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Fig. 1. Architectural design in reference to designs by architect Frank Gehry. In our case the four surface patches are not developable, but are isometric to the
same surface of revolution. The rectangular metal sheets covering the surface can be produced using just one comparably small sector between two meridian
curves of the corresponding surface of revolution as a mold (left and Figure 16). The long vertical strip (left ; gray) of the surface of revolution is either one big
mold or can be segmented into smaller molds if necessary. Metal sheets covering surface areas with almost vanishing Gaussian curvature can be produced
without a special mold, i.e., as developable surface patches.

Geodesic parallel coordinates are orthogonal nets on surfaces where one

of the two families of parameter lines are geodesic curves. We describe a

discrete version of these special surface parameterizations and show that

they are very useful for specific applications, most of which are related to

the design and fabrication of surfaces in architecture. With the new dis-

crete surface model, it is easy to control strip widths between neighboring

geodesics. This facilitates tasks such as cladding a surface with strips of

originally straight flat material or designing geodesic gridshells and timber

rib shells. It is also possible to model nearly developable surfaces. These are

characterized by geodesic strips with almost constant strip widths and are

used for generating shapes that can be manufactured from materials which

allow for some stretching or shrinking like felt, leather, or thin wooden
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boards. Most importantly, we show how to constrain the strip width param-

eters to model a class of intrinsically symmetric surfaces. These surfaces are

isometric to surfaces of revolution and can be covered with doubly-curved

panels that are produced with only a few molds when working with flexible

materials like metal sheets.
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1 INTRODUCTION
Recent research in computational design incorporates key aspects of

function and fabrication into an intelligent shape modeling process.

This reduces time and cost of product development, but also offers

totally new ways of combining digital design and fabrication. One

such direction of research is material-aware shape modeling, and a

natural assumption to start with is a flat sheet of material. If this
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material is much more easily bent than stretched, the ideal modelled

shapes are developable surfaces. Interactive modeling with these

surfaces is still an active topic of research (see, e.g., [Rabinovich et al.

2018a,b; Stein et al. 2018]). Recent work beyond developable surfaces

gains design flexibility with a special class of auxetic materials

[Konaković et al. 2016, 2018]. However, one does not directly obtain a

watertight surface skin. A remarkable way of building watertight 3D

surfaces from flat sheets is the use of planar rod networks embedded

in pre-stretched fabric that deploy into complex, three-dimensional

shapes [Perez et al. 2017]. The introduction of folds, straight or

curved, is yet another way for building spatial structures from flat

material. We do not review the wealth of research in this direction

in detail and just refer to [Callens and Zadpoor 2018; Demain and

O’Rourke 2007; Dudte et al. 2016].

Our work also deals with surfaces from flat sheets of material. It

goes beyond developable surfaces and achieves watertight surfaces

through an appropriate assembly of patches or panels. Motivated

by applications in architecture, we pursue several closely connected

goals: (i) We want to cover surfaces with originally nearly straight

flat strips of material. (ii) By keeping the width of these strips almost

constant, we want to get access to nearly developable surfaces. (iii)

We aim at modelling surfaces with intrinsic symmetries. As intrinsic

symmetries are not easily seen by a viewer, these surfaces still

appear very much like freeform shapes. Our intrinsically symmetric

design surfaces, such as the ones in Figures 1 and 2, are isometric

to surfaces of revolution. We show that they offer new ways of

fabricating surfaces, not just by bending flat sheets. One can cover

them with doubly curved panels that are produced with only a small

number of molds.

1.1 Overview and contributions
We introduce and study a new type of quad meshes which are

discrete versions of surface parameterizations f (u,v) with the at-

tractive property that one family of iso-parameter curves v = const

are geodesics and the iso-parameter lines u = const are orthogonal

to them (Section 2). This extends recent research modeling discrete

developable surfaces with the help of two orthogonal families of

geodesics [Rabinovich et al. 2018a,b]. Whereas they model glob-

ally developable surfaces, we consider at first surfaces which allow

for geodesic parallel coordinates, which are (locally) almost all sur-

face patches. Our focus lies on modeling the families of geodesics.

Through our ability to control the so called geodesic strip widths

and by setting it to be constant we actually include the class of

developable surfaces. Furthermore, whereas the focus of the work

by Rabinovich et al. is the developable surface itself and not its

parametrization, in our case the family of geodesic parameter lines

is a significant part of the result.

The new discrete surfaces naturally decompose a surface into

strips bounded by geodesics. The width of the strips is nicely con-

trollable with help of the curves orthogonal to them and gives us

a tool for modeling and representing nearly developable surfaces

(Section 3). Our meshes provide a new effective scheme for design-

ing geodesic strip layouts on a given reference surface. Even more

importantly, we are now able to design the surface and the strip

model simultaneously. This has the significant advantage that only

Fig. 2. Rendering of a wooden wall cladding. The underlying surface is
isometric to a surface of revolution. It can be realized by attaching a sequence
of bent timber strips. All strips develop to the same planar shape.

those surfaces are generated which fulfill given constraints on the

layout of the strip model, for example, on the strip width variation.

A geodesic strip model can be realized joining together devel-

opable surface strips whose planar unfoldings are nearly straight.

The strip width is in general not constant and thus different strips

will have different unfoldings. However, there are surfaces for which

all strips are congruent to each other in the unfolding. One such

instance is provided by rotational strip models, obtained by cutting

a rotational surface along regularly arranged planes through the

rotational axis and connecting consecutive slices by developable

(cylindrical) strips. Any isometrically deformed version of such a

rotational strip model also enjoys the property of being composed

of essentially only one type of a flat strip (see Fig. 2). In Section 4,

we show how to model these intrinsically repetitive surfaces. While

the recognition of a surface with this property could be performed

with prior work on Killing vector fields [Ben-Chen et al. 2010], we

are not aware of any contribution to the design of surfaces with this

type of intrinsic symmetry.

In Section 5 we show how the new type of constrained meshes

can be effectively computed via a numerical optimization scheme

following [Tang et al. 2014] and provide some details on its imple-

mentation.

Various applications in architectural geometry such as geodesic

gridshells, cladding and paneling are presented in Section 6. A re-

markable consequence of intrinsic symmetry (isometry to a surface

of revolution) is that it significantly extends the possibilities for

paneling architectural skins with bendable material like sheet metal.

We are not confined to developable panels anymore in order to ob-

tain a cost effective solution, but can produce doubly-curved panels

from just a few molds in the form of segments of the corresponding

surface of revolution.

Finally, we discuss limitations and point to promising directions

for future research.

1.2 Related Work
Most closely related to our research is recent work by Rabinovich

et al. [2018a; 2018b]. It carefully studies a discrete model for devel-

opable surfaces, based on two orthogonal families of geodesics. The
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demonstrated advantages of this important special case of discrete

geodesic parallel coordinates indicate the potential of our more

general setting.

