B08
Wigner crystallization
- Group: B. Dynamics
- Principal Investigator: Prof. Dr. Gero Friesecke
- Investigator: Maximilian Penka
- University: TU München
- Term: since 2012
Publications+
Papers
-
M. Cicalese and G.P. Leonardi.
Maximal fluctuations on periodic lattices: an approach via quantitative Wulff inequalities.
Commun. Math. Phys., September 2019. preprint.
URL: http://cvgmt.sns.it/paper/4195/. -
G. Orlando M. Cicalese and M. Ruf.
From the N-clock model to the XY model: emergence of concentration effects in the variational analysis.
preprint, August 2019.
URL: http://cvgmt.sns.it/paper/4432/. -
A. Bach M. Cicalese and A. Braides.
Discrete-to-continuum limits of multi-body systems with bulk and surface long-range interactions.
preprint, July 2019.
URL: http://cvgmt.sns.it/paper/4406/. -
A. Bach, M. Cicalese, and M. Ruf.
Random finite-difference discretizations of the Ambrosio-Tortorelli functional with optimal mesh size.
preprint, February 2019.
arXiv:1902.08437. -
Gero Friesecke, Daniel Matthes, and Bernhard Schmitzer.
Barycenters for the Hellinger–Kantorovich distance over $\mathbb R^d$.
preprint at arXiv, 2019.
arXiv:1910.14572. -
M. Forster M. Cicalese and G. Orlando.
Variational analysis of a two-dimensional frustrated spin system: emergence and rigidity of chirality transitions.
SIAM J. Math. Anal., 2019. preprint.
arXiv:1904.07792. -
Marco Cicalese, Antoine Gloria, and Matthias Ruf.
From statistical polymer physics to nonlinear elasticity.
preprint, September 2018.
arXiv:1809.00598. -
Rufat Badal, Marco Cicalese, Lucia De Luca, and Marcello Ponsiglione.
Γ-Convergence Analysis of a Generalized $XY$ Model: Fractional Vortices and String Defects.
Communications in Mathematical Physics, 358(2):705–739, March 2018.
doi:10.1007/s00220-017-3026-3. -
A. Braides, M. Cicalese, and M. Ruf.
Continuum limit and stochastic homogenization of discrete ferromagnetic thin films.
Analysis & PDE, (2018), vol. 11, no.2, 499-553., March 2018.
URL: https://msp.org/apde/2018/11-2/p06.xhtml. -
C. Cotar, G. Friesecke, and C. Klüppelberg.
Smoothing of transport plans with fixed marginals and rigorous semiclassical limit of the Hohenberg-Kohn functional.
Archive for Rational Mechanics and Analysis, 228 (3):891–922, 2018.
doi:10.1007/s00205-017-1208-y. -
Matthias Ruf.
Motion of discrete interfaces in low-contrast random environments.
ESAIM: COCV, Volume 24, Number 3, July–September 2018, October 2017.
doi:10.1051/cocv/2017067. -
G. Friesecke L. De Luca.
Crystallization in two dimensions and a discrete Gauss-Bonnet theorem.
J Nonlinear Sci 28, 69-90, 2017, June 2017.
URL: https://link.springer.com/article/10.1007%2Fs00332-017-9401-6. -
G. Friesecke L. De Luca.
Classification of Particle Numbers with Unique Heitmann-Radin Minimizer.
J. Stat. Phys. 167, Issue 6, 1586–1592, 2017, April 2017.
URL: https://link.springer.com/article/10.1007/s10955-017-1781-3. -
A. Braides and M. Cicalese.
Interfaces, modulated phases and textures in lattice systems.
Arch. Rat. Mech. Anal., 223, (2017), 977-1017, February 2017.
URL: https://link.springer.com/article/10.1007/s00205-016-1050-7. -
D. Jüstel.
The Zak transform on strongly proper G-spaces and its applications.
Journal of the London Math. Society, 97:47–76, 2017.
doi:10.1112/jlms.12097. -
M. Cicalese A. Braides and N.K. Yip.
Crystalline Motion of Interfaces Between Patterns.
Journal of Statistical Physics October 2016, Volume 165, Issue 2, pp 274–319, October 2016.
URL: https://link.springer.com/article/10.1007/s10955-016-1609-6. -
Marco Cicalese, Matthias Ruf, and Francesco Solombrino.
Chirality transitions in frustrated S2-valued spin systems.
Math. Models Methods Appl. Sci., 26, (2016), no. 8, 1481-1529, July 2016.
doi:10.1142/S0218202516500366. -
Roberto Alicandro, Marco Cicalese, and Matthias Ruf.
Domain formation in magnetic polymer composites: an approach via stochastic homogenization.
Archive for Rational Mechanics and Analysis, 218(2):945–984, 2015.
doi:10.1007/s00205-015-0873-y. -
M. Cicalese and F. Solombrino.
Frustrated ferromagnetic spin chains: a variational approach to chirality transitions.
Journal of Nonlinear Science, 25(291-313), 2015.
-
G. Friesecke, R. D. James and D. Jüstel.
Twisted x-rays: incoming waveforms yielding discrete diffraction patterns for helical structures.
2015.
arXiv:1506.04240. -
A. Garroni R. Alicandro, L. De Luca and M. Ponsiglione.
Metastability and dynamics of discrete topological singularities in two dimensions: a Gamma-convergence approach.
Archive for Rational Mechanics and Analysis, 214(1):269–330, 2014.
PhD thesis
-
Yuen Au Yeung.
Crystalline Order, Surface Energy Densities and Wulff Shapes: Emergence from Atomistic Models.
Dissertation, Technische Universität München, München, 2013.
URL: http://mediatum.ub.tum.de/node?id=1142127.
Team+
Prof. Dr. Gero Friesecke +
Projects:
A13,
B08
University:
TU München,
Department of Mathematics,
03.08.054
Address: Boltzmannstraße 3, 85748 Garching, GERMANY
Tel: +49 89 28917908
E-Mail:
gf[at]ma.tum.de
Website: https://www-m7.ma.tum.de/bin/view/Analysis/GeroFriesecke
Maximilian Penka +
Projects:
B08
University:
TU München
E-Mail:
maximilian.penka[at]tum.de