1
M. Cicalese A. Braides and N.K. Yip.
Crystalline Motion of Interfaces Between Patterns.
Journal of Statistical Physics October 2016, Volume 165, Issue 2, pp 274–319, October 2016.
URL: https://link.springer.com/article/10.1007/s10955-016-1609-6.
2
S. Sechelmann A.I. Bobenko, U. Bücking.
Discrete minimal surfaces of Koebe type.
In R. Verge-Rebelo D. Levi and P. Winternitz, editors, Modern Approaches to Discrete Curvature, pages 259–291. Springer, 2017.
3
K. Adiprasito and B. Benedetti.
Metric geometry, convexity and collapsibility.
preprint, 2013.
arXiv:1107.5789.
4
K. Adiprasito and B. Benedetti.
Subdivisions, shellability, and collapsibility of products.
Combinatorica, 2015. accepted, preprint at arxiv.
arXiv:1202.6606.
5
K. Adiprasito and B. Benedetti.
Tight complexes in $3$-space admit perfect discrete Morse functions.
Eur. J. Comb., 45:71–84, 2015.
arXiv:1202.3390.
6
K. Adiprasito, B. Benedetti, and F. H. Lutz.
Extremal examples of collapsible complexes and random discrete Morse theory.
preprint, 2014.
arXiv:1404.4239.
7
Karim Adiprasito, Philip Brinkmann, Arnau Padrol, Pavel Paták, Zuzana Patáková, and Raman Sanyal.
Colorful simplicial depth, Minkowski sums, and generalized Gale transforms.
International Mathematics Research Notices, 2017.
arXiv:1607.00347, doi:10.1093/imrn/rnx184.
8
Karim Adiprasito and Arnau Padrol.
The universality theorem for neighborly polytopes.
Combinatorica, February 2015. accepted, preprint at arxiv.
arXiv:1402.7207.
9
Karim Adiprasito and Arnau Padrol.
A universality theorem for projectively unique polytopes and a conjecture of Shephard.
Israel J. Math., 211:239–255, 2016.
arXiv:1301.2960.
10
Karim Adiprasito, Arnau Padrol, and Louis Theran.
Universality theorems for inscribed polytopes and Delaunay triangulations.
Discrete Comput. Geom., 54:412–431, 2015.
arXiv:1406.7831.
11
Karim Adiprasito and Raman Sanyal.
Relative Stanley-Reisner theory and Upper Bound Theorems for Minkowski sums.
Publ. Math. Inst. Hautes Études Sci., 124:99–163, 2016.
arXiv:1405.7368, doi:10.1007/s10240-016-0083-7.
12
Karim Adiprasito and Raman Sanyal.
Whitney numbers of arrangements via measure concentration of intrinsic volumes.
Preprint, 2016.
arXiv:1606.09412.
13
Karim Alexander Adiprasito and Bruno Benedetti.
The Hirsch conjecture holds for normal flag complexes.
preprint, revised April 2013, March 2013.
arXiv:1303.3598.
14
Niklas Affolter, Terrence George, and Sanjay Ramassamy.
Cross-ratio dynamics and the dimer cluster integrable system.
preprint, August 2021.
arXiv:2108.12692.
15
Niklas Affolter, Max Glick, Pavlo Pylyavskyy, and Sanjay Ramassamy.
Vector-relation configurations and plabic graphs.
Selecta Mathematica, August 2019.
URL: https://link.springer.com/article/10.1007/s00029-023-00898-z, arXiv:1908.06959.
16
Niklas C Affolter.
Miquel Dynamics, Clifford Lattices and the Dimer Model.
Letters in Mathematical Physics, August 2018.
URL: https://link.springer.com/article/10.1007/s11005-021-01406-0, arXiv:1808.04227.
17
Niklas C Affolter.
Möbius invariant Y-systems (cluster structures) for Miquel dynamics.
preprint, December 2023.
arXiv:2312.07367.
18
Niklas C. Affolter.
Discrete differential geometry and cluster algebras via TCD maps.
Dissertation, TU Berlin, March 2023.
arXiv:2305.02212, doi:10.14279/depositonce-17600.
19
Niklas Christoph Affolter, Béatrice de Tilière, and Paul Melotti.
The Schwarzian octahedron recurrence (dSKP equation) I: explicit solutions.
Combinatoral Theory, July 2022.
URL: https://escholarship.org/uc/item/2jq67049, arXiv:2208.00239.
20
Niklas Christoph Affolter, Béatrice de Tilière, and Paul Melotti.