Geodesic parallel coordinates are closely tied to distance functions

on surfaces. There is a huge amount of prior work on the related

tasks of computing distance functions and geodesics on surfaces. We

mention here only two of them, the fast marching method [Sethian

1999] and the highly efficient heat method [Crane et al. 2017]. Note

that it is not our goal to provide another method for computing

geodesics or distance fields. We want to model surfaces in a special

representation which includes a family of geodesics and we want

to control this family for various applications.

Part of our work concerns surfaces with a continuous intrinsic

symmetry. Such surfaces can be characterized via non-trivial Killing

fields. Discrete approximate Killing fields have been employed for

various tasks in Geometry Processing, such as pattern design on

surfaces [Ben-Chen et al. 2010] and discovery of intrinsic primitives

[Solomon et al. 2011]. A large body of research deals with discrete

intrinsic symmetries, e.g., [Ovsjanikov et al. 2008; Raviv et al. 2010].

The study of strip models for enhancing the understanding of

differential geometric concepts and the associated construction of

physical models is a classical topic of difference geometry [Sauer

1970], a precursor of modern discrete differential geometry. We

point in particular to the pioneering work of S. Finsterwalder [1899],

which explains remarkable relations between geometry andmechan-

ics, and is of interest for various topics in computational design and

fabrication. Much more recently, so-called semi-discrete surfaces

received interest, both from the practical and theoretical perspec-

tive [Carl 2017; Müller and Wallner 2013; Pottmann et al. 2008].

These surfaces are composed of strips of ruled surfaces, in partic-

ular developable surfaces, and constitute a type of surfaces that is

situated between the purely discrete and the smooth setting. Most

relevant for our work are the geodesic strip models. The design of

such models of geodesic strips can follow a procedure for the layout

of patterns formed by geodesics. It has applications in architecture

and ship building [Kahlert et al. 2011; Pottmann et al. 2010]. Other

methods like [Mitani and Suzuki 2004; Tang et al. 2016] provide

methods to subdivide surfaces into regions are then represented by

developable surface patches.

Our work is inspired by applications in architecture. The cladding

of architectural skins with metal tiles is prominently featured in the

work of Frank Gehry [Shelden 2002]. Cladding of a curved surface

by bending nearly straight wooden panels has been applied at the

wood ceiling in the Burj Khalifa office lobby in Dubai [Meredith

and Kotronis 2012]. Appropriate manufacturing technologies for

covering freeform surfaces with long curved metal panels have been

developed by [Schneider and Mehrtens 2012]. Curved structures

which arise from originally straight elements appear in various types

of gridshells [Hernandez 2015], in particular geodesic gridshells and

timber rib shells (see [Pirazzi andWeinand 2006] and various articles

in [Bianconi and Filippucci 2019]).

A major problem in the realization of architectural freeform ge-

ometry is the diversity of constructional elements. Hence, various

ways to achieve repetitive elements have been investigated (see the

overview in [Pottmann et al. 2015; Schling 2018; Schling et al. 2018]).

Even if different elements, e.g. panels, may not be congruent, they

may be produced with the same mold or machine configuration,

thus contributing to cost saving [Eigensatz et al. 2010]. To the best

of our knowledge, intrinsic repetition by design is a new direction

to simplify the construction of architectural freeform skins.

2 DISCRETE GEODESIC PARALLEL COORDINATES
In this section, we quickly recall some well known facts regard-

ing geodesic parallel coordinates on surfaces and then present our

discretization.

2.1 Smooth geodesic parallel coordinates
A family of parallel straight lines in the plane has the property that

the distance between any two of them is constant. This property

obviously does not characterize parallel straight lines as it also holds,

e.g., for a family of concentric circles, or more generally for a family

of offsets of a curve. The curves orthogonal to an offset family are

straight lines and at least locally, these two curve families can be the

iso-parameter lines of a parametrization f (u,v) of a planar domain.

This is a special case of geodesic parallel coordinates (Def. 2.1) on
surfaces (see, e.g., [Kühnel 2003, Def. 4.27]). Recall that geodesic
curves on surfaces are curves of (locally) shortest lengths.

Definition 2.1. A surface f : R2 ⊇ [u0,u1] × [v0,v1] → R3
is

parametrized along geodesic parallel coordinates if the parameter

lines are orthogonal (fu ⊥ fv ) and one family of parameter lines,

say the u-lines (v = const), are geodesics, see Figure 3 (left).

Fig. 3. Left : A surface parametrized by geodesic parallel coordinates. The red
parameter lines are geodesics and the gray parameter lines are orthogonal
to them. Right : A surface of revolution in its common parametrization is
always parametrized by geodesic parallel coordinates. The meridian curves
(red) are geodesics.

A very simple but nevertheless very important family of exam-

ples of such geodesic parallel coordinates consists of all surfaces of

revolution given by the parametrization:

f (u,v) = (r (u) cosv, r (u) sinv,h(u)).

This parametrization is clearly orthogonal and the meridian curves

(Figure 3 (right) in red; v = const) are geodesics.

2.2 Discrete geodesic parallel coordinates
In our discretization of geodesic parallel coordinates we generalize

the approach of modeling developable nets with discrete orthogonal

geodesic nets [Rabinovich et al. 2018a,b]. We will mainly be work-

ing with quadrilateral nets with regular combinatorics, i.e., like a

rectangular portion of the Z2
lattice.
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Fig. 4. Notation. Left : To make formulas shorter and clearer we leave away
parameters f (u, v) → f and use the shift notation f1 = f (u + 1, v) and
f
1̄
= f (u−1, v).We denote edge vectors by δu f for f1−f . Right : Additionally,

we denote the unit length edge vectors emanating from f by ei and angles
between neighboring edges by αi j .

2.2.1 Notation. Adiscrete net is defined by amap f : Z2 → R3
. The

discrete parameter lines through (u,v) ∈ Z2
are polylines f (Z,v)

and f (u,Z) which we call u-lines and v-lines like in the smooth

case.

Since we are mainly considering local properties of a net around

f (u,v), we use the following abbreviations for the vertices, similarly

to [Rabinovich et al. 2018a]:

f = f (u,v), f1 = f (u + 1,v), f2 = f (u,v + 1),

f
1̄
= f (u − 1,v), f

2̄
= f (u,v − 1), f12 = f (u + 1,v + 1),

etc. For an illustration of the notation see Figure 4. The discrete

partial derivatives are denoted with the first forward difference

operator

δu f = f1 − f , δu f1̄ = f − f
1̄
, δv f = f2 − f , etc,

and the second derivative accordingly

δuu (f1̄) = δu (δu f1̄) = δu (f − f
1̄
) = δu f −δu f1̄ = f1−2f + f

1̄
.

Assuming non-degenerate edges (which is guaranteed through fair-

ness terms in our algorithm), we additionally denote the unit edge

vectors emanating from f by

e1 =
δu f

∥δu f ∥
, e2 =

δv f

∥δv f ∥
, e3 = −

δu f1̄
∥δu f1̄∥

, e4 = −
δv f2̄
∥δv f2̄∥

.

