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Abstract. We introduce orthogonal ring patterns consisting of pairs
of concentric circles generalizing circle patterns. We show that orthogo-
nal ring patterns are governed by the same equation as circle patterns.
For every ring pattern there exists a one parameter family of patterns
that interpolates between a circle pattern and its dual. We construct
ring pattern analogues of the Doyle spiral, Erf and zα functions. We
also derive a variational principle and compute ring patterns based on
Dirichlet and Neumann boundary conditions.

1. Introduction

The theory of circle patterns can be seen as a discrete version of conformal
maps. Schramm [6] has studied orthogonal circle patterns on the Z2-lattice,
has proven their convergence to conformal maps and constructed discrete
analogs of some entire holomorphic functions. Circle patterns are described
by a variational principle [5], which is given in terms of volumes of ideal
hyperbolic polyhedra [4]. We introduce orthogonal ring patterns that are
natural generalizations of circle patterns. Our theory of orthogonal ring
patterns has its origin in discrete differential geometry of S-isothermic cmc
surfaces [3]. Recently, orthogonal double circle patterns (ring patterns) on
the sphere have been used to construct discrete surfaces S-cmc by Tellier et
al. [7].

We start Sect. 2 with a definition of orthogonal ring patterns and their
elementary properties. In particular we show that all rings have the same
area. Our main Theorem 2.4 shows that ring patterns are described by an
equation for variables at the vertices. Furthermore, each ring pattern comes
with a natural 1-parameter family of patterns. In Sect. 3 we show that as
the area of the rings goes to zero the ring patterns converge to orthogonal
circle patterns. In the following Sect. 4 we introduce ring patterns analogs
of Doyle spirals, the Erf function, zα for α ∈ (0, 2], and the logarithm.
Finally, we describe a variational principle to construct ring patterns for
given Dirichlet or Neumann boundary conditions. A remarkable fact that
we explore is that the orthogonal ring and circle patterns in R2 are governed
by the same integrable equation. In a subsequent publication we plan to
develop a theory of ring patterns in a sphere and hyperbolic space. They
are governed by generalizations of the corresponding equations for R2 given
in elliptic functions. It is tempting to establish a connection to discrete
integrable equations classified in [1].

Key words and phrases. discrete differential geometry, circle patterns, variational
principles .
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2. Orthogonal ring patterns

In this section, we will introduce orthogonal ring patterns and show that
the existence of such the patterns is governed by the same equation as the
existence of orthogonal circle patterns.

We will consider cell complex G defined by a subset of the quadrilaterals
of the Z2 lattice in R2. The vertices of the complex G are indexed by
(m,n) ∈ Z2 and denoted by vm,n. The oriented edges are given by pairs of
vertices and are either horizontal (vm,n, vm+1,n) or vertical (vm,n, vm,n+1).

A ring is a pair of two concentric circles in R2 that form a ring (annulus).
We identify the vertices with the centers and denote the inner circle and its
radius by small letters c and r, and the outer circle and its radius by capital
letters C and R. We assign an orientation to the ring by allowing r to
be negative: positive radius corresponds to counter-clockwise and negative
radius to clockwise orientation. The outer radius will always be positive.
The area of a ring is given by (R2 − r2)π. Subscripts are used to associate
circles and radii to vertices of the complex, e.g., cm,n is the inner circle
associated with the vertex vm,n.

Definition 2.1 (Orthogonal ring patterns). Let G be a subcomplex of the Z2-
lattice defined by its squares. An orthogonal ring pattern consists of rings
associated to the vertices of G satisfying the following properties:

(1) The rings associated to neighboring vertices vi and vj intersect or-
thogonally, i.e., the outer circle Ci of the one vertex intersects the
inner circle cj of the other vertex orthogonally and vice versa (see
Fig. 1, left).

(2) In each square of G the inner circles cm,n and cm+1,n+1 and the outer
circles Cm,n+1 and Cm+1,n pass through one point. Then orthogo-
nality implies that the two inner and the two outer circles touch in
this point (see Fig. 1, center).

(3) For two neighbors vm+1,n and vm,n+1 of vm,n in one quadrilateral we
assume that the points cm,n∩Cm+1,n\Cm,n+1, Cm+1,n∩Cm,n+1, and
cm,n ∩ Cm,n+1 \ Cm+1,n have the same orientation as cm,n, i.e., are
in counter-clockwise order if rm,n is positive and in clockwise order
if rm,n is negative. Similarly, for the neighbors vm−1,n and vm,n+1

of vm,n with the roles of inner and outer circles interchanged.

