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Abstract

In the projective plane, we consider congruences of straight lines with the combi-

natorics of the square grid and with all elementary quadrilaterals possessing touching

inscribed conics. The inscribed conics of two combinatorially neighbouring quadrilaterals

have the same touching point on their common edge-line. We suggest that these nets

are a natural projective generalisation of incircular nets. It is shown that these nets are

planar Koenigs nets. Moreover, we show that general Koenigs nets are characterised by

the existence of a 1-parameter family of touching inscribed conics. It is shown that the

lines of any grid of quadrilaterals with touching inscribed conics are tangent to a common

conic. These grids can be constructed via polygonal chains that are inscribed in conics.

The special case of billiards in conics corresponds to incircular nets.
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Dynamics”
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1 Introduction

The geometry of incircular nets (IC-nets) has recently been discussed in great detail in [1]. IC-

nets were introduced by Böhm [8] and they are defined as congruences of straight lines in the

plane with the combinatorics of the square grid such that each elementary quadrilateral admits

an inscribed circle. IC-nets have a wealth of geometric properties, including the distinctive

feature that any IC-net comes with a conic to which the gridlines are tangent. IC-nets are

closely related to Poncelet(-Darboux) grids, which were originally introduced by Darboux [11]

and further studied in [15] and [18].

Checkerboard IC-nets constitute a natural generalisation of IC-nets. The gridlines of checker-

board IC-nets have the combinatorics of the square grid but it is only required that every

second quadrilateral admits an inscribed circle, namely the “black” (or “white” if the colours

are interchanged) quadrilaterals if the quadrilaterals of the net are combinatorially coloured

like those of a checkerboard. Checkerboard IC-nets can be consistently oriented so that their

lines and circles are in oriented contact. Thus, these nets are naturally treated in terms of

Laguerre geometry. In [4] checkerboard IC-nets were explicitly integrated in terms of Jacobi

elliptic functions. The integration is similar to the case of elliptic billiards [12]. Recently in [3]

the corresponding definitions and results were extended to the cases of incircular nets in the

2-sphere and also in the hyperbolic plane by developing the corresponding Laguerre geometries.

In this paper we suggest a purely projective generalisation of IC-nets. Namely, we consider

planar congruences of straight lines with the combinatorics of the square grid and with all

elementary quadrilaterals possessing touching inscribed conics (see Figure 12). It is worth

mentioning that the lines of the projective grids we introduce correspond not to the lines

of IC-nets but to the lines passing through the centres of their circles. We describe their

geometry in detail and show, in particular, in Section 4.2 that the lines of these grids touch a

common conic. A further important property is that planar grids of quadrilaterals with touching

inscribed conics are planar Koenigs nets. Koenigs nets are an important example of integrable

discrete differential geometry [5]. In Section 3.2, we show that the property to possess touching

inscribed conics is characteristic for general Koenigs net. This characterisation of Koenigs nets

via inscribed conics (Theorem 5) was independently discovered by Christian Müller.

Our geometric analysis is based essentially on Theorem 7, which is an incidence theorem for

five conics and six touching lines, see Figure 12. The corresponding implications for grids of

quadrilaterals with touching inscribed conics are described in Section 4. In particular, it is

shown that these grids can be constructed via polygonal chains that are inscribed in conics. In

Section 4.4 it is demonstrated how the special case of billiards in conics can be used to generate

incircular nets.
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2 Preliminaries

In this section we present some known results about inscribed conics. Many theorems about

quadrilaterals with inscribed conics can be found in, for instance, the chapters XII, XVI and

XVIII of [10]. Many other theorems about conics can be found in [13].

We denote by u ∈ Rn+1 the homogeneous coordinates of the corresponding points {[u] :

u ∈ Rn+1} of the projective space Pn. In the projective plane P2, any arrangement of lines

is called generic if and only if no three of the lines are concurrent. Let �([u], [v], [w], [x])

denote the quadrilateral with the vertices [u], [v], [w], [x] and with the generic edge-lines

([u], [v]), ([v], [w]), ([w], [x]), ([x], [u]). The lines ([u], [w]) and ([v], [x]) are the diagonals of the

quadrilateral.

Definition 1. For any quadrilateral �([u], [v], [w], [x]) in P2, a non-degenerate inscribed conic

is a non-degenerate conic C(φ) := {[x] ∈ P : φ(x, x) = 0} defined by a non-zero symmetric

bilinear form φ such that

φ(u, α1u+ β1v) = 0 = φ(α1u+ β1v, v)

φ(v, α2v + β2w) = 0 = φ(α2v + β2w,w)

φ(w, α3w + β3x) = 0 = φ(α3w + β3x, x)

φ(x, α4x+ β4u) = 0 = φ(α4x+ β4u, u)

where [α1u+ β1v], [α2v+ β2w], [α3w+ β3x], [α4x+ β4u] are points, which are contained in the

edge-lines, that are distinct from the vertices of the quadrilateral.

In other words, the four edge-lines of the quadrilateral are the polars of the four points [α1u+

β1v], [α2v + β2w], [α3w + β3x], [α4x+ β4u] which are contained in the conic C(φ).

Proposition 1 is a degenerate case of Brianchon’s theorem [7, 13].

Proposition 1. Let C be a non-degenerate conic that is inscribed in a quadrilateral

�([u], [v], [w], [x]) in P2 and let [α1u + β1v], [α2v + β2w], [α3w + β3x], [α4x + β4u] be the

four tangency points. Then, the lines ([α1u+ β1v], [α3w + β3x]) and ([α2v + β2w], [α4x+ β4u])

are concurrent with the two diagonals of the quadrilateral. (See Figure 2.)

Consider a triangle4([u], [v], [w]). Let [α1u+β1v], [α2v+β2w], [α3w+β3u] be distinct from the

vertices. The points form a Ceva configuration if and only if the three lines ([u], [α2v + β2w]),

([v], [α3w+β3u]) and ([w], [α1u+β1v]) are concurrent. The points form a Menelaus configuration

if and only if the three points [α1u+ β1v], [α2v + β2w], [α3w + β3u] are collinear.