The angles between the edges emanating from f are denoted by

α12 = ∠(e1, e2) = arccos⟨e1, e2⟩, α
1̄2
= ∠(e2, e3) = arccos⟨e2, e3⟩,

α
1̄2̄
= ∠(e3, e4) = arccos⟨e3, e4⟩, α

12̄
= ∠(e4, e1) = arccos⟨e4, e1⟩,

where ⟨·, ·⟩ denotes the Euclidean scalar product.

We define the unit tangent vectors in u- and v-direction as the

normalized sum of the two consecutive unit edge vectors in these

directions

Tu =
e1 − e3

∥e1 − e3∥
and Tv =

e2 − e4

∥e2 − e4∥
.

Further, we define the unit length principal normals of the parameter

polylines inu- andv-direction at vertices f where the angle between
consecutive polylines segments is not 0 or π by

Nu =
e1 + e3

∥e1 + e3∥
and Nv =

e2 + e4

∥e2 + e4∥
.

The unit tangent vector and the unit principal normal vector are

illustrated in the osculating plane in Figure 5. In the above chosen

discretization, the tangent vector and the principal normal vector

are orthogonal, i.e., Nu ⊥ Tu and Nv ⊥ Tv .
With this basis of the tangent plane (Tu ,Tv ) we can consistently

define the unit normal vector of the net at a vertex f by

N =
Tu ×Tv

∥Tu ×Tv ∥
.

f
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Fig. 5. Osculating plane of the
u parameter polyline f

1̄
f f1.

The discrete tangent vector
Tu and the principal normal
vector Nu form an orthonor-
mal basis.

2.2.2 Discrete geodesic parameter lines. The following definition is

a discrete version of the well known fact that a curve on a surface

is a geodesic if and only if its principal normal coincides (up to

orientation) with the surface normal.

Definition 2.2. A u-parameter line is a discrete geodesic if and only
if Nu

is parallel to N .

Note that the notion of a discrete geodesic is only defined for

interior polylines and not for boundary curves.

Lemma 2.3. A discrete u-parameter line is a discrete geodesic if
and only if at each vertex f the sum of cosines of angles between
emanating edges on both sides of the u-parameter line are equal, i.e.,

cosα12 + cosα
1̄2
= cosα

12̄
+ cosα

1̄2̄
.

Proof. First, let us recall from above that Nu
is always orthogo-

nal to Tu . Then, we have

Nu ∥ N ⇔ Nu ⊥ Tu ,Tv ⇔ Nu ⊥ Tv ⇔ ⟨e1 + e3, e2 − e4⟩ = 0

⇔ ⟨e1, e2⟩ + ⟨e2, e3⟩ − ⟨e1, e4⟩ − ⟨e3, e4⟩ = 0

⇔ cosα12 + cosα
1̄2

− cosα
12̄

− cosα
1̄2̄
= 0. □

2.2.3 Discrete orthogonal nets. Having tangents for the parameter

lines, it is most natural to define orthogonality of a net as follows:

Definition 2.4. A discrete net is a discrete orthogonal net if and only
if at each vertex the tangent vectors Tu and Tv of the parameter

lines are orthogonal.

Lemma 2.5. A discrete net is a discrete orthogonal net if and only if
at each vertex the sums of cosines of opposite angles are equal, i.e., if

cosα12 + cosα
1̄2̄
= cosα

12̄
+ cosα

1̄2
.

Proof. We have

Tu ⊥ Tv ⇔ ⟨e1 − e3, e2 − e4⟩ = 0

⇔ ⟨e1, e2⟩ − ⟨e2, e3⟩ − ⟨e1, e4⟩ + ⟨e3, e4⟩ = 0

⇔ cosα12 − cosα
1̄2

− cosα
12̄
+ cosα

1̄2̄
= 0. □

Remark. Another definition of discrete geodesics, namely α12 +

α
1̄2
= α

12̄
+ α

1̄2̄
, has been employed previously in connection with

polyhedral surfaces [Polthier and Schmies 1998; Wunderlich 1951].

Similarly, a version of discrete orthogonality without the cosines

(α12+α1̄2̄
= α

12̄
+α

1̄2
) has been used for polyhedral surfaces, namely
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in the theory of conical nets [Liu et al. 2006]. The presence of the

cosines in the characterizing equations of Lemmas 2.3 and 2.5 is

an advantage for numerical optimization, since they are bilinear in

variables (edge unit vectors) which one needs in the optimization

anyway. Hence they fit the proposal by [Tang et al. 2014] to accel-

erate the convergence of Gauss-Newton methods through the use

of at most quadratic constraints, even at the price of introducing

additional variables.

The following definition is essential for our paper. It discretizes

the notion of geodesic parallel coordinates.

Definition 2.6. A discrete net is parametrized by discrete geodesic
parallel coordinates if the net is discrete orthogonal and the u pa-

rameter lines are discrete geodesics.

Proposition 2.7. The following three are equivalent:
(i) f is parametrized by discrete geodesic parallel coordinates.
(ii) At every vertex f we have α12 = α

12̄
and α

1̄2
= α

1̄2̄
(Fig. 6 left).

(iii) The discrete osculating plane of theu-lines (spanned by f
1̄
, f , f1)

at each vertex f is the bisector plane of the v-line edges, i.e.,
e2 and e4 are mirror-symmetric with respect to the osculating
plane in u-direction (see Figure 6 right).

Proof. The equivalence of (i) and (ii) is clear after adding and

subtracting the characterizing equations from Lemmas 2.3 and 2.5

which yields cosα12 = cosα
12̄

and cosα
1̄2
= cosα

1̄2̄
, and therefore

equality of the angles.

The equivalence of (ii) and (iii) follows by angle preservation of

reflections (cf. Figure 6 right). Mirror symmetry of e2 and e4 with a

symmetry plane containing e1 implies equal angles α12 = α
12̄

and

analogously α
1̄2
= α

1̄2̄
.

On the other hand, equality of the angles α12 = α
12̄

implies that

e2 and e4 are rulings of a right circular cone with axis f f1 and

vertex f . Analogously, e2 and e4 are rulings of a right circular cone

with axis f f
1̄
and the same vertex f . As both cones are symmetric

with respect to the osculating plane f f1 f1̄, the vectors e2, e4 are

mirror-symmetric to the same plane. □

Note, that (iii) only makes sense if the three vertices f
1̄
, f , f1

do not lie on a common straight line. In that case the equivalence

statement only holds for (i) and (ii).
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Fig. 6. The geometric characterizations of discrete geodesic parallel coor-
dinates as in Proposition 2.7. Left : Angle condition. Any two neighboring
angles “symmetric” to the path of the geodesic are equal. Right : The unit
length edge vectors transversal to the geodesic are mirror symmetric with
respect to the osculating plane f

1̄
f f1.