The orthogonal intersection of neighboring rings has the following impli-
cation for their areas.

Lemma 2.2. Consider two rings with radii ri, Ri and rj , Rj that intersect
orthogonally. Then the two rings have the same area.

Proof. By Pythagoras’ Theorem the square of the distance d between the
circle centers is R2

i + r2j = d2 = r2i +R2
j since the inner and outer circles are

intersecting orthogonally. This equation is equivalent to the equality of the
ring areas (R2

i − r2i )π = (R2
j − r2j )π. �

The constant area allows us to use a single variable ρi to express the inner
and the outer radii of the rings in the following way: Consider an orthogonal
ring pattern with constant ring area A0 = π`20, that is, for the radii ri, Ri



ORTHOGONAL RING PATTERNS 3

Figure 1. Left: Two orthogonally intersecting rings. Center: The inner
circles touch along one diagonal of a quadrilateral and the outer circles
along the other diagonal at the same touching point. Right: If the orien-
tation (i.e., signed radii) of the inner circles differ, then the centers lie on
the same side of the common tangent.

Figure 2. The rings of an orthogonal ring pattern partition into two di-
agonal families of touching rings.

of all vertices vi ∈ V we have R2
i − r2i = `20. Then for each vertex we can

choose a single variable ρi by setting

(1) Ri = `0 cosh(ρi) and ri = `0 sinh(ρi) .

We will call those new variables ρ-radii. The orientation of the rings
is encoded in the sign of the ρ-radii. In Sect. 3 we consider the limit of
orthogonal ring patterns as the area goes to zero. The ρ-radii become the
logarithmic radii of a Schramm type orthogonal circle pattern [6] in the
limit.

As in the case of orthogonal circle patterns there exist sublattices Ve =
{(m,n) ∈ Z2 |m + n even} and Vo = {(m,n) ∈ Z2 |m + n odd} such that
all rings along the diagonals touch (see Fig. 2).

Neighboring vertices of an orthogonal ring pattern define a cyclic quadri-
laterals of the following forms:

The circles Ci, ci and Cj , cj intersect in four points. Since the inner circle
ci (resp. cj) and the outer circle Cj (resp. Ci) intersect orthogonally the
centers of the circles and the intersection points ci ∩ Cj and Ci ∩ cj) lie
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Figure 3. Cyclic quadrilaterals defined by two orthogonally intersecting
circle rings depending on the signs of the radii: Embedded quadrilateral
for ρi, ρj > 0 (left), non-embedded quadrilateral for ρi < 0, ρj < 0 (right).

on a circle (see Fig. 3 left). If ρm,n is positive we obtain an embedded
cyclic quadrilateral with positive orientation if ρm+1,n is positive, i.e., we
choose the intersection point cm,n∩Cm+1,n above and the intersection point
Cm,n ∩ cm+1,n below the line connecting the centers. For both ρm,n < 0
and ρm+1,n < 0 we choose the opposite points. So for ρm,n, ρm+1,n > 0 we
obtain a quadrilateral with positive orientation and for ρm,n, ρm+1,n < 0 with
negative orientation. If ρm,n and ρm+1,n have opposite signs, then we obtain
a non-embedded quadrilateral. The intersection points are chosen such that
the angle at the vertex vm,n has the same sign as the corresponding ρm,n. If
one of the ρ’s is 0, the cyclic quadrilateral degenerates to a triangle with a
double vertex.

Given the ρ-radii we can compute the angles in the cyclic quadrilaterals.
We will assume that the arctan function maps to oriented angles in (−π

2 ,
π
2 ).

Lemma 2.3. Let vi and vj be two neighboring vertices in an orthogonal ring
pattern with ρ-radii ρi and ρj. Then the angle at the vertex vi in the cyclic
quadrilateral defined by the two rings at vi and vj is given by

ϕij =

{
π − 2 arctan(eρi−ρj ) if ρi > 0

−2 arctan(eρi−ρj ) = −ϕji if ρi < 0

Proof. We will compute the angles for ρi > 0 (the case ρi < 0 can be shown
similarly.) For circles of radii Ri, ri and Rj , rj given by equation (1) the
angle can be computed by

ϕij = arctan(
rj
Ri

) + arctan(
Rj
ri

).

The sum of inverse tangents is given by

arctan a+ arctan b =


arctan a+b

1−ab if ab < 1
π
2 if ab = 1

π − arctan a+b
1−ab if ab > 1, and a+ b ≥ 0,

−π − arctan a+b
1−ab if ab > 1, and a+ b < 0.