The Schwarzian octahedron recurrence (dSKP equation) II: geometric systems.
preprint, July 2022.
arXiv:2208.00244.
21
Sergey I. Agafonov.
Confocal conics and 4-webs of maximal rank.
preprint, December 2019.
arXiv:1912.01817.
22
Arseniy Akopyan and Alexander Bobenko.
Incircular nets and confocal conics.
Transactions of the American Mathematical Society, 370(4):2825–2854, 2018.
arXiv:1602.04637, doi:10.1090/tran/7292.
23
Arseniy V. Akopyan, Alexander I. Bobenko, Wolfgang K. Schief, and Jan Techter.
On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs.
Discrete and Computational Geometry, August 2020.
arXiv:1908.00856, doi:10.1007/s00454-020-00240-w.
24
Roberto Alicandro, Marco Cicalese, and Marcello Ponsiglione.
Variational equivalence between Ginzburg-Landau, $XY$ spin systems and screw dislocation energies.
Indiana Univ. Math. J., 60(1):171–208, 2011.
URL: https://www.jstor.org/stable/24903417?seq=1#metadata_info_tab_contents.
25
Roberto Alicandro, Marco Cicalese, and Matthias Ruf.
Domain formation in magnetic polymer composites: an approach via stochastic homogenization.
Archive for Rational Mechanics and Analysis, 218(2):945–984, 2015.
doi:10.1007/s00205-015-0873-y.
26
Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael Joswig.
Tropicalizing the simplex algorithm.
SIAM Journal on Discrete Mathematics, 29(2):751–795, 2015.
arXiv:1308.0454, doi:10.1137/130936464.
27
Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael Joswig.
Log-barrier interior point methods are not strongly polynomial.
SIAM J. Appl. Algebra Geom., 2(1):140–178, 2018.
arXiv:1708.01544, doi:10.1137/17M1142132.
28
Stefano Almi, Sandro Belz, Stefano Micheletti, and Simona Perotto.
A dimension-reduction model for brittle fractures on thin shells with mesh adaptivity.
Mathematical Models and Methods in Applied Sciences, 31(01):37–81, 2021.
arXiv:2004.08871, doi:10.1142/S0218202521500020.
29
Stefano Almi and Ilaria Lucardesi.
Energy release rate and stress intensity factors in planar elasticity in presence of smooth cracks.
Nonlinear Differ. Equ. Appl. (2018) 25: 43., August 2018.
doi:10.1007/s00030-018-0536-4.
30
Hector Andrade-Loarca, Julius Hege, Daniel Cremers, and Gitta Kutyniok.
Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape Reconstruction from Point Clouds.
preprint, August 2023.
arXiv:arXiv:2308.01766.
31
Héctor Andrade-Loarca, Gitta Kutyniok, Ozan Öktem, and Philipp Petersen.
Extraction of Digital Wavefront Sets using Applied Harmonic Analysis and Deep Neural Networks.
preprint, January 2019.
arXiv:1901.01388.
32
Héctor Andrade-Loarca, Gitta Kutyniok, Ozan Öktem, and Philipp Petersen.
Deep microlocal reconstruction for limited-angle tomography.
Applied and Computational Harmonic Analysis, January 2022.
URL: https://www.sciencedirect.com/science/article/pii/S1063520321001081.
33
Oliver Junge Andres Denner and Daniel Matthes.
Computing coherent sets using the Fokker-Planck equation.
Journal of Computational Dynamics, 2016, Vol. 3, Issue 2, 2016.
doi:10.3934/jcd.2016008.
34
L. Arcidiacono, M. Engel, and C. Kuehn.
Discretized fast-slow systems near pitchfork singularities.
Journal of Difference Equations and Applications, Vol. 25, No. 7, pp. 1024-1051, August 2019.
doi:10.1080/10236198.2019.1647185.
35
Benjamin Assarf, Ewgenij Gawrilow, Katrin Herr, Michael Joswig, Benjamin Lorenz, Andreas Paffenholz, and Thomas Rehn.
Computing convex hulls and counting integer points with $\texttt polymake$.
Math. Program. Comput., 9(1):1–38, 2017.
arXiv:1408.4653v2, doi:10.1007/s12532-016-0104-z.
36
Benjamin Assarf, Michael Joswig, and Julian Pfeifle.
Webs of stars or how to triangulate free sums of point configurations.
J. Combin. Theory Ser. A, 159:183–214, 2018.
arXiv:1512.08411, doi:10.1016/j.jcta.2018.05.007.
37
Dror Atariah.
Parameterizations in the Configuration Space and Approximations of Related Surfaces.
