Discrete Uniformization of Finite Branched Covers over the Riemann Sphere via Hyper-ideal Circle Patterns

Alexander I. Bobenko, Nikolay Dimitrov, Stefan Sechelmann

Description


With the help of hyper-ideal circle pattern theory, a discrete version of the classical uniformization theorems for surfaces represented as finite branched covers over the Riemann sphere as well as compact polyhedral surfaces with non-positive curvature was developed.

References


  • A. I. Bobenko, N. Dimitrov, and S. Sechelmann.
    Discrete uniformization of finite branched covers over the Riemann sphere via hyper-ideal circle patterns.
    preprint, 2015.
    arXiv:1510.04053.

Prof. Dr. Alexander I. Bobenko   +

Projects: A01, A02, C01, B02, Z, CaP, II
University: TU Berlin, Institut für Mathematik, MA 881
Address: MA 881
Tel: +49 (30) 314 24655
E-Mail: bobenko[at]math.tu-berlin.de
Website: http://page.math.tu-berlin.de/~bobenko/


Dr. Nikolay Dimitrov   +

Projects:
University: TU Berlin


Dr. Stefan Sechelmann   +

Projects: A01
University: TU Berlin
E-Mail: sechel[at]math.tu-berlin.de