Fig. 7. By a geodesic strip we
understand the surface between
two geodesics of a parametriza-
tion by geodesic parallel coordi-
nates.

3 GEODESIC STRIP MODELS
Discrete geodesic parallel coordinates divide a surface into geodesic

strips. Here we discuss how the variation of the strip width across a

strip is related to the Gaussian curvature and show how to control

the width in order to model nearly developable surfaces.

3.1 Geodesic strips and strip width
We call the surface strip between two geodesics of a parametrization

by geodesic parallel coordinates a geodesic strip (see Figure 7). Let us
again assume that the u-lines represent the family of the geodesics

and the v-lines constitute the orthogonal family of parameter lines.

Thenwe quantify the strip width of a geodesic strip with the function
that measures the lengths of the v-parameter lines between the

boundary geodesics of that strip. Therefore, the strip width between

two ε-close geodesics is∫ v+ε

v
∥ fv (u, t)∥ dt ≈ ε ∥ fv (u,v)∥ + ε

2(. . .).

Consequently, the first order approximation of the strip width is the

length of the derivative of the v-lines: ∥ fv ∥. Assuming arc length

parametrization in the u-direction (i.e., ∥ fu ∥ = 1), which is always

possible for geodesic parallel coordinates (see e.g., [Kühnel 2003,

p. 110]), the strip width is closely related to the Gaussian curvature

K via a linear ODE, the well known Jacobi differential equation (cf.

[Kühnel 2003])

∂uuw(u) +w(u)K = 0, (1)

wherew(u) is the infinitesimal strip width. We will utilize this Jacobi

differential equation in our discrete model of nearly developable

surfaces.

3.2 Nearly developable surfaces
A developable surface is a surface which is isometric to the plane.

Such surfaces are also characterized by everywhere vanishing Gauss-

ian curvature (K = 0). Since the Gaussian curvature scales by a factor

of
1

λ2
when the surface is scaled by λ, nearly developable surfaces

must be considered as surfaces where the Gaussian curvature is

small compared to the size of that surface. Even though mathemati-

cally this notion is rather vague, application-wise it is of importance,

as some materials like leather or felt allow for some stretching or

shrinking while being deformed. Our reasoning is underpinned by

the theorem of Bertrand and Puiseux [Spivak 1979] for the Gaussian

curvature K which basically says that K is measured by the limit of

the difference between the area of a geodesic circle on the surface

and the area of a circle in the plane. If K is close to zero everywhere

then the area of the surface is everywhere close to the area of the

plane. See Figure 8 for an example of a nearly developable surface.

In the case of vanishing Gaussian curvature the Jacobi differential

equation (1) simplifies to ∂uu (∥ fv ∥) = 0. Under the assumption of a
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6 • Wang, H. et al

discrete arc length parametrization in u-direction, discretizing this

Jacobi equation straightforwardly yields

δuu (∥δv f1̄∥) = 0,

which gives

∥ f12 − f1∥ − 2∥ f2 − f ∥ + ∥ f
1̄2

− f
1̄
∥ = 0. (2)

In our optimization algorithm, the edge lengths become variables

and this discrete Jacobi equation is one of the constraints for nearly

developable surfaces (cf. Eqn. (8)).

Fig. 8. Nearly developable surface. We scanned a 3D shape modeled from a
piece of felt (top-left) and extracted a triangle mesh out of its point cloud
(top-right). The triangle mesh has been approximated by discrete nearly
developable surfaces with a discrete geodesic parallel coordinate net (center-
right and bottom-left). For this approximation task we need a sensible initial
guess of the resulting surface (center-left). The discrete model and the given
triangle mesh fit together very well as confirmed by a Hausdorff distance
of 0.0111 between the reference mesh (with bounding box diagonal length
46.1) and our nearly developable mesh (overlay of both meshes center-right).
The corresponding isometric surface of revolution looks almost developable
(i.e., like a right circular cylinder; bottom-center). The nearly developable
surface has been developed into the plane (bottom-right).

4 SURFACES ISOMETRIC TO SURFACES OF
REVOLUTION

Let us recall that one of our main goals is to model intrinsically

symmetric surfaces. They shall be isometrically deformable into

themselves, like a rotational surface can be moved into itself. That

is why we are interested in surfaces which are isometric to surfaces

of revolution. Since isometric deformations of surfaces transform

geodesics to geodesics and they do not change any intersection

angles between curves on the surfaces, it is sensible to consider

isometric deformations within the framework of geodesic parallel

coordinates. Thus, we now derive criteria under which geodesic

parallel coordinates describe surfaces that are isometric to surfaces

of revolution.

4.1 Smooth surfaces isometric to surfaces of revolution
Before we consider the discrete setting let us first characterize sur-

faces which are isometric to surfaces of revolution in terms of geo-

desic parallel coordinates (Proposition 4.2). Before we get there we

have to consider the following technical lemma.

Lemma 4.1 ([Kühnel 2003, p. 110]). Let f be a surface parametrized
by geodesic parallel coordinates. Then ∂v ∥ fu (u,v)∥ = 0, i.e., ∥ fu (u,v)∥
does not depend on v .

Proof. The geodesic curvature κuд [Kühnel 2003] of theu-param-

eter lines (v = const) of an orthogonal net is

κuд = −
∂vE

2E
√
G
,

where E, F ,G are the coordinate functions of the first fundamental

form, i.e., E = ⟨fu , fu ⟩, etc. In our case the u-parameter lines are

geodesics which implies that the geodesic curvature vanishes κuд =

0. Consequently, 0 = ∂vE = ∂v ∥ fu (u,v)∥
2
which implies that

∥ fu (u,v)∥ does not depend on v . □

Let r : [u0,u1] → R be any function. Then, by Lemma 4.1 the

following function only depends on u.

h(u) :=

∫ u

u0

√
∥ fu (t ,v)∥2 − r ′(t)2 dt . (3)

Proposition 4.2. Let f be a surface parametrized by geodesic
parallel coordinates with the additional property that for any a ∈

[u0,u1]

∥ fv (u,v)∥

∥ fv (a,v)∥
=: r (u) (4)

only depends on u (see the illustration in Figure 9 left). Then f is
isometric to the surface of revolution ˜f with

˜f = (r (u) cosϕ(v), r (u) sinϕ(v),h(u)),

where ϕ(v) :=
∫ v
v0

∥ fv (a, s)∥ ds and where h is defined as in (3) with
r from (4).

Proof. We have

˜fu = (r ′ cosϕ, r ′ sinϕ,h′) =
(
r ′ cosϕ, r ′ sinϕ,

√
∥ fu ∥2 − r ′2

)
,

and

˜fv = (−rϕ ′ sinϕ, rϕ ′ cosϕ, 0),

and therefore Ẽ = ∥ ˜fu ∥
2 = r ′2 + ∥ fu ∥

2 − r ′2 = ∥ fu ∥
2 = E and

G̃ = ∥ ˜fv ∥
2 = r2ϕ ′2 =

∥fv (u,v) ∥2

∥fv (a,v) ∥2
∥ fv (a,v)∥

2 = ∥ fv (u,v)∥
2 = G.