In our case ab =
rj
Ri

Rj
ri

=
sinh(2ρj)
sinh(2ρi)

. For ρi > 0 we have to consider two cases:

(1) ρi > ρj ⇔ ab < 1 and
(2) ρi < ρj ⇔ ab > 1.
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In case (1) we can use the first case of above formula for the sum of two
arctan’s to obtain

ϕij = arctan(

rj
Ri

+
Rj
ri

1− rj
Ri

Rj
ri

) = arctan(
rirj +RiRj
riRi − rjRj

).

In terms of the ρ-radii this yields

ϕij = arctan(
sinh ρi sinh ρj + cosh ρi cosh ρj
sinh ρi cosh ρi − sinh ρj cosh ρj

)

= arctan(
1

sinh(ρi − ρj)
).

Note that we did not need to introduce the area constant for the ring pattern
as it cancels in all quotients. Since we are currently considering (1) with
ρi > ρj we have sinh(ρi − ρj) > 0 and:

ϕij = arctan(
1

sinh(ρi − ρj)
) =

π

2
− arctan(sinh(ρi − ρj))

But arctan(sinhx) = 2 arctan(ex)− π
2 . Thus

ϕij = π − 2 arctan(eρi−ρj ).

This finishes the proof in case (1) for ρi > 0. Case (2) and the cases for
ρi < 0 are handled analogously. �

With the above angles we are able to prove the following theorem on
orthogonal ring patterns.

Theorem 2.4 (Orthogonal ring patterns). Let R be a ring pattern on a
simply connected subcomplex G of Z2 defined by a subset of the squares
of Z2. Then for interior vertices the ρ-radii of R satisfy

(2) 2π =
∑

j:vj•−•vi

2 arctan(eρi−ρj ).

Conversely, given ρ-radii on the vertices of G satisfying the above equation,
then there exists a unique orthogonal ring pattern.

Proof. Let vi be an interior vertex of G with four neighboring vertices
v1, v2, v3, and v4. The five rings form a flower in the pattern and hence
the angles ϕij for j ∈ {1, 2, 3, 4} sum up to 2π (or −2π, depending on the
orientation). We consider positive ρi first. By Lemma 2.3 the angles at
vertex vi in the cyclic quadrilateral defined by neighboring rings can be
computed from the ρ-radii

ϕij = π − 2 arctan(eρi−ρj ) .

So summing up around vi we obtain

2π =
4∑
j=1

ϕij =
4∑
j=1

π − 2 arctan(eρi−ρj ).

This is equivalent to (2). For negative ρi we can simply use the other
equation of Lemma 2.3 and show that identity (2) also holds.

For the converse, consider a single flower of a complex G with ρ-radii
satisfying equation (2). Let vi be an interior vertex with ρi > 0 (the case
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ρi < 0 follows along the same lines). The four angles in the quadrilaterals
at the edges (vi, vj) are given by Lemma 2.3:

ϕij = π − 2 arctan(eρi−ρj ) for j = 1, 2, 3, 4.

Using equation (2) we see that
∑4

j=1 ϕij = 2π. Hence we can assemble the
four quadrilaterals and rings around the vertex vi to form an orthogonal
ring pattern. As the complex G is simply connected the local proof suffices
to prove that the entire complex G can be assembled to build an orthogonal
ring pattern.

The theorem also holds if ρm,n = 0 for some (m,n) ∈ Z2 by taking
the appropriate limit. The angles ϕij are not continuous, since the flower
around vi changes its orientation when ρi changes sign. But equation (2)
stays valid and we obtain a ring pattern even if some ρ vanishes. �

The angle condition at the vertices of Thm. 2.4 only depends on the
differences of the logarithmic radii. So without violating equation (2), we
can apply a shift ρ→ ρδ = ρ+ δ by δ ∈ R to the ρ-variables.

Corollary 2.5. Consider an orthogonal ring pattern R of area π for given
ρ-radii ρm,n. Then the ρ-radii ρδm,n = ρm,n+δ define a one parameter family

of orthogonal ring patterns Rδ with radii:

rδi = sinh(ρi + δ)

Rδi = cosh(ρi + δ)

and area Aδ = π.

3. Relation to orthogonal circle patterns

In this section we give a detailed description of the relation of orthogonal
ring patterns and orthogonal circle patterns. It turns out that orthogonal
circle patterns can be considered as a special case of ring patterns with
constant ring area A0 = 0.