Dissertation, Freie Universität Berlin, 2014.
URL: http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000096803.
38
Dror Atariah, Günter Rote, and Mathijs Wintraecken.
Optimal Triangulation of saddle surfaces.
Beiträge zur Algebra und Geometrie, 59(1):113–126, 2018.
arXiv:1511.01361, doi:10.1007/s13366-017-0351-9.
39
Dominique Attali, Ulrich Bauer, Olivier Devillers, Marc Glisse, and André Lieutier.
Homological reconstruction and simplification in $\mathbb R^3$.
Computational Geometry, 48(8):606–621, September 2015.
doi:10.1016/j.comgeo.2014.08.010.
40
Yuen Au Yeung.
Crystalline Order, Surface Energy Densities and Wulff Shapes: Emergence from Atomistic Models.
Dissertation, Technische Universität München, München, 2013.
URL: http://mediatum.ub.tum.de/node?id=1142127.
41
C. Wagner B. Violet and E. Eremenko.
Math Creation- A Math-Art Competition.
In David Swart, Carlo H. Séquin, and Kristóf Fenyvesi, editors, Proceedings of Bridges 2017, 355–358. Phoenix, Arizona, 2018. Tessellations Publishing.
URL: https://archive.bridgesmathart.org/2017/bridges2017-355.pdf.
42
A. Bach, M. Cicalese, and M. Ruf.
Random finite-difference discretizations of the Ambrosio-Tortorelli functional with optimal mesh size.
preprint, February 2019.
arXiv:1902.08437.
43
Spencer Backman, Sebastian Manecke, and Raman Sanyal.
Cone valuations, Gram's relation, and flag-angles.
Preprint, September 2018.
arXiv:1809.00956.
44
Rufat Badal, Marco Cicalese, Lucia De Luca, and Marcello Ponsiglione.
Γ-Convergence Analysis of a Generalized $XY$ Model: Fractional Vortices and String Defects.
Communications in Mathematical Physics, 358(2):705–739, March 2018.
doi:10.1007/s00220-017-3026-3.
45
Changyeob Baek, Andrew O. Sageman-Furnas, Mohammad K. Jawed, and Pedro M. Reis.
Form finding in elastic gridshells.
Proceedings of the National Academy of Sciences, 115(1):75–80, 2018.
URL: https://www.pnas.org/content/115/1/75, doi:10.1073/pnas.1713841115.
46
Djordje Baralić, Pavle V. M. Blagojević, Roman Karasev, and Aleksandar Vučić.
Index of Grassmann manifolds and orthogonal shadows.
Forum Mathematicum, 30(6):1539–1572, July 2018.
doi:10.1007/s00454-018-0006-0.
47
Ulrich Bauer.
Ripser: efficient computation of Vietoris-Rips persistence barcodes.
preprint, August 2019.
arXiv:1908.02518.
48
Ulrich Bauer, Magnus B. Botnan, Steffen Oppermann, and Johan Steen.
Cotorsion torsion triples and the representation theory of filtered hierarchical clustering.
preprint, April 2019.
arXiv:1904.07322.
49
Ulrich Bauer and Herbert Edelsbrunner.
The Morse Theory of Cech and Delaunay Filtrations.
In Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG'14. New York, NY, USA, 2014. ACM.
doi:10.1145/2582112.2582167.
50
Ulrich Bauer and Herbert Edelsbrunner.
The Morse theory of Čech and Delaunay complexes.
Transactions of the American Mathematical Society, 369(5):3741–3762, 2017.
arXiv:1312.1231, doi:10.1090/tran/6991.
51
Ulrich Bauer, Herbert Edelsbrunner, Grzegorz Jablonski, and Marian Mrozek.
Persistence in sampled dynamical systems faster.
Preprint, September 2017.
arXiv:1709.04068.
52
Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner.
Phat-persistent homology algorithms toolbox.
J. Symbolic Comput., 78:76–90, 2017.
URL: http://bitbucket.org/phat-code/, doi:10.1016/j.jsc.2016.03.008.
53
Ulrich Bauer, Claudia Landi, and Facundo Memoli.
The Reeb Graph Edit Distance is Universal.
preprint, January 2018.
arXiv:1801.01866.
54
Ulrich Bauer and Michael Lesnick.
Induced matchings and the algebraic stability of persistence barcodes.
Journal of Computational Geometry, 6(2):162–191, 2015.
URL: http://jocg.org/index.php/jocg/article/view/205.
55
Ulrich Bauer and Michael Lesnick.
Persistence Diagrams as Diagrams: A Categorification of the Stability Theorem.