Cosequently, Ẽ = E, F̃ = F = 0, G̃ = G, which implies isometry. □
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fv (u, v )

fv (a, v )
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x (u)

l (u
)

y
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)
r(
u
)

r(
u
+

1
)

r(
u
+

2
)

Fig. 9. Left : On surfaces which are isometric to surfaces of revolution the
ratios of the lengths of the derivatives in v direction (i.e., in the rotation
direction) is independent of v , i.e., ∥fv (u,v )∥

∥fv (a,v )∥
= r (u) (see Proposition 4.2).

Right : Profile of the discrete surface of revolution with the discrete meridian
curve (red). y(u) is the difference of consecutive radii r (u + 1) − r (u).

4.2 Discrete surfaces isometric to surfaces of revolution
To obtain a discrete surface which is isometric to a surface of revo-

lution we can take a net parametrized by discrete parallel geodesic

coordinates and “add” a discrete version of the required property

stated in Proposition 4.2. For that we reconsider the independence

of the term (4) from v which is equivalent to

∥ fv (a,v)∥

∥ fv (b,v)∥

being independent of v for any a,b ∈ [u0,u1]. We discretize this

property straightforwardly by requiring for any integers a,b in the

domain of definition

∥δv f (a,v)∥

∥δv f (b,v)∥
= const, (5)

for all integers v . With that we arrive at a characterization of a

discrete net to be discrete isometric to a surface of revolution (in its

common parametrization), namely if it is parametrized by discrete

geodesic parallel coordinates and fulfills (5).

Note, that our notion of surfaces which are isometric to a surface

of revolution does not involve an actual surface of revolution to

which it is isometric. However, for some applications it might be

desirable or necessary to compute the corresponding surface of

revolution. We will attend to that matter below (§ 4.2.2).

4.2.1 Intrinsic repetitivity. The advantage in cost- and effort-reduc-

tion is obvious when cladding surfaces repetitively with the same

surface strip. Thus, for practical applications it makes sense to re-

quire constant edge lengths in each row of geodesic parallels, i.e., for

any integer a, ∥δv f (a,v)∥ is required to be the same for all integers

v . This automatically implies (5) and therefore isometry to a surface

of revolution.

4.2.2 Extracting the surface of revolution. Once we have found a

discrete net which is isometric to a surface of revolution with the

properties of § 4.2.1 by optimization (see Section 5) we can compute

the surface of revolution, to which it is actually isometric, in the

following way.

Let us assume that the rectangular patch hasm × n vertices with

indices [1,m] × [1,n], with the m vertices in the u direction, i.e.,

in the direction of the geodesic. Then for u ∈ [1,m] we compute

the length of the average edge length of the regular (n − 1)-gons

corresponding to the parallel circles of the surface of revolution

d(u) := 1

n−1

∑n−1

i=1
∥δv f (u, i)∥.

Fig. 10. A net parametrized by discrete geodesic parallel coordinates (top-
left) which is isometric to a surface of revolution (top-right). Bottom-row :
Isometric deformation of a half sphere (left) and a sphere with its “polar
caps” removed (right). Due to Gauss’ theorema egregium, these are surfaces
of positive constant Gaussian curvature.

Consequently, the radius of the circumcircle of such an (n−1)-gon is

r (u) :=
d (u)

2 sin(π /(n−1))
. Here, we assume that the isometric surface of

revolution makes a full rotation about its axis. This condition can be

relaxed (see below; Prop. 4.3). Further, foru ∈ [1,m−1]we compute

the average length of the polygon segment on the meridian curve

l(u) := 1

n
∑n
i=1

∥δu f (u, i)∥.

With this data we can construct the discrete reference surface of

revolution. As illustrated by Figure 9 (right) we compute the height

differences between two parallel circles by

x(u) :=
√
l(u)2 − (r (u + 1) − r (u))2.

Then, the discrete surface of revolution is parametrized by

f (u,v) = (r (u) cos(2vπ/(n − 1)), r (u) sin(2vπ/(n − 1)),h(u)),

where h(u) =
∑u
i=1

x(i). Instead of transforming the entire rectan-

gular surface patch to a surface of revolution of exactly one full

rotation, we could do the same procedure just for some sub-patch

as would be also possible in the smooth case due to the following

theorem.

Proposition 4.3 (Theorem of Minding [1838]). Let f (u,v) =
(r (u) cosv, r (u) sinv,h(u)) be a surface of revolution. Then for any
λ ∈ R for which the integral

˜h(u) :=

∫ u

u0

√
(1 − λ2)r ′(t)2 + h′(t)2 dt

is real (which is always the case for λ ∈ [0, 1]), the surface of revolution

f λ(u,v) := (λr (u) cos
v
λ , λr (u) sin

v
λ ,

˜h(u))

is isometric to f . Note, f 1 = f .
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5 ALGORITHM
We model our discrete surfaces by defining a constraint manifold in

the space of all variables, choose a starting point and try to “move”

towards fulfilling the constraints. Different constraints are multi-

plied with different weights. A crucial point in the optimization lies

in choosing the weights in sensible ways. Tang et al. [2014] pro-

posed such a method, which is a Gauss-Newton variant, and made

the observation that it works best if the constraints are formulated

as linear or quadratic functions. Some constraints which are a priori

not quadratic can sometimes be reformulated into quadratic terms

with the help of additional variables which then become subject to

optimization themselves. In the following, we describe a list of con-

straints which, in different combinations and with different weights,

describe the geometry that we are looking for.

5.1 List of constraints
List of variables. We are working with meshes M = (V ,E, F )

with the combinatorics of an (m × n) rectangular sub-patch of the

Z2
lattice. Thus, a general mesh has |V | = nm vertices, |F | = (m −

1)(n − 1) faces, and |E | = n(m − 1) +m(n − 1) edges. The variables

in our system are:

variables for notation number
coordinates of vertices fi ∈ R

3
3|V |

components of (unit) edge vectors ei j , eji ∈ R
3

6|E |

edge lengths wi j ,w ji ∈ R 2|E |

Consequently, these are in total 8|E | + 3|V | variables. In the fol-

lowing we list our constraints and put the number of the considered

equations in square brackets. Since our discrete geodesic parallel

coordinates are nets where both families of parameter lines play dif-

ferent roles, we cannot express all constraints independently from

the coordinate direction.

Net constraints. As mentioned before we use more variables than

actually necessary to describe our nets but obtain, as a consequence,

algebraic and at most quadratic equations as constraints. Conse-

quently, to describe a proper net we need to tie the edge length

variableswi j ,w ji to the actual edges:

(fi − fj ) −wi jei j = 0, (fj − fi ) −w jieji = 0,

and

(fi − fj )
2 −w2

i j = 0, (fj − fi )
2 −w2

ji = 0.