To formulate the limit we need to review some properties of orthogonal
circle patterns. Two orthogonally intersecting circles in an orthogonal circle
pattern create a cyclic right angled kite (see Fig. 5 left and right). The
angle ϕ◦ij at a vertex vi in a kite on the edge (vi, vj) of an orthogonal circle

pattern with radii r◦i = eρi is given by:

(3)
ϕ◦ij = 2 arctan(

r◦j
r◦i

) = 2 arctan(eρj−ρi)

= π − 2 arctan(eρi−ρj )

In case of circle patterns the ρ-radii are called logarithmic radii. Logarithmic
radii of an immersed orthogonal circle pattern are governed by the same
equation (cf. [6, 5]) as the ρ-radii of ring patterns (see Thm. 2.4).

Furthermore, for each orthogonal circle pattern C with logarithmic radii
ρi there exists a dual pattern C∗ with radii e−ρi . The angles of the dual
pattern are given by

(ϕ◦ij)
∗ = 2 arctan(

r∗j
r∗i

) = 2 arctan(e−ρj+ρi) = π − ϕ◦ij .
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Figure 4. An orthogonal circle pattern and its dual. The boundary angles
the dual pattern are 2π−ϕij resp. π−ϕij depending on whether the degree
of the boundary vertex is 3 or 2.

Note that the angles at interior vertices still sum up to 2π, but the angles
at the boundary vertices change as shown in Fig. 4.

Now let us go back to the one parameter familyRδ of ring patterns defined
in Cor. 2.5. To avoid that the radii go to infinity as δ → ±∞ we scale the
entire pattern by 2e−|δ|. So the radii of the one parameter family of ring
patterns are:

rδm,n = 2e−|δ| sinh(ρm,n + δ) and Rδm,n = 2e−|δ| cosh(ρm,n + δ).

In the limit δ → ±∞ the areas of the rings tend to zero and for the radii we
have:

lim
δ→±∞

rδi = lim
δ→±∞

2e−|δ|
1

2
(eρi+δ − e−ρi−δ) = e±ρi ,

lim
δ→±∞

Rδi = lim
δ→±∞

2e−|δ|
1

2
(eρi+δ + e−ρi−δ) = e±ρi .

Limit δ → ∞. For δ > −minvi∈G ρi we have ρδi = ρi + δ > 0 for all
vi ∈ G. So considering the limit as δ → ∞ all ρδi will be positive and
the angles of the circle pattern C (equation (3)) are exactly those of the
ring pattern Rδ given in Lemma 2.3. Furthermore, for δ → ∞, we obtain
rings with area 0 since the outer and inner radii both converge to eρi . The
neighboring circles intersect orthogonally because inner and outer circles of
the orthogonal ring pattern are intersecting orthogonally in the entire one
parameter family. The limit circles form a Schramm type orthogonal circle
pattern.

Limit δ → −∞. For δ < −maxvi∈G ρi all ρδi = ρi+δ < 0. By Lemma 2.3
the angles of the ring pattern for negative ρi are given by

ϕij = −2 arctan(eρi−ρj ) = −π + arctan(e(−ρi)−(−ρj))

and correspond to the angles of the dual pattern C∗ with opposite orienta-
tion. As equation (2) is satisfied for all δ, we obtain the dual orthogonal
circle pattern C∗ (with opposite orientation) in the limit.

Corollary 3.1. Let Rδ be a one parameter family of orthogonal ring pat-
terns with ρδi = ρi + δ for ρi ∈ R as described in Cor. 2.5. Then for δ →∞
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Figure 5. Deformation of a cyclic quadrilateral defined by two orthogo-
nally intersecting rings. The bottom left and bottom right show the limits
of the ring pattern as the area of the ring goes to zero. Positive radii are
indicated by orange, negative radii (i.e., negative ρ) are indicated by pink
circles. The angle associated with the left vertex is shown in green.

we obtain an orthogonal circle pattern C with logarithmic radii ρi and for
δ → −∞ we obtain the dual circle pattern C∗ with logarithmic radii −ρi.