Theorem 1 (Ceva’s theorem and Menelaus’ theorem). Consider a triangle 4(A1, A2, A3) in

the affine plane. Let P12, P23 and P31 be points on the respective edge-lines (A1, A2), (A2, A3)

and (A3, A1) distinct from the vertices of the triangle. Then,

(i) l(A1,P12)
l(P12,A2)

· l(A2,P23)
l(P23,A3)

· l(A3,P31)
l(P31,A1)

= 1 if and only if the points form a Ceva configuration.
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Figure 1: A Ceva configuration and a Menelaus configuration.

(ii) l(A1,P12)
l(P12,A2)

· l(A2,P23)
l(P23,A3)

· l(A3,P31)
l(P31,A1)

= −1 if and only if the points form a Menelaus configuration.

Here, l(A,P ) denotes an oriented length.

Note that the quotient of the oriented lengths is invariant with respect to the line orientation.

Theorem 1 can be found, for example, in [5, 17].

Definition 2. Let A1, P12, A2, P21 be collinear points in affine space An, n ≥ 1. The cross ratio

is defined by

cr(A1, P12, A2, P21) :=
l(A1, P12)

l(P12, A2)

l(A2, P21)

l(P21, A1)
.

If cr(A1, P12, A2, P21) = −1, then the cross ratio is called harmonic and the point P21 is called

the harmonic conjugate of P12 with respect to A1 and A2. Proposition 2 provides a well known

method to construct the harmonic conjugate of P12 with respect to A1 and A2.

Proposition 2. Let [α1u+β1v], [α2v+β2w], [α3w+β3u] be points that form a Ceva configuration

on the triangle 4([u], [v], [w]). Then, the line ([α2v + β2w], [α3w + β3u]) intersects the line

([u], [v]) at the harmonic conjugate of [α1u+ β1v] with respect to [u] and [v].

Theorem 2. Let [α1u+ β1v], [α2v+ β2w], [α3w+ β3x], [α4x+ β4u] be four distinct points that

are distinct from the vertices of the quadrilateral �([u], [v], [w], [x]). These points determine a

Ceva configuration for each of the triangles 4([u], [v], [w]), 4([v], [w], [x]), 4([w], [x], [u]) and

4([x], [u], [v]). The intersection point of the diagonals of �([u], [v], [w], [x]) is a common point

of the four Ceva configurations if and only if the points [α1u + β1v], [α2v + β2w], [α3w + β3x]

and [α4x+ β4u] are the tangency points of a non-degenerate inscribed conic. (See Figure 2.)

Proof. Suppose that the intersection point of the diagonals of �([u], [v], [w], [x]) is a common

point of the four Ceva configurations. Then, the representative vectors u, v, w, x for the vertices

of the quadrilateral can be chosen so that [u+ v], [v +w], [w + x], [x+ u] are the points on the

edge-lines and so that [u+w] = [v+x], which is the intersection point of the two diagonals. The

identity [u+w] = [v+x] implies that there exists some non-zero γ ∈ R such that γ(u+w) = v+x.

Equivalently, x = γu− v + γw.
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Figure 2: For any non-degenerate conic that is inscribed in a quadrilateral �([u], [v], [w], [x]),

the two lines connecting the opposite tangency points are concurrent with the two diagonals.

The tangency points determine a Ceva configuration on each of the triangles 4([u], [v], [w]),

4([v], [w], [x]), 4([w], [x], [u]), 4([x], [u], [v]). The intersection point of the diagonals of

�([u], [v], [w], [x]) is a point of the four Ceva configurations.

Figure 3: By the complete quadrilateral theorem, cr([u], [r], [w], [t]) = −1 and

cr([v], [r], [x], [s]) = −1.
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Define a non-zero symmetric bilinear form φ on the basis u, v, w ∈ R3 by the following system

of equations.

φ(u, u) = φ(v, v) = φ(w,w) = −φ(u, v) = −φ(v, w) = 1

φ(u,w) = −γ + 1 + 1

γ

By substituting x = γu− v + γw, the following equations can be verified.

φ(u, u) = φ(v, v) = φ(w,w) = φ(x, x) = −φ(u, v) = −φ(v, w) = −φ(w, x) = −φ(x, u)

Equivalently,

φ(u, u+ v) = 0 = φ(v, u+ v)

φ(v, v + w) = 0 = φ(w, v + w)

φ(w,w + x) = 0 = φ(x,w + x)

φ(x, x+ u) = 0 = φ(u, x+ u)

Looking for a contradiction, suppose that the conic C(φ) is degenerate. By the classification

of degenerate conics, which can be found in [7], C(φ) is either a double point, a double line or

a pair of lines. Because C(φ) is tangent to the four generic edge-lines of the quadrilateral, it

cannot be a double point nor a pair of lines. C(φ) must be a double line. Then, the points

[u+v], [v+w], [w+x], [x+u] are collinear and the double line C(φ) also contains the points [u−w]

and [v − x]. By the complete quadrilateral theorem [6], using the fact that [u + w] = [v + x]

is the intersection of the diagonals, the harmonic ratios cr([u, [u + w], [v], [u − w]) = −1 and

cr([v], [v + x], [x], [v − x]) = −1 imply that [u − w] and [v − x] are contained in the line

(([v], [w]) ∩ ([x], [u]), ([u], [v]) ∩ ([w], [x])). Then, [u + v] = [w + x] and [v + w] = [x + u]. This

contradicts the assumption that the four points on the edge-lines are distinct. Therefore, the

conic C(φ) is a non-degenerate inscribed conic.