These two sets of constraints imply that the vectors ei j and eji are

unit length: i.e., e2

i j = e2

ji − 1 = 0. The theoretical appearance of

negative widths wi j is remedied by the use of fairness terms (see

below) which prevent unwanted flipping of ei j directions and sign

changes of wi j . Otherwise the corresponding constraint could be

implemented easily aswi j −d
2

i j = 0 for some extra variables di j ∈ R.

Discrete geodesic parallel coordinate constraints. This constraint
can be formulated as an angle condition, cf. Proposition 2.7 (ii) or

equivalently as a condition of the cosine (cf. remark after Lemma 2.5).

For a vertex star with central vertex fi and edge-adjacent vertices

fj , fk , fl , fm with fl , fi , fj being the discrete geodesic, the angle

constraint reads

⟨ei j , eik ⟩ − ⟨eim , ei j ⟩ = 0, ⟨eil , eik ⟩ − ⟨eim , eil ⟩ = 0. (6)

Discrete arc length parametrization in u direction. In geodesic par-

allel coordinates, all the u parameter lines can be parametrized

proportional to arc length simultaneously. Thus, we constrain con-

secutive edges in u direction to have equal lengths:

wi j −wl i = 0, w ji −wil = 0.

Equal strip width function. As it is one goal of our paper to obtain
intrinsic repetitivity, i.e., cladding a surface just with a sequence of

strips that are isometric to each other (cf. Figure 2), we want the

strips to be of equal lengths and to have an equal distribution of the

strip width along each strip. To get that we have to constrain the

lengths of consecutive edges along the orthogonal parameter lines

(v direction) to be of equal lengths:

wik −wim = 0, wki −wmi = 0. (7)

Note that we obtain strips of equal lengths automatically. This is

a property of geodesic parallel coordinates (cf. [Kühnel 2003, Def.

4.27]) and it carries over to our discretization so well that we do not

even switch on corresponding constraints similar to the ones above.

Nearly developable constraints. For nearly developable surfaces

we just formulate the simplified Jacobi equation (2) for K = 0 as a

constraint. The second difference in u direction of edge lengths in v
direction reads

δuuwi j = wi−1, j − 2wi j +wi+1, j = 0, δuuw ji = 0. (8)

Note that the Jacobi equation as we use it here requires arc length

parametrization in u direction. Consequently, we additionally have

to enforce the corresponding constraint from above.

Isometry constraints. Let us denote byw0

i j the edge lengths of a

given mesh to which we compute the isometry. Then

wi j −w0

i j = 0, w ji −w0

ji = 0.

Approximation constraints. Given a reference surface with ver-

tices pk and normal vectors nk . For each vertex fi of our net let pki
be the closest point of the reference surface to fi .

⟨fi − pki ,nki ⟩ = 0.

The closest points are computed in every iteration of the Gauss-

Newton step.

Constraints for handle-based deformations. We prescribe l vertex
positions pk . Then

fi − pki = 0.

Fairness constraints. To obtain good mesh quality as an optimiza-

tion result we require some fairness terms. The constraints are

realized by vanishing second forward differences:

fl − 2fi + fj = 0, fk − 2fi + fm = 0.

The following table collects the number of constraints and the

resulting degrees of freedom for each individual constraint.
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constraint no. of constraints dof
net constraints 8|E | 3|V |

disc. geod. par. coord. 2(mn − n − 2m + 2) mn + 2n + 4m − 4

arc length u-direction 2n(m − 2) mn + 4n

equal strip widths 2m(n − 2) mn + 4m

nearly developable 2(2n − 1)(m − 2) 8n + 2m −mn − 4

isometry 2|E | mn +m + n

approximation |V | 2mn

handle based def. 3l 3mn − 3l

fairness 2(mn − n −m) mn + 2n + 2m

As a constraint solver for our algorithm we use the guided pro-

jection algorithm of [Tang et al. 2014].

5.2 Computation times
The computation times T in the following table refer to our im-

plementation in Python on an Intel® Core™ i5-6260U CPU with

1.80GHz, 8GB RAM. The times are measured in seconds per iteration

as the modeling procedure is interactive on a handle-based editing

method. While we drag a vertex with the mouse, we constantly run

iterations of our algorithm until the mouse button is released, and

after that five more iterations follow. The weights of the constraints

are set to 1 or 0 except for the weights of the fairness terms. The

small arrows (e.g., .01 )0) mean that we lower the corresponding

weights to zero during our editing process if we don’t expect any

severe changes in the geometry by releasing the corresponding

constraint. The following table also shows which constraints are

switched on in the optimization.

Fig. |V| |var| wgo wiso wesw w
al

w
dev

wprox w
fair

T /iter

1 441 8043 1 1 0 0 0 0 .01 )0 0.25

2 391 742 1 1 0 0 0 0 .01 )0 0.11

8 1147 21249 1 0 1 1 1 1 .1 ).01 1.43

10-1 441 8043 1 1 0 0 0 0 .01 )0 0.17

10-2 187 3329 1 1 0 0 0 0 0 0.07

11-1 330 5942 1 1 )0 1 )0 0 0 1 – 0.23

11-2 4797 89879 1 1 )0 1 )0 0 0 1 – 6.62

?? 1458 27054 1 0 1 )0 0 0 1 .1 )0 1.38

15 441 8043 1 0 1 1 1 0 .001 0.43

The weights in the above table control the following:wgo = discrete

geodesic parallel coordinates;wiso = isometry to reference surface;

wesw = equal strip widths; w
al
= arc length parametrization in u-

direction;w
dev

= near developability;wprox = closeness to reference

surface;w
fair

= fairness.

6 RESULTS AND APPLICATIONS

6.1 Verification
Clairaut’s relation. To verify the quality of our geodesics we ap-

proximate a surface of revolution by nontrivial discrete geodesic

parallel coordinates and compare it with Clairaut’s relation. It says
that any geodesic on a surface of revolution fulfills

r (t) cosα(t) = const, (9)

where r (t) is the distance of the geodesic to the axis of revolution

and α(t) measures the angle between the geodesic and the latitude.

In our discrete model (Figure 11) we compute ri cosαi along each
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Fig. 11. We lay a net of discrete geodesic parallel coordinates over a surface
of revolution in such a way, that the geodesics (red) do not correspond to the
meridian curves but are rather twisted compared to them (left bowling pin).
After subdividing the net and optimizing again we obtain denser discrete
geodesic parallel coordinates (right bowling pin). We measure ri cosαi
(cf. bottom-left) for each vertex which, according to Clairaut’s relation (cf.
Eqn. (9)), should be constant (within tolerances) along each discrete geodesic.
With an average value of ri cosαi ≈ 5 the mean absolute deviation (MAD)
is at most 0.02 for the sparse net and the errors go down even more as we
subdivide and optimize the mesh to under 0.01 (cf. diagrams top-left).

geodesic line of the net, where ri is the distance of vertex pi to the

axis of revolution and where αi is the angle between the tangent

vector Ti and the parallel circle. It turns out that these values are

constant within reasonable tolerances as depicted in Figure 11. We

have no rigorous proof that the discrete geodesics converge to their

smooth counterparts after subdivision and re-optimization, but we

have strong numerical evidence that the errors go down.