For a better understanding of the deformation, the one parameter family
of cyclic quadrilaterals associated to a single edge (vi, vj) is shown in Fig. 5:
Assume that ρi and ρj are both positive and ρi < ρj . Then the deformation
starts with an embedded cyclic quadrilateral (center right). For δ →∞ we
obtain two orthogonally intersecting circles with radii eρi and eρj that form
a kite (bottom right). When δ ↘ −ρi one of the edges at vi shrinks to a
point and reverses its direction as ρi + δ changes its sign from + to −. If
−ρj < δ < −ρi then rδi < 0 and we obtain a non-embedded quadrilateral
(top center). Again as δ ↘ −ρj one edge at vj shrinks to a point and
changes its direction as ρj + δ changes sign (center left) and we obtain an
embedded quadrilateral with negative orientation. For δ → −∞ the areas
of the rings go to zero and we obtain two orthogonally intersecting circles
with radii e−ρi and e−ρj (bottom left). In the limit for ρ → ±∞ we can
consider the deformation of a point (ρ = −∞) to a line (ρ =∞).

4. Doyle spiral, Erf, and zα ring patterns

In this section we will have a look at some known orthogonal circle pat-
terns and consider their ring pattern analogs and deformations.
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4.1. Doyle spirals. Doyle spirals for the square lattice have been con-
structed by Schramm [6]. For x + iy ∈ C \ {0} Schramm defines radii

by rm,n = |e(x+iy)(m+in)|. Taking the logarithm we obtain the logarithmic
radii ρm,n = mx− ny. We will take these radii as a definition of the Doyle
spiral ring pattern.

Proposition 4.1 (Doyle spiral ring pattern). Let x + iy ∈ C \ {0} be a
complex number. The Doyle spiral ring pattern is given by the ρ-radii ρm,n =
mx− ny for (m,n) ∈ Z2.

By Lemma 2.3 the angles of the cyclic quadrilaterals at the edges are
given by

ϕ(m,n),(m+1,n) =

{
π − 2 arctan(ex) if ρm,n > 0

−2 arctan(ex) if ρm,n < 0
and

ϕ(m,n),(m,n+1) =

{
π − 2 arctan(e−y) if ρm,n > 0

−2 arctan(e−y) if ρm,n < 0

Looking closer at the signs of the ρ-radii we observe that

ρm,n > 0⇔ mx > ny and ρm,n < 0⇔ mx < ny.

So the signs of the ρ-radii change across the line {(m,n) ∈ Z2 |mx = ny}
and hence does the orientation of the flowers. If we restrict to the parts
{(m,n) ∈ Z2 |mx > ny} (resp. {(m,n) ∈ Z2 |mx < ny}) we see that the
angles are constant for all horizontal edges (m,n)(m+ 1, n) and all vertical
edges (m,n)(m,n + 1). Thus we can define a Doyle spiral ring pattern by
two angles α and β, one for the horizontal and one for the vertical direction.
This is the characteristic property for the Doyle spiral circle pattern.

Consider the one parameter family Rδ of orthogonal ring patterns as
described by Cor. 2.5. The angles along the horizontal and vertices edges
stay constant in the two halfspaces. As in the general case discussed in
the previous section, all ρ’s become positive for δ → ∞ (resp. negative for
δ → −∞) and we obtain a Doyle spiral and its dual as constructed by
Schramm (see Fig. 6).

4.2. Erf pattern. For analogs to Schramm’s
√
i-Erf pattern let us have

a look at the corresponding radius function given in [6] rm,n = eamn for
(m,n) ∈ Z2 and a ∈ R, a > 0. Taking the logarithm we obtain ρm,n =
amn. As in case of the Doyle spiral we will use this function to define the
corresponding ring patterns.

Proposition 4.2 (Erf ring pattern). Let a ∈ R, a > 0. The Erf ring pattern
is given by the ρ-radii ρm,n = amn for (m,n) ∈ Z2.

The angles in the pattern are given by

ϕ(m,n),(m+1,n) =

{
π − 2 arctan(e−an) if ρm,n > 0

−2 arctan(e−an) if ρm,n < 0
and

ϕ(m,n),(m,n+1) =

{
π − 2 arctan(e−am) if ρm,n > 0

−2 arctan(e−am) if ρm,n < 0



10 ALEXANDER I. BOBENKO, TIM HOFFMANN, AND THILO RÖRIG

Figure 6. Deformation of an orthogonal circle pattern (top left) into its
dual (bottom right) through a one parameter family of ring patterns (top
right and bottom left). We see how the orientation of the quadrilaterals
flips during the deformation. The innermost vertex in the top left circle
patterns becomes the outermost vertex in the bottom right circle pattern.

As ρm,n = amn the ρ-radii change signs at the coordinate axes. In the four
orthants, the angles along the horizontal and the vertical parameter lines
are constant.

