I-invariant
equilibrium stress s satisfying the additional conditions:

> spches =0 (13)
BEE/T

with integer coefficients cé, j = 1,2, as given in the edge
description (11).



Our next goal is to relate the conditions (10) and (13). For
this, we first show the persistence of periodic stresses under
relazation of periodicity from I to a subgroup of finite index
rcr.

PROPOSITION 6. Let s = (sg)ger be a periodic stress for
the periodic framework (G,T,p,n). Let T C T be a subgroup
of finite index. Then s remains a periodic stress for the
framework with relazed periodicity (G,T',p,w|s). Moreover,
if a U-invariant equilibrium stress is periodic for a relazed
periodicity I' C T, it is already periodic for I.

The proof appears in the full paper. As a consequence we
obtain that, upon relaxation of periodicity, the dimension
of the space of periodic stresses can only go up or stay the
same.

We recall (from [2], page 2641) the relation 0 — § = m —
2n—4 connecting periodic stresses and infinitesimal deforma-
tions, where o denotes the dimension of the space of periodic
stresses and ¢ is the dimension of the space of infinitesimal
periodic deformations. Subtracting the trivial infinitesimal
deformations induced by infinitesimal isometries, we obtain:

o=¢—1+(m—2n) (14)

where ¢ denotes the dimension of the space of infinitesimal
flexes ¢ = § — 3. This formula is relevant for evaluating
behavior under relaxations, with ¢ and ¢ non-decreasing
and the term (m — 2n) multiplied by the index of relaxation

p.

The last ingredient needed for the proof of our Main Theo-
rem is Lemma 7 below, whose detailed formulation appears
in the full paper. It gives a more transparent interpretation
for the conditions (13) satisfied by periodic stresses, in terms
of a sufficiently large relaxation of periodicity. We denote by
Pr a fundamental parallelogram for the periodicity group I'.

LEMMA 7. For sufficiently relazed periodicity T, one can
find a complete set of edge representatives which are either
inside Py or cross its border to a neighboring parallelogram
over two chosen sides.

Figure 10: Fundamental parallelograms Pr and Pr
for the proof of Lemma 7. (a) Edge representatives
for the three edge orbits in the periodic graph (G,T").
(b) The relaxation I' of the lattice. The edge repre-
sentatives for (G,T) are shown in Fig. 11.

The idea for obtaining edge representatives for E/I is to
take all edges contained in the fundamental parallelogram
Pr and then to select the remaining representatives from
edges originating in Pr and crossing the boundary of Pr, as
in Fig. 10(a). We then find a large enough integer r such

that the dilated parallelogram rPr, adequately translated
over Pr, would contain inside all edges originating in Pr,
as in Fig. 10(b). The edge representatives of the relaxed
periodic graph (G, f‘) are either inside the new fundamen-
tal parallelogram Pr or cross over to one of the neighboring
parallelograms. It is always possible to select the edge repre-
sentatives of the second type to cross the two chosen gener-
ators of the lattice. Fig. 11(a) illustrates the full set of edge
representatives for the relaxed periodic graph in Fig. 10(b),
with the final choices crossing the selected lines shown in

AN/

Figure 11: Illustration of the construction used in
the proof of Lemma 7: standardizing edge represen-
tatives, chosen to cross the two generators of the
relaxed periodicity lattice. The edge colors indicate
the orbits relative to the original lattice I', not I'.

We are now ready for the proof of the correspondence be-
tween periodic liftings and stresses.

Main Theorem Let (G,T',p,m) be a planar non-crossing
periodic framework. A stress induced by a periodic lifting is a
periodic stress and conversely, any periodic stress is induced
by a periodic lifting, determined up to an arbitrary additive
constant. The correspondence relates the stress signs to the
mountain/valley types of the lifted edges.

ProoF. We use Prop. 6 and the setting described in
Lemma 7 obtained after an adequate relaxation of period-
icity I' C T" with generators related by \; = 7;A;,7 = 1,2.
We first observe that, for periodicity I' the stated corre-
spondence between periodic liftings and periodic stresses
becomes obvious, since conditions (13) and (10) ask exactly
the same thing: that the stress-weighted sums of edges in-
volved along U — U + A;,j = 1,2 be zero. The case of full
periodicity I' now follows from Proposition 6 and the corre-
sponding fact that a I'-invariant lifting which is I'-periodic
for some relaxation I' C I, must be already I'-periodic, as



immediately seen from conditions (10). The sign relation-
ship follows from Prop. 3. [