Ruling vector field of developable surfaces. Developable surfaces
are ruled surfaces and thus have a ruling vector field which is unique

in non-flat areas. Viewing rulings as intersections of neighboring

tangent planes gives a simple way to compute the direction field by

simply computing the cross product of neighboring normal vectors

N × N1 or N × N2. Figure 12 nicely illustrates the vector field of

ruling directions of a nearly developable surface.

Measure of isometry. We measure the isometry between an origi-

nal surface f 0
and a deformed surface f with the well known two

dimensional strain tensor from solid mechanics [Sadd 2009]. The

strain matrix adapted for our discrete parallel geodesic coordinates

is defined at vertices and formulated in the basis of tangent vectors

T1,T2. It reads

D =

( ε (l1)+ε (l1̄)
2

tan(α
1̄2̄
−α

1̄2
)−tan(α

12̄
−α12)

tan(α
1̄2̄
−α

1̄2
)−tan(α

12̄
−α12)

ε (l2)+ε (l2̄)
2

)
,

where ε(l1) =
∥δu f ∥−∥δu f 0 ∥

∥δu f 0 ∥
, ε(l

1̄
) =

∥δu f1̄ ∥−∥δu f 0

1̄

∥

∥δu f 0

1̄

∥
, etc. (for the

notation also cf. Figure 4). Let now λ1, λ2 be the eigenvalues and

v1,v2 the eigenvectors of D. The principal distortion directions are

vx
1
T1 +v

y
1
T2 and v

x
2
T1 +v

y
2
T2 where T1,T2 is the orthogonal basis

of the tangent plane aligned with the parameter lines. Note that we
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Fig. 12. By requiring (almost) constant strip widths for our geodesic strips
we obtain (nearly) developable surfaces. We compute the ruling directions
as the cross product of neighboring normal vectors N × N1 or N × N2

wherever possible. Clearly, in flat regions there is no unique ruling direction
(as visible in our illustration).

0

|λ
1
|+

|λ
2
|

10
−4

Fig. 13. Isometric deformation of a surface of revolution. (Center) photo of
a deformed plastic bottle and (left) image of a 3D digital model of the iso-
metrically same surface of revolution. (Right) illustration of the strain after
deformation. The principal directions of the colored ellipses illustrate the
distortion directions and the amount of distortion ( |λ1 | + |λ2 |) is illustrated
by the colors. The maximal distortion is 0.00004.

optimize for discrete orthogonality (cf. Lemma 2.5 and constraint (6)).

So we can always assume T1 ⊥ T2. A color plot illustration of this

isometry measure is depicted in Figure 13.

6.2 Applications
Discrete geodesic parallel coordinates very naturally lead to archi-

tectural applications in various ways.

6.2.1 Geodesic gridshells. Gridshells are doubly-curved surfaces

with favorable static properties and materialized as a grid network.

A very basic idea is to simply take elongated quadrilateral timber

strips which we imagine to be bent along a thought surface. In that

case, these timber strips follow geodesics on that (imaginary) surface

as the geodesic curvature, which is invariant under isometries, is

vanishing. With our method the design of such surfaces is very

simple. We have the means for handle-based design and we can

approximate surfaces by discrete geodesic parallel coordinates. For

the gridshell in Figure ?? we approximate a given reference surface

represented by a triangle net by two transversal nets of discrete

geodesic parallel coordinates. Then we just build the two families

of geodesics by bending wooden rectangular strips and leave the

two families of orthogonal trajectories away.

6.2.2 Nearly developable surfaces. A surface is developable if it

can be represented by a family of geodesics which have a constant

distance to each other. With our discrete geodesic parallel coordi-

nates we have good access to controlling the strip width function

measured along the orthogonal family of parameter lines. Almost

constant strip widths imply nearly developable surfaces. While prior

work on near developables has been based on a thin Gaussian image

[Gavriil et al. 2018], we can also handle shapes as in Fig. 8 whose

Gaussian image is not concentrated near a curve.

Cladding. Timber is a material that can be deformed by bending.

While thin laths and boards allow for some bending under steady

conditions, even thicker pieces of timber allow for surprisingly big

deformations, e.g., after heating with water steam. Within this pro-

cess the timber surfaces undergo deformations which are to a certain

degree isometric but also show some stretching and contraction.

In Figure 2 we illustrate facade cladding by assembling bent tim-

ber strips. The planar development of all strips are congruent. In

Figure 15 we illustrate a design from bent timber boards.

Slightly stretchable materials. Felt and leather are examples of

surfaces which are basically developable but allow, compared to its

size, for a little stretching or shrinking of the surface. In Figure 8

we approximate a 3D shape modeled from a piece of planar felt.

6.2.3 Surfaces of revolution as molds. Discrete geodesic parallel

coordinates fulfilling the “constant ratio of velocities inv-direction”-
condition (Eqn. (5)), are surfaces isometric to rotational surfaces. For

building such surfaces from flexible material, like metal sheets, one

only has to build one mold, namely the corresponding surface of

revolution. In fact, just a segment of that surface of revolution has to

be built as mold, just large enough such that the largest panel fits on

it. Note that one mold in the size of a segment (strip) of the surface of

revolution (between two neighboring meridian curves) could exceed

size limitations for molds. One has to produce as many molds as

necessary to fill the segment of the rotational surface. Figure 16

illustrates which region of the surface corresponds to which part

on the surface of revolution. For flat regions (vanishing Gaussian

curvature) we do not have to build molds as the corresponding

panels are simply developable (cf. Figure 17). For the radius of the

surface of revolution we have some flexibility due to Proposition 4.3.

The rendering in Figure 1 illustrates four different surface patches

which are all isometric to the same surface of revolution. In the

Frank Gehry-style building of Figure 1, the facades can be cladded

with rectangular metal sheets which are actually not planar but

isometric to some specific region of the mold surface of revolution.

In Figure 19 we depict a short list of possible shapes that one can

obtain as surfaces isometric to rotational surfaces.