If we consider the one parameter family of ring patterns defined in Cor. 2.5
we see that in the limit δ → ∞ we obtain the

√
i-SG Erf circle patterns

constructed by Schramm. For δ → −∞ we obtain a pattern with ρ∗m,n =
−amn. This is the same pattern as for a since ρ∗m,n = ρ−m,n.

4.3. zα and logarithm patterns. In [2] the authors defined an orthogonal
circle pattern C(zα) as a discretization of the complex map z 7→ zα for
α ∈ (0, 2). The radius function of the circle pattern is given by the following
identities (cf. [2, Thm. 3, equation (10, 11)]) on a subset of Z2 given by
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Figure 7. An Erf ring pattern (left) and the corresponding limit circle
pattern.

V = {(m,n) |m ≥ |n|}:

rm,nrm+1,n(−2n− α) + rm+1,nrm+1,n+1(2(m+ 1)− α)

+ rm+1,n+1rm,n+1(2(n+ 1)− α) + rm,n+1rm,n(−2m− α) = 0

for V ∪ {(−m,m− 1) |m ∈ N} and

(m+ n)(r2m,n − rm+1,nrm,n−1)(rm,n+1 + rm+1,n)

+ (n−m)(r2m,n − rm,n+1rm+1,n)(rm+1,n + rm,n−1) = 0

for interior vertices V \ {(±m,m) |m ∈ N} with initial condition r0,0 = 1
and r0,1 = tan απ

4 .

It is known that the dual pattern of zα is given by z2−α, e.g., the dual
circle pattern of C(z2/3) is C(z4/3) = (C(z2/3))∗ shown in Fig. 8 (top left and
bottom right). Based on the logarithmic radii of these patterns we construct
a one parameter family of ring patterns that interpolates between the two
patterns.

An orthogonal circle pattern for z2 can be defined by considering a special
limit for α → 2. The radii of the z2 pattern are defined in [2, Sect. 5].
The dual of z2 is the logarithm map log z. In each of the corresponding
orthogonal circle patterns, one of the circles degenerates. In case of z2 one
of the circles has radius 0, i.e., the circle degenerates to a point and the
logarithmic radius is negative infinity. Consequently, one of the circles in
the log z pattern has radius infinity, i.e., the circle degenerates to a line and
the logarithmic radius is positive infinity. We illustrate the one parameter
deformation of z2 to log(z) in Fig. 9.

5. Variational description

The construction of a ring pattern is very similar to the construction of an
orthogonal circle pattern since the equations at the interior vertices are the
same (see Thm. 2.4). For (not necessarily orthogonal) circle patterns there
exists a convex variational principle [5] in terms of the logarithmic radii. In
this section we will consider subcomplex G of Z2 whose boundary consists of
zigzag edges only as shown in Fig. 10. For planar orthogonal circle patterns
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Figure 8. One parameter family of orthogonal ring patterns interpolating
between the orthogonal circle pattern for z 7→ z2/3 (top left) and the dual
pattern for z4/3 (bottom right)

the functional is given by:

SEuc(ρ) =∑
vi•−•vj

(
Im Li2(ie

ρj−ρi) + Im Li2(ie
ρi−ρj )− π

2
(ρi + ρj)

)
+ Φi

∑
vi

ρi ,



ORTHOGONAL RING PATTERNS 13

Figure 9. Orthogonal ring patterns interpolating between the circle pat-
terns for z2 and its dual pattern for log z.

where Φi = 2π for interior vertices and Φi ∈ (0, 2π) for boundary vertices
and Li2 is the dilogarithm function. The first sum is taken over all edges and
the second sum over all vertices of G. For a flat euclidean orthogonal circle
pattern we need to require that boundary angles sum up to (n− 2)π where
n is the number of boundary vertices. The critical points of the functional
satisfy the condition that all the kite angles around the vertices vi sum up
to Φi. So for the interior vertices with Φi = 2π we obtain exactly equation (2)
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Figure 10. An orthogonal ring pattern computed using the variational
principle with Neumann boundary conditions. The prescribed angles are
π for the boundary vertices of degree 2 and 2π for the vertices of degree 4.
The shape is governed by the four angles prescribed for the four boundary
vertices of degree 3.

and for the boundary edges the prescribed curvature. As the functional is
convex [5, Prop. 1,2] there exists a unique Euclidean ring pattern with the
prescribed boundary conditions.

To determine a solution we can either prescribe Dirichlet boundary con-
ditions by prescribing the ρ’s for the boundary rings or Neumann boundary
conditions by specifying the curvatures Φi for the boundary vertices (see
Fig. 10).
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