S. PERIODIC POINTED
PSEUDO-TRIANGULATIONS

A pseudo-triangle is a simple closed planar polygon with
exactly three internal angles smaller than 7. A set of vec-
tors with a common origin is pointed if they lie in some open
half-plane determined by a line through their origin. A pla-
nar non-crossing periodic framework (G,T',p,7) is a peri-
odic pointed pseudo-triangulation when all faces are pseudo-
triangles and the framework is pointed at every vertex. As
in the finite case, pointedness at every vertex is essential.
Pseudo-triangular faces mark the ‘saturated’ stage where
no more edge orbits can be inserted without violating non-
crossing or pointedness. An illustration for n = 3 is given in
Fig. 12. We show that periodic pointed pseudo-triangulations,
viewed as bar-and-joint mechanisms, satisfy two remarkable
rigidity-theoretic properties: they have the right number of
edges to be flexible mechanisms with exactly one degree of
freedom (in the finite case [28, 29], the flexible mechanisms
were obtained after removing a convex hull edge), and they
encounter no singularities in their deformation for as long as
they remain pseudo-triangulations.

S

Figure 12: A periodic pseudo-triangulation with
(n7 m, n*) = (37 67 3)'

PROPOSITION 8. A periodic pseudo-triangulation hasm =
2n, that is, the number of edge orbits m = card(E/T) is
twice the number of vertex orbits n = card(V/T").

PROPOSITION 9. A periodic pseudo-triangulation cannot
have nontrivial periodic stresses. The local deformation space
is therefore smooth and one-dimensional and continues to
be so as long as the deformed framework remains a pseudo-
triangulation. The same statement holds true for any relaz-
ation of periodicity I' C T of finite index.

Finally, combining these results with our Main theorem, we
obtain:

THEOREM 10. Let (G,T',p, ) be a planar periodic pseudo-
triangulation. Then the framework has a one-parameter pe-
riodic deformation, which is expansive for as long as it re-
mains a pseudo-triangulation.

6. APPLICATIONS

Ultrarigidity. By our results from [2], the quotient graph
of a generic minimally rigid periodic framework has m =
2n + 1 edges, and must satisfy a simple sparsity condi-
tion, which is easy to verify for periodic pointed pseudo-
triangulations. Hence, by adding one edge-orbit, we can turn
periodic pseudo-triangulations into minimally rigid frame-
works. Morover, these frameworks remain infinitesimally
rigid for any relazation of periodicity. Thus, periodic pseudo-
triangulations and insertion choices provide endless exam-
ples of ultrarigid frameworks.

Periodic pseudo-triangulations are auxetic. We have
recently [6] formulated a definition of auzetic behavior and
proved that expansive mechanisms exhibit auxetic behavior.
Our geometric approach relies on the evolution of the period-
icity lattice. Let us consider a differentiable one-parameter
deformation (G,T,p-,7;),7 € (—¢,€) of a periodic frame-
work. After choosing an independent set of generators for
I, the image 7. (I") is completely described via the d x d
matrix A, with column vectors given by the images of the
generators under 7. The associated Gram matrix will be

w(T) = ALA,.

A deformation path (G,T',pr,m.), T € (—¢,€) is auxetic if
and only if the curve of Gram matrices w(7) defined above
has all its tangents in the cone of positive semidefinite sym-
metric d X d matrices.

Since expansive implies auxetic, periodic pointed pseudo-
triangulations provide an infinite family of auxetic frame-
works. As we remarked in the introduction, only a few spo-
radic examples were previously known, and their auxetic
properties were based on empirical observations rather than
proven mathematically.

Figure 13: Two possible refinements to periodic pseudo-
triangulations of the ‘reentrant’ structure of hexagons in
Figure 5.

Kinematics of periodic expansive frameworks. Planar
periodic frameworks which allow expansive one-parameter

deformations can be described in terms of pseudo-triangulations.



EXAMPLE 2. (The “reentrant honeycomb”) The frame-

work in Fig. 5 has two degrees of freedom and not all of its
deformation paths are auxetic. The expansive deformations
can be explained in terms of the two possible refinements to
periodic pseudo-triangulations shown in Fig. 13.

A complete characterization of those periodic frameworks
which allow expansive trajectories, together with a system-
atic approach for generating expansive motions is presented
in [8].

In conclusion, we anticipate that our periodic version of
Maxwell’s Theorem and the expansive nature of periodic
pseudo-triangulations will find, like their finite counterparts,
further applications in discrete and computational geometry.
In the larger scientific context, applications are expected in
new materials and mechanism design.
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