Preprint, November 2016.
arXiv:1610.10085.
56
Ulrich Bauer and Florian Pausinger.
Persistent Betti numbers of random Čech complexes.
preprint, January 2018.
arXiv:1801.08376.
57
Ulrich Bauer, Konrad Polthier, and Max Wardetzky.
Uniform Convergence of Discrete Curvatures from Nets of Curvature Lines.
Discrete and Computational Geometry, 43(4):798–823, 2010.
URL: http://www.springerlink.com/content/84210067816n0m78/, arXiv:0901.2822.
58
Ulrich Bauer and Abhishek Rathod.
Hardness of Approximation for Morse Matching.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, 2663–2674. SIAM, Philadelphia, PA, 2019.
arXiv:1801.08380, doi:10.1137/1.9781611975482.165.
59
Andrey K. Belyaev, Caroline Lasser, and Giulio Trigila.
Landau–Zener type surface hopping algorithms.
The Journal of Chemical Physics, 140(22):–, June 2014.
arXiv:1403.4859, doi:10.1063/1.4882073.
60
B. Benedetti.
Smoothing discrete Morse theory.
Annali Sc. Norm. Sup. Cl. Sci., 2015. accepted, preprint at arxiv.
arXiv:1212.0885.
61
B. Benedetti and F. H. Lutz.
Random discrete Morse theory and a new library of triangulations.
Experimental Mathematics, 23(1):66–94, 2014.
arXiv:1303.6422.
62
Bruno Benedetti and Frank H. Lutz.
Knots in Collapsible and Non-Collapsible Balls.
Electronic Journal of Combinatorics, August 2013. Paper P31, 29 pages.
URL: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i3p31, arXiv:1303.2070.
63
Ayush Bhandari, Felix Krahmer, and Ramesh Raskar.
On Unlimited Sampling and Reconstruction.
Preprint, 2019.
arXiv:1905.03901.
64
R.F. Bikbaev, A.I. Bobenko, and A.R. Its.
Landau-Lifshitz equation, uniaxial anisotropy case: Theory of exact solutions.
Theoretical and Mathematical Physics, 178(2):143–193, February 2014.
doi:10.1007/s11232-014-0135-4.
65
Havard Bakke Bjerkevik and Magnus Bakke Botnan.
Computational Complexity of the Interleaving Distance.
Proceedings of the 34th International Symposium on Computational Geometry (SoCG 2018), May 2018.
doi:10.4230/LIPIcs.SoCG.2018.13.
66
Håvard Bakke Bjerkevik, Magnus Bakke Botnan, and Michael Kerber.
Computing the interleaving distance is NP-hard.
preprint, 2018.
arXiv:1811.09165.
67
Pavle V. M. Blagojevic, Florian Frick, Albert Haase, and Günter M. Ziegler.
Hyperplane mass partitions via relative Equivariant Obstruction Theory.
preprint, September 2015.
arXiv:1509.02959.
68
Pavle V. M. Blagojevic, Florian Frick, Benjamin Matschke, and Günter M. Ziegler.
Tight and non-tight topological Tverberg type theorems.
Oberwolfach Reports, 11(3):2284–2287, 2014.
dgd:67.
69
Pavle V. M. Blagojevic, Florian Frick, and Günter M. Ziegler.
Tverberg plus constraints.
Bulletin of the London Mathematical Society, 46:953–967, 2014. Extended Abstract: Oberwolfach Reports, 11(1):14-16, 2014.
URL: http://blms.oxfordjournals.org/cgi/content/abstract/bdu049?ijkey=s0zAd5sXaMm0aIt, arXiv:1401.0690, doi:10.1112/blms/bdu049.
70
Pavle V. M. Blagojevic, Wolfgang Lück, and Günter M. Ziegler.
On highly regular embeddings.
Preprint, 19 pages; Transactions Amer. Math. Soc. to appear, Extended Abstract: in Proc. "Combinatorial Methods in Topology and Algebra” (CoMeTa), Cortona, May 2013.
arXiv:1305.7483, dgd:65.
71
Pavle V. M. Blagojević, Aleksandra S. Dimitrijević Blagojević, and Günter M. Ziegler.
The topological transversal Tverberg theorem plus constraints.
Preprint, "Discrete and Intuitive Geometry – László Fejes Tóth 100 Festschrift" (G. Ambrus, I. Bárány, K. J. Böröczky, G. Fejes Tóth, J. Pach, eds.), Bolyai Society Mathematical Studies series, to appear, march 2016.
arXiv:1604