6.2.4 Intrinsic repetitivity for strip models. Surfaces which are iso-

metric to surfaces of revolution (Fig. 10, top-left) can be generated

as a strip model by joining together isometric strips (Figure 18). This

is an obvious advantage for the fabrication of such a doubly-curved

surface as one must only manufacture several copies of a strip of

the same shape from bendable material. We model these surfaces by

discrete geodesic parallel coordinates (Figure 18 middle-row-left)

with the additional constraint of an equal distribution of the strip

width along all geodesic strips (7). Notice that our discrete geodesic

strips do not incorporate any developability condition. However,

for manufacturing purposes we have to unfold the strips into the
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(a) (b)

(c) (d) (e)

Fig. 14. Gridshell. We approximate a reference surface given as triangle
mesh (c) with two different nets of discrete geodesic parallel coordinates,
with the geodesics in two transversal directions and going beyond the
reference surface. An overlay of the reference mesh with one of the
two discrete geodesic parallel coordinates illustrates the approximation
quality (d). One resulting net with discrete geodesic parallel coordinates
is illustrated by (e). For the gridshell only the geodesics are built by thin

elongated quadrilateral timber strips (a rendering (a) and a photo (b) of a real built timber strip model). The Hausdorff distance between the given mesh

(bounding box diagonal length 25) and our geodesic parallel coordinate net is 0.031.

plane. For that, we first transform each strip into a discrete devel-

opable strip (strip with planar quadrilateral faces). See Figure 18
(middle-row-right). We do that by first estimating the ruling di-

rections by intersecting neighboring tangent planes and thus by

computing the cross product N × N1, as also done in Figure 12 for

Fig. 15. Rendering of an interior wooden wall cladding. The shape obtained
by bending planar wooden boards can be modeled by nearly developable
surfaces since the material could slightly stretch or shrink while being bent.

Fig. 16. Surface of revolution as mold.
Each quad panel on the deformed sur-
face (right) is isometric to the quad
on the rotational surface (left) with
the same color. This way we obtain
the doubly-curved panels in the style
of the four surfaces from the Frank
Gehry-type design in Fig. 1.

the computation of the ruling vector field. In regions with almost

parallel normal vectors (flat parts of the strip) we could theoretically

choose any direction. So we average over the closest neighboring

directions from non-flat parts of the strip. Then we intersect the two

discrete geodesics of the strip with the plane spanned by the ruling

vector and the normal vector and passing through the midpoint

of v-parallel edges. In this way we generate almost planar quads

along each strip. The development of the strips is done by unfolding

Fig. 17. Paneling of surfaces which are isometric to rotational surfaces
(right). Each panel corresponds to a patch on the corresponding surface
of revolution (left). With a green boundary we highlight such a pair. The
segment of the surface of revolution has to be just big enough to be able to
carry the largest panel. In Figure 16we illustrate which regions on the surface
correspond to which part (mold) on the rotational surface. In practice one
wouldmanufacture several molds to cover the area between two neighboring
meridian curves due to size limitations for molds. In particular we don’t
need molds for regions with vanishing Gaussian curvature as these panels
are flat. On the strip (left) we color surface regions with positive Gaussian
curvature in red, negative in blue and close to zero in white.
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Fig. 18. Strip model of a surface isometric to a surface of revolution. Top-
row : Photos of two deformations of a strip model of a surface of revolution
fabricated by attaching (sewing up) congruent bendable strips (polystyrene).
Middle-row-left: Model of the same surface by discrete geodesic parallel
coordinates. Middle-row-right: To convert the geodesic strips to discrete
developable strips we approximate the strips with piece wise planar faces.
Notice that the ruling directions (edges transversal to the geodesics) are in
general no longer orthogonal to the geodesics. Bottom-left: Development
of each individual strip. Bottom-right: Overlay of all strips (without faces).
Observe, how nicely the geodesics (vertical) boundaries match up, implying
congruent strips.

the (almost) planar quads into the plane (Figure 18 bottom). An

overlay of all developed strips shows nicely that the strips are al-

most congruent (Figure 18 bottom-right). The strong variation in

the horizontal edges is due to the fact that rulings in developable

surface can vary strongly while being bent isometrically.

6.2.5 Analysis. Due to the non-linearity of our optimization prob-

lem the algorithm converges to a local minimum which depends

on the initialization. Consequently, there might appear self-inter-

sections of the surface which are usually undesirable artefacts for

applications and can be removed in our handle based editing mode.

The influence of the chosen initialization mesh is bigger for our

approximation tasks where we do not manually modify the mesh

with handles while it is optimized for approximating a given surface.

The quadratic constraints for our variable vector x ∈ R3 |V |+8 |E |

can be written as system of quadratic equations φi (x) = x⊤hix +

bix + ci with hi ∈ R(3 |V |+8 |E |)×(3 |V |+8 |E |)
, bi ∈ R3 |V |+8 |E |

, and

ci ∈ R. In the following table we list the extent to which the solution

fails to meet the constraints. We measure it by R = (
∑
i φi (x)

2)1/2

after rescaling the mesh to an average edge length of 1.

Fig. no. method error R

1 interactive 2.75e-7

2 interactive 3.45e-7

8 approximation 0.29

10-1 interactive 2.10e-7

10-2 interactive 1.32e-8

?? approximation 0.031

6.3 Limitations and future research
Limitations. Although the meshes that we work with (approx. 300

to 5000 vertices) quickly move towards their target shape already

within the first iteration of the algorithm, our current implemen-

tation is not yet interactive. As our method has a main focus on

material-aware fabrication, it would be nice to incorporate more

properties of material behavior into the optimization. Apart from

building a real gridshell (Figure ??) and a strip model of a surface

isometric to a surface of revolution (Figure 18) we did not physically

verify our methods, e.g., by running verification cycles with (other)

physical simulations.

Future research. Material-aware geometric modeling is an area

which offers a lot of room for future research. We have addressed

some cases of working with materials that deform in an isometric

way, but our handling of approximate isometries could be extended

to precisely respect specific material properties such as limits in

the bending and stretching behavior. We showed that intrinsic con-

tinuous symmetries have advantages in architectural applications.

From a practical perspective, one could add here some tolerances and

would no longer be so strictly confined to the class of surfaces which

are isometric to surfaces of revolution. It is remarkable that these

surfaces with a continuous intrinsic symmetry are related to sur-

faces which exhibit a form of extrinsic repetition. Julius Weingarten

[1861] characterized surfaces which are isometric to rotational sur-

faces as focal surfaces of those surfaces which possess a relation

between their principal curvatures. The latter so-called Weingarten

surfaces are also interesting for applications, since they possess just

a one-parameter family of curvature elements, which should lead

to a substantial reduction of molds needed for the fabrication of

panels. Optimizing an initial design surface towards more repetition

of local shapes (curvature elements, locally approximating simple

surface patches) is another interesting direction for future work.

Conclusion. We presented a new model for discrete geodesic par-

allel coordinates and its multifaceted potential for fabrication-aware

design of architectural applications. We discussed how to model sur-

faces with intrinsically repetitive properties like cladding surfaces

with equal strips and paneling surfaces with freeform appeal by

doubly-curved panels for which only very few molds are necessary.
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Fig. 19. The variety of surface patches isometric to surfaces of revolution depicted in this figure gives a hint on the wealth of possible shapes.

We introduced a design method for gridshell structures that can be

built with elongated quadrilateral timber strips following geodesic

curves. Our formulation as an optimization problem with at most

quadratic constraints results in a near-interactive editing tool.
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