Suppose that [α1u + β1v], [α2v + β2w], [α3w + β3x], [α4x + β4u] are the four tangency points

of a non-degenerate inscribed conic C. By Proposition 1, the lines ([α1u + β1v], [α3w + β3x])

and ([α2v + β2w], [α4x+ β4u]) are concurrent, say at [r], with the two diagonals of the quadri-

lateral. Similarly, the two lines ([α2u + β2v], [α3v + β3w]), ([α4w + β4x], [α1x + β1u]) are also

concurrent, say at [s], with two of the diagonals of the complete quadrilateral and the two lines

([α1u+ β1v], [α2v + β2w]), ([α3w + β3x], [α4x+ β4u]) are concurrent, say at [t], with two of the

diagonals of the complete quadrilateral. See Figure 3. By the complete quadrilateral theorem

[6], cr([u], [r], [w], [t]) = −1 and cr([v], [r], [x], [s]) = −1. By Theorem 1, [t] = [−β1β2w+α1α2u]

because [α1u + β1v], [α2v + β2w] and [−β1β2w + α1α2u] are the points of a Menelaus configu-

ration on the triangle 4([u], [v], [w]). Then, the harmonic ratio cr([u], [r], [w], [t]) = −1 implies

that [r] = [β1β2w + α1α2u]. Then, by Theorem 1, the points [r], [α1u + β1v] and [α2v + β2w]

form a Ceva configuration on the triangle 4([u], [v], [w]). Similarly, the point [r] is a point of

the three other Ceva configurations.

Theorem 2 is a generalisation of the fact that Ceva configurations correspond to non-degenerate

conics that are inscribed in triangles.
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Figure 4: For any quadrilateral, there is a 1-parameter family of inscribed conics.

Corollary 1. For any quadrilateral in P2, there exists a 1-parameter family of inscribed conics.

Any inscribed conic can be uniquely determined by specifying one of its tangency points which

is not a vertex of the quadrilateral.

Proof. Consider a quadrilateral �([u], [v], [w], [x]) in P2. Let [r] be the intersection of the

diagonals of the quadrilateral. Choose a point of the quadrilateral that is distinct from the

vertices of the quadrilateral, say [α1u + β1v] as shown in Figure 2. Construct [α2v + β2w]

so that the points [α1u + β1v], [α2v + β2w] and [r] form a Ceva configuration on the triangle

4([u], [v], [w]). Construct [α3w + β3x] so that the points [α2v + β2w], [α3w + β3x] and [r]

form a Ceva configuration on the triangle 4([v], [w], [x]). Construct [α4x + β4u] so that the

points [α3w+β3x], [α4x+β4u] and [r] form a Ceva configuration on the triangle 4([w], [x], [u]).

By using Ceva’s theorem, the incidence theorem in [16] ensures that the points [α4x + β4u],

[α1u+β1v] and [r] form a Ceva configuration on the triangle 4([x], [u], [v]). By Theorem 2, the

points [α1u+β1v], [α2v+β2w], [α3w+β3x], [α4x+β4u] are the tangency points of an inscribed

conic.

Lemma 1. Consider a quadrilateral �([u], [v], [w], [x]) in P2 and let r be the intersection point

of the diagonals. For any inscribed conic C, let p([u],[v]), p([w],[x]), q([x],[u]) and q([v],[w]) be the

tangency points which are labelled by their tangent lines. As shown in Figure 5, draw the two

lines containing the collinear points {p([u],[v]), r, p([w],[x])} and {q([x],[u]), r, q([v],[w]))} to construct

the points q∗([v],[w]), q
∗
([x],[u]), p

∗
([u],[v]), p

∗
([w],[x]) which are labelled by their tangent lines. Then, the

points p∗([u],[v]), p
∗
([w],[x]), q

∗
([v],[w]), q

∗
([x],[u]) are the tangency points of an inscribed conic.

Proof. By Theorem 2, the representative vectors u, v, w, x for the vertices of the quadrilateral

can be chosen so that p([u],[v]) = [u + v], q([v],[w]) = [v + w], p([w],[x]) = [w + x], q([x],[u]) = [x + u]

and so that r = [u + w] = [v + x]. Then, p∗([u],[v]) = [u − v], p∗([w],[x]) = [w − x], q∗([x],[u]) =

[x − u] and q∗([w],[v]) = [w − v]. The point [u + w] = [v + x] is a point of the four Ceva

configurations that are determined by the points [u−v], [−v+w], [w−x], [−x+u] of the triangles

4([u], [v], [w]), 4([v], [w], [x]), 4([w], [x], [u]), 4([x], [u], [v]). Therefore, by Theorem 2, the

points [u− v], [−v + w], [w − x], [−x+ u] are the tangency points of an inscribed conic.
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Figure 5: The points p([u],[v]), p([w],[x]), q([x],[u]) and q([v],[w]) are the tangency points of an inscribed

conic. Lemma 1 defines an inscribed conic such that the points p([u],[v]), p([w],[x]), r, q
∗
([x],[u]),

q∗([v],[w]) are collinear and such that the points q([x],[u]), q([v],[w]), r, p
∗
([u],[v]), p

∗
([w],[x]) are collinear.

For any quadrilateral �([u], [v], [w], [x]) in P2, Lemma 1 establishes an involution on the 1-

parameter family of inscribed conics. However, there is one degenerate case. For any quadri-

lateral, there is a unique inscribed conic that is projectively equivalent to a circle inscribed in a

square. It is mapped under the involution to a degenerate inscribed conic, namely the double

line (([v], [w]) ∩ ([x], [u]), ([u], [v]) ∩ ([w], [x])). We are mostly interested in the generic case.

3 Nets of planar quadrilaterals with touching inscribed

conics

3.1 Porism

In projective space Pn, n ≥ 2, nets of planar quadrilaterals (or Q-nets) are discrete surfaces that

are defined by gluing together planar quadrilaterals. By definition, two planar quadrilaterals

are glued together if and only if they have two common vertices on a common edge-line. Nets

of planar quadrilaterals with touching inscribed conics are nets of planar quadrilaterals such

that each planar quadrilateral is equipped with an inscribed conic such that, for any two

neighbouring quadrilaterals, the two inscribed conics have the same tangency point on their

common edge-line.

A loop of planar quadrilaterals is a net of planar quadrilaterals where every quadrilateral is

glued with exactly two other quadrilaterals. A loop of planar quadrilaterals is called bipartite

if the vertices can be bicoloured so that the vertices have different colours if they share an edge.

Theorem 3. Consider a bipartite loop of finitely many planar quadrilaterals in projective space

Pn, n ≥ 2. If it admits one instance of touching inscribed conics, then it admits a 1-parameter

family of touching inscribed conics.
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Figure 6: If a bipartite loop of planar quadrilaterals admits one instance of touching inscribed

conics, then it admits a 1-parameter family of touching inscribed conics.

Proof. Enumerate the quadrilaterals {Qi}i=1,...,n of the bipartite loop so that Qi and Qi+1 are

neighbouring quadrilaterals for any i ∈ Z/nZ. Let li denote the common edge-line of the two

neighbouring quadrilaterals Qi and Qi+1. Let ri denote the intersection of the diagonals of Qi.

For each i ∈ Z/nZ, define a central projection fi : li−1 → li. There are two cases to consider.

First, suppose that the lines li−1 and li do not intersect at a vertex of the quadrilateral Qi. Then

fi is defined to be the central projection with centre ri. Second, suppose that lines li−1 and li

do intersect at a vertex of the quadrilateral Qi. Then, the two neighbouring quadrilaterals of

Qi have the incidence structure as shown in Figure 7 and the map fi : li−1 → li is defined so

that, for all q ∈ li−1 distinct from the vertices of Qi, the points q, fi(q) and ri form a Ceva

configuration on the triangle whose vertices are the vertices of Qi that are also vertices of Qi−1

or Qi+1. Equivalently, by Proposition 2, the map fi is the central projection whose centre is

the point r∗i such that cr(p, ri, fi(p), r
∗
i ) = −1 as shown in Figure 7.

Figure 7: The central projection fi in the case when the quadrilateral Qi has two neighbouring

quadrilaterals sharing a vertex. The centre r∗i of fi is defined so that cr(p, ri, fi(p), r
∗
i ) = −1.

Equivalently, the points q, fi(q) and ri form a Ceva configuration.

Because the loop is bipartite, the two common vertices of the quadrilaterals Q1 and Qn are two

fixed points of the projective transformation f := fn ◦ fn−1 ◦ . . . ◦ f2 ◦ f1 : l0 → l0. Suppose that

the bipartite loop admits an instance of touching inscribed conics. Then, Theorem 2 implies

that the touching point on the line l0 is a also a fixed point of the projective transformation
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f . Thus, f ≡ id. Using Theorem 2, this shows that the loop admits a 1-parameter family of

touching inscribed conics.

Figure 8: If a Q-net admits an instance of touching inscribed conics, then it admits a 1-

parameter family of touching inscribed conics and, by Theorem 5, it is a Koenigs net.

Corollary 2. A Q-net f : Z2 → Pn, n ≥ 2, admits an instance of touching inscribed conics if

and only if it admits a 1-parameter family of touching inscribed conics. (See Figure 8.)

Theorem 4. In projective space Pn, n ≥ 2, the double cover of a non-bipartite loop always

admits a 1-parameter family of touching inscribed conics.

Proof. As in the proof of Theorem 3, enumerate the quadrilaterals and let li denote the common

edge-line of the two neighbouring quadrilaterals Qi and Qi+1 for all i ∈ Z/nZ. Define f : l0 → l0

to be the projective transformation fn ◦ fn−1 ◦ . . . ◦ f2 ◦ f1 that was defined in the proof of

Theorem 3. Let v1 and v2 be the two common vertices of Q1 and Qn. Because the loop of

planar quadrilaterals is not bipartite, it follows that f(v1) = v2 and f(v2) = v1. However,

any projective transformation P1 → P1 is an involution if it exhanges two distinct points [17,

Lemma 8.1]. Therefore, f ◦ f ≡ id.

3.2 Koenigs nets

Two planar quadrilaterals �(A,B,C,D) and �(A∗, B∗, C∗, D∗) are called dual quadrilaterals if

and only if their corresponding edge-lines are parallel and their non-corresponding diagonals are

parallel. For any planar quadrilateral, a dual quadrilateral exists and it is uniquely determined

up to translation and rescaling.

A net f : Z2 → An of planar quadrilaterals in affine space An, n ≥ 2, is called a 2-dimensional

Koenigs if and only if there exists a Christoffel dual net f ∗ : Z2 → An such that the corre-

sponding quadrilaterals are dual [5]. Although 2-dimensional Koenigs nets are defined in terms

of affine geometry, it is known that the class of 2-dimensional Koenigs nets is invariant under

projective transformations.
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Definition 3. Consider a Q-net f : Z2 → An, n ≥ 2. Denote by Mi,j the intersection point of

the diagonals of the quadrilateral �(fi,j, fi+1,j, fi+1,j+1, fi,j+1). Then, the net f : Z2 → An is a

2-dimensional Koenigs net if and only if the following condition is satisfied for all (i, j) ∈ Z2.

l(Mi,j, fi+1,j)

l(Mi,j, fi,j+1)
· l(Mi−1,j, fi,j+1)

l(Mi−1,j, fi−1,j)
· l(Mi−1,j−1, fi−1,j)

l(Mi−1,j−1, fi,j−1)
· l(Mi,j−1, fi,j−1)

l(Mi,j−1, fi+1,j)
= 1 (1)

This algebraic characterisation and further projective geometric properties of Koenigs nets can

be found in [5].

Figure 9: The identity (1) is valid if and only if the net of planar quadrilaterals admits a

1-parameter family of touching inscribed conics.

Theorem 5. A Q-net f : Z2 → Pn, n ≥ 2, is a 2-dimensional Koenigs net if and only if it

admits (a 1-parameter family of) touching inscribed conics.

Proof. Ceva’s theorem implies that equation (1) from Definition 3 is a necessary and sufficient

condition for the existence of a 1-parameter family of Ceva configurations that are glued together

as shown in Figure 9. Equivalently, by Theorem 2, there is a 1-parameter family of touching

inscribed conics.

Corollary 3. If all the edge-lines of a Q-net f : Z2 → Pn, n ≥ 2, are tangent to a non-

degenerate quadric, then f is a 2-dimensional Koenigs net.

Examples of Q-nets with their edge-lines tangent to a sphere are given by Koebe polyhedra,

which are used in [2] to construct discrete minimal surfaces. The corresponding touching conics

are circles. Koebe polyhedra have a 1-parameter family of touching inscribed conics.
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4 Line grids with quadrilaterals with touching inscribed

conics

4.1 Polygonal chains inscribed in conics

Let p0, p1, . . . , pm be the vertices of a polygonal chain that is inscribed in a non-degenerate

conic C and let q0, q1, . . . , qn be the vertices of another polygonal chain that is also inscribed in

the non-degenerate conic C. Let k0, k1, . . . , km and l0, l1, . . . , ln be the tangent lines of C at the

points p0, p1, . . . , pm and q0, q1, . . . , qn. For any i, j ∈ N such that 1 ≤ i ≤ m and 1 ≤ j ≤ n, the

notation �(ki−1, lj−1, ki, lj) denotes the quadrilateral with the vertices ki−1 ∩ lj−1, ki−1 ∩ lj, ki ∩
lj, ki ∩ lj−1. Define the two lines ki−1,i := (pi−1, pi) and lj,j−1 := (qj−i, qj). By Lemma 1, the

points ki−1,i ∩ lj−1, ki−1,i ∩ lj, ki−1 ∩ lj−1,j, ki ∩ lj−1,j are the tangency points of a conic that

is inscribed in the quadrilateral �(ki−1, lj−1, ki, lj). Therefore, the m× n grid of quadrilaterals

{�(ki−1, lj−1, ki, lj)}1≤i≤m,1≤j≤n admits an instance of touching inscribed conics such that the

tangency points satisfy some non-trivial collinearites. An example is shown in Figure 10 where

the non-trivial collinearities are represented by the dotted lines.

Figure 10: Two polygonal chains p0, p1, p2 and q0, q1, q2 are inscribed in a conic. The solid

lines are the tangent lines k0, k1, k2 and l0, l1, l2. The dotted lines are the lines (p0, p1), (p1, p2),

(q0, q1), (q1, q2). By construction, the tangency points of the touching inscribed conics lie on

the dotted lines.

In the above construction of grids of quadrilaterals with touching inscribed conics, the two

polygonal chains determine the “horizontal” and “vertical” lines of the grids. However, they

can be merged. (See Figure 11).

4.2 Generic lines tangent to a conic

Theorem 6 is a consequence of two classical theorems which are referenced in the proof.
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Figure 11: An inscribed polygon and a grid of quadrilaterals with touching inscribed conics.

Among the 1-parameter family of touching inscribed conics, there is one instance of touching

inscribed conics such that the tangency points of the touching inscribed conics are contained

in the dotted edge-lines of the inscribed polygon.

Theorem 6. Let k0, k1 and l0, l1, . . . , ln, n ≥ 2, be lines in the projective plane such that each

quadrilateral Qi := �(k0, li−1, k1, li) has four generic edge-lines. Let ri be the intersection point

of the diagonals of Qi. Then, the following are equivalent.

(i) The lines k0, k1 and l0, l1, . . . , ln are tangent to a non-degenerate conic.

(ii) The points {ri}1≤i≤n lie in a line that does not contain the point k0 ∩ k1.

Suppose that the lines k0, k1 and l0, l1, . . . , ln are tangent to a non-degenerate conic C. Let k0,1 be

the line containing the collinear points {ri}1≤i≤n. Then, k0 ∩ k0,1 and k1 ∩ k0,1 are the tangency

points of the tangent lines k0 and k1.

Proof. By the dual of Steiner’s theorem on the projective generation of non-degenerate conics,

the lines k0, k1, l0, l1, . . . , ln are tangent to a non-degenerate conic if and only if there is a

projective transformation f : k0 → k1 such that f(k0 ∩ li) = k1 ∩ li for all i ∈ {1, . . . , n} and

such that f(k0 ∩ k1) 6= k0 ∩ k1 [9, Theorems 8.1.4 and 8.1.8]. Equivalently, by the cross-axis

theorem [9, Theorem 5.3.5] and [9, Proposition 5.3.7], the points {ri}1≤i≤n are contained in a

line which is called the cross-axis of f : k0 → k1. The cross-axis is not concurrent with the

lines k0 and k1 because otherwise the projective transformation f : k0 → k1 would be a central

projection so that f(k0 ∩ k1) = k0 ∩ k1. Therefore (i) and (ii) are equivalent.

Suppose that the generic lines k0, k1 and l0, l1, . . . , ln are tangent to a non-degenerate conic C.
Let p0 and p1 be the tangency points of the the tangent lines k0 and k1. Because C is inscribed

in each of the quadrilaterals {Qi}i=1,...,n, Proposition 1 ensures that the points {ri}i=1,...,n are

contained in the line (p0, p1). Therefore, p0 = k0 ∩ k0,1 and p1 = k1 ∩ k0,1.
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Let k0, k1, . . . , km and l0, l1, . . . , ln be generic lines in the projective plane. Consider the m× n
grid of quadrilaterals Qi,j := �(ki−1, lj−1, ki, lj). We use Ki−1,i and Lj−1,j to denote the strips

of quadrilaterals {�(ki−1, lj−1, ki, lj)}j=1,...,n and {�(ki−1, lj−1, ki, lj)}i=1,...,m, respectively.

Theorem 7. For six generic lines k0, k1, k2, l0, l1, l2 in the projective plane, consider the 2× 2

grid of quadrilaterals Qi,j := �(ki−1, lj−1, ki, lj). We use ri,j to denote the intersection point of

the diagonals of the quadrilateral Qi,j. Then, the following are equivalent.

(i) The six lines k0, k1, k2, l0, l1, l1 are tangent to a non-degenerate conic.

(ii) The 2× 2 grid of quadrilaterals admits an instance of touching inscribed conics Ci,j such

that the following sets are sets of collinear points. (See Figure 12.)

{K0,1l0, r1,1, K0,1l1, r1,2, K0,1l2} {k0L1,2, r1,2, k1L1,2, r2,2, k2L1,2}
{K1,2l0, r2,1, K1,2l1, r2,2, K1,2l2} {k0L0,1, r1,1, k1L0,1, r2,1, k2L0,1}

The points Ki−1,ilj−1, Ki−1,ilj, ki−1Lj−1,j, kiLj−1,j are defined to be the tangency points of

the conic Ci,j that is inscribed in the quadrilateral Qi,j. The tangency points are labelled

by their tangent lines and by the strips of quadrilaterals.

(iii) The 2× 2 grid of quadrilaterals admits an instance of touching inscribed conics.

(iv) The 2× 2 grid of quadrilaterals admits a 1-parameter family of touching inscribed conics.

(v) The three lines (r1,1, r2,1), (r1,2, r2,2) and l1 are concurrent.

(vi) The three lines (r1,1, r1,2), (r2,1, r2,2) and k1 are concurrent.

Proof. Suppose that the generic lines k0, k1, k2, l0, l1, l2 are tangent to a non-degenerate conic C.
Let p0, p1, p2, q0, q1, q2 be the tangency points of the tangent lines k0, k1, k2, l0, l1, l2. Consider

the two polygonal chains p0, p1, p2 and q0, q1, q2 that are inscribed in the non-degenerate conic

C. By the construction in Section 4.1, the 2 × 2 grid of quadrilaterals admits an instance of

touching inscribed conics such that the following sets are sets of collinear points.

{K0,1l0, r1,1, K0,1l1, r1,2, K0,1l2} {k0L1,2, r1,2, k1L1,2, r2,2, k2L1,2}
{K1,2l0, r2,1, K1,2l1, r2,2, K1,2l2} {k0L0,1, r1,1, k1L0,1, r2,1, k2L0,1}

Therefore, (i) implies (ii). Obviously, (ii) implies (iii). By Theorem 3, (iii) implies (iv).

Suppose that the 2×2 grid of quadrilaterals admits a 1-parameter family of touching inscribed

conics. By Theorem 5, it is a Koenigs net. So, in any affine image of P2,

l(k0 ∩ l1, r1,1)
l(r1,1, k1 ∩ l0)

l(k1 ∩ l0, r2,1)
l(r2,1, k2 ∩ l1)

l(k2 ∩ l1, r2,2)
l(r2,2, k1 ∩ l2)

l(k1 ∩ l2, r1,2)
l(r1,2, k0 ∩ l1)

= 1. (2)

By applying Menelaus’s theorem to the triangles 4(k0 ∩ l1, k2 ∩ l1, k1 ∩ l2) and 4(k0 ∩ l1, k2 ∩
l1, k1 ∩ l0), the identity (2) implies that the two lines (r1,1, r2,1) and (r1,2, r2,2) are concurrent
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Figure 12: The six generic gridlines are tangent to a non-degenerate conic if and only if the

2 × 2 grid of quadrilaterals admits a 1-parameter family of touching inscribed conics. Among

the 1-parameter family of touching inscribed conics, there is one instance of touching inscribed

conics such that the tangency points satisfy some non-trivial collinearities which are represented

by the dotted lines.

with the line l1. By applying Menelaus’ theorem to the triangles 4(k1 ∩ l0, k1 ∩ l2, k0 ∩ l1) and

4(k1∩ l0, k1∩ l2, k2∩ l1), the identity (2) implies that the two lines (r1,1, r1,2) and (r2,1, r2,2) are

concurrent with the line k1. Therefore, (iv) implies both (v) and (vi).

Suppose that the three lines (r1,1, r2,1), (r1,2, r2,2) and l1 are concurrent. Let q1 be the con-

currency point. The generic lines k0, k1, k2, l0, l1 are tangent to a uniquely determined non-

degenerate conic [9, Corollary 8.1.12], say A . By Theorem 6, q1 is a tangency point of A.

Likewise, the generic lines k0, k1, k2, l1, l2 are tangent to a uniquely determined non-degenerate

conic, say B, with the tangency point q1. Then, by Corollary 1, A = B because A and B have

four common generic tangent lines k0, k1, k2, l1 and the common tangency point q1. Therefore,

(v) implies (i). Symmetrically, (vi) also implies (i).

Corollary 4. Let k0, k1, . . . , km, m ≥ 2 and l0, l1, . . . , ln, m ≥ 3, be generic lines in the

projective plane. Consider the m × n grid of quadrilaterals Qi,j := �(ki−1, lj−1, ki, lj). We

use ri,j to denote the intersection point of the diagonals of the quadrilateral Qi,j. Then, the

following are equivalent.

(i) The generic lines k0, k1, . . . , km, l0, l1, . . . , ln are tangent to a non-degenerate conic.
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(ii) The m×n grid of quadrilaterals admits an instance of touching inscribed conics Ci,j such

that the following are collections of sets of collinear points. (See Figure 13.)

{{Ki−1,ilj}j=0,...,n}i=1,...,m {{kiLj−1,j}i=0,...,m}j=1,...,n

The points Ki−1,ilj−1, Ki−1,ilj, ki−1Lj−1,j, kiLj−1,j are defined to be the tangency points of

the conic Ci,j that is inscribed in the quadrilateral Qi,j. The tangency points are labelled

by their tangent lines and by the strips of quadrilaterals.

(iii) The m× n grid of quadrilaterals admits an instance of touching inscribed conics.

(iv) The m×n grid of quadrilaterals admits a 1-parameter family of touching inscribed conics.

(v) {{ri,j}i=1,...,m}j=1,...,n and {{ri,j}j=1,...,n}i=1,...,m are collections of sets of collinear points.

(vi) {{ri,j}j=1,...,n}i=1,...,m is a collection of sets of collinear points.

Proof. Analogously to the proof of Theorem 7, the implications (i) =⇒ (ii) =⇒ (iii) =⇒
(iv) =⇒ (v) =⇒ (vi) are straightforward. The only step we comment is (vi) =⇒ (i).

Suppose that {{ri,j}j=1,...,n}i=1,...,m is a collection of sets of collinear points. By Theorem 6, for

any i ∈ {1, . . . ,m}, the generic lines ki−1, ki, l0, l1, . . . , ln are tangent to a non-degenerate conic,

say Ci. For any i ∈ {1, . . . ,m− 1}, the non-degenerate conics Ci and Ci+1 are identical because

they have five common tangent lines ki, l0, l1, l2, l3. Therefore, (vi) =⇒ (i).

Figure 13: If a 3×3 grid of quadrilaterals admits an instance of touching inscribed conics, then

there is a 1-parameter family of touching inscribed conics. Among the 1-parameter family,

there is one instance of touching inscribed conics such that the tangency points satisfy some

non-trivial collinearities which are represented by the dotted lines.

Koenigs nets can be treated as discrete conjugate nets with equal Laplace invariants [5]. By

Theorem 5, grids of quadrilaterals with touching inscribed conics are planar 2-dimensional

Koenigs nets. It is worth mentioning that Kœnigs showed in [14] that planar nets with equal

Laplace invariants can be understood locally by the condition that six lines are tangent to a

conic.
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Figure 14: A 3 × 3 grid of quadrilaterals Qi,j. Suppose that each of the quadrilaterals Q1,1,

Q1,2, Q1,3, Q2,1, Q2,2, Q2,3, Q3,1, Q3,2 is equipped with an inscribed conic such that, for any two

neighbouring quadrilaterals, the inscribed conics are touching. Then, the quadrilateral Q3,3

admits an inscribed conic that touches the two conics that are inscribed in the quadrilaterals

Q3,2 and Q2,3. By Corollary 4, the eight lines are tangent to a conic.

4.3 Conics associated to the strips

Theorem 8. Let k0, k1, . . . , km and l0, l1, . . . , ln (m,n ∈ N≥2) be generic lines in the projective

plane. Assume that the quadrilaterals Qi,j := �(ki−1, lj−1, ki, lj) are equipped with inscribed

conics Ci,j such that, for any two neighbouring quadrilaterals, the inscribed conics are touching.

Let ki−1Lj−1,j, kiLj−1,j, Ki−1,ilj−1, Ki−1,ilj be the corresponding tangency points, labelled by

their tangent lines and by the strips of quadrilaterals. Then, all of the gridlines k0, k1, . . . , km

and l0, l1, . . . , ln are tangent to a conic C. For any fixed i, the points {Ki−1,ilj}j=0,1,...,n are

contained in a conic Ai that has double contact with the conic C. For any fixed j, the points

{kiLj−1,j}i=0,1,...,m are contained in a conic Bj that has double contact with the conic C. (See

Figure 15.) Among the 1-parameter family of touching inscribed conics, there is one instance

such that all of the conics {Ai}i=1,...,m and {Bj}j=1,...,n are double lines. (See Figure 13.)

We start with Lemma 2, which will be used in the proof of Theorem 8.

Lemma 2. Let p([u],[v]), p([w],[x]), q([x],[u]), q([v],[w]) be the tangency points of a conic that is in-

scribed in the quadrilateral �([u], [v], [w], [x]) in P2. Let p∗([u],[v]), p
∗
([w],[x]), q

∗
([x],[u]), q

∗
([v],[w]) be the

tangency points of another inscribed conic. The tangency points are labelled by their tangent

lines. Then, there exists a unique conic containing the points p([w],[x]), p([u],[v]), q
∗
([x],[u]), q

∗
([v],[w])

and with the tangent lines ([w], [x]), ([u], [v]). Symmetrically, there exists a unique conic con-

taining the points q([x],[u]), q([v],[w]), p
∗
([u],[v]), p

∗
([w],[x]) and with the tangent lines ([x], [u]), ([v], [w]).

Proof. By Theorem 2, it is possible to choose the representative vectors u, v, w, x for the

vertices so that p∗([u],[v]) = [u + v], q∗([v],[w]) = [v + w], p∗([w],[x]) = [w + x], q∗([x],[u]) = [x + u] and

so that [u + w] = [v + x] is the intersection of the two diagonals. By Theorem 2, for any

non-zero λ ∈ R, the points [u+ λv], [λv + w], [w + λx], [λx+ u] are the tangency points of an
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Figure 15: A 2× 3 grid of quadrilaterals with touching inscribed conics. The lines are tangent

to a conic C. The tangency points of the touching inscribed conics are contained in conics that

have double contact with C.

Figure 16: There exists a conic containing the points p([w],[x]), p([u],[v]), q
∗
([x],[u]), q

∗
([v],[w]) and with

the tangent lines ([w], [x]), ([u], [v]). Symmetrically, there exists a conic containing the points

q([x],[u]), q([v],[w]), p
∗
([u],[v]), p

∗
([w],[x]) and with the tangent lines ([x], [u]), ([v], [w]).
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inscribed conic. Choose the non-zero scalar λ ∈ R so that p([u],[v]) = [u+λv], q([v],[w]) = [λv+w],

p([w],[x]) = [w+λx], q([x],[u]) = [λx+u]. To prove the lemma, it suffices to show that there exists

a conic C(ψ) containing the points [u+λv], [v+w], [w+λx], [x+u] and such that that ([u], [v])

and ([w], [x]) are tangent lines.

Define a non-zero symmetric bilinear form ψ : R3×R3 → R by the following system of equations

on the basis u, v, w ∈ R3.

ψ(u, u) = 1 ψ(v, v) =
1

λ2
ψ(w,w) = 1

ψ(u, v) =
−1

λ
ψ(u,w) =

λ2 + 2λ2γ + 2λ+ 1

−2λ2γ
ψ(v, w) =

λ2 + 1

−2λ2

The identity [u + w] = [v + x] implies v + x = γ(u + w) for some non-zero scalar γ ∈ R. By

substituting x = γu− v + γw, the following identities are easily verified.

ψ(u+ λv, u) = ψ(u+ λv, v) = ψ(w + λx,w) = ψ(w + λx, x) = 0

ψ(u+ λv, u+ λv) = ψ(v + w, v + w) = ψ(w + λx,w + λx) = ψ(x+ u, x+ u) = 0

The conic determined by ψ contains the points [u + λv], [v + w], [w + λx], [x + u]. The lines

([u], [v]) and ([w], [x]) are contained in the polars of [u+ λv] and [w + λx], respectively,

Figure 17: A non-generic 3 × 2 grid of quadrilaterals with touching inscribed conics. The

corresponding common conic is degenerate. The lines ki are concurrent and so too are the lines

lj. The double contact conics Ai and Bj are also degenerate. They are pairs of lines passing

through the concurrency points.

Proof of Theorem 8. Each quadrilateral Qi,j is equipped with an inscribed conic Ci,j such that,

for any two neighbouring quadrilaterals, the inscribed conics are touching. By Corollary 4, the

lines k0, k1, . . . , km and l0, l1, . . . , ln are tangent to a non-degenerate conic C. Let p0, p1, . . . , pm

and q0, q1, . . . , qn be the respective tangency points. For any fixed i ∈ {1, . . . ,m}, consider the

strip Ki−1,i of quadrilaterals {Qi,j}j=1,...,n. For each quadrilateral Qi,j in Ki−1,i, Lemma 2 de-

termines a conic, say Dj, containing the points pi−1, pi, Ki−1,ilj−1, Ki−1,ilj and with the tangent
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lines ki−1, ki. The conics Dj and Dj+1 are equal because pi−1, pi, Ki−1,ilj are common points and

the lines ki−1, ki are common tangents. Thus, Ai is the conic D1 = . . . = Dn. Therefore, the

conics {Ai}i=1,...,m exist and, symmetrically, the conics {Bj}j=1,...,n also exist. By Theorem 7

and Corollary 4, there is one instance of touching inscribed conics such that all of the conics

{Ai}i=1,...,m and {Bj}j=1,...,n are double lines.

4.4 Incircular nets and billiards in conics

Incircular nets are line grids with quadrilaterals with inscribed circles. The following charac-

terisation of incircular nets can be found in [1][Definition 2.3].

Definition 4. Let a0, a1, . . . , am and b0, b1, . . . , bn be lines in the Euclidean plane. The m ×
n grid of quadrilaterals �(ai−1, bj−1, ai, bj) is an incircular net if and only if the following

conditions are satisfied.

(i) The lines a0, a1, . . . , am and b0, . . . , bn are tangent to a conic C.

(ii) The points ai−1 ∩ ai and bj−1 ∩ bj are contained in a conic D that is confocal with C.

The lines a0, a1, . . . , am and b0, b1, . . . , bn are the lines of two billiards in the conic D that have

the same confocal caustic C. Billiards in conics have caustics that are confocal conics [19].

The gridlines of any incircular net are tangent to a conic. Therefore, by Corollary 4, incir-

cular nets are grids of quadrilaterals that admit a 1-parameter family of touching inscribed

conics. However, the inscribed circles of incircular nets are not touching inscribed conics. (See

Figure 18.)

Theorem 9. For any incircular net, there is a dual grid of quadrilaterals that has a 1-parameter

family of touching inscribed conics. The vertices of the dual grid are the centres of the circles

of the incircular net. The lines of the dual grid are angle bisector lines of the incircular net.

(See Figure 18.)

Proof. Any incircular net determines two billiards p0, p1, . . . , pm and q0, q1, . . . , qn that are in-

scribed in a conic D and that have the same confocal caustic C. Let k0, . . . , km and l0, . . . , ln be

the tangent lines of D at the points p0, p1, . . . , pm and q0, q1, . . . , qn, respectively. By Corollary 4,

the m× n grid of quadrilaterals �(ki−1, lj−1, ki, lj) admits a 1-parameter family of touching in-

scribed conics. The billiard reflection law ensures that the tangent line of D at pi is an angle

bisector of the lines (pi−1, pi) and (pi, pi+1). Likewise, the tangent line of D at qj is an angle bi-

sector of the lines (qj−1, qj) and (qj, qj+1). By the Graves-Chasles theorem (see for example [1]),

there is a circle that is tangent to the four dotted lines and that is centred at the intersection

point of the tangent lines of D at pi and qj.
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Figure 18: An incircular net. The circles and the touching conics are inscribed in combinato-

rially dual line grids. The line grid with touching inscribed conics is given by the lines passing

through the centres of the circles.

Figure 19: The two polygonal chains pi−1, pi, pi+1 and qj−1, qj, qj+1 are billiards that are in-

scribed in a conic D. Suppose that the two billiards have the same confocal caustic. Then,

by the Graves-Chasles theorem, there exists a circle that is tangent to the four dotted lines.

The centre of the circle is the intersection point of the tangent lines of D at pi and qj. These

tangent lines generate a line grid with touching inscribed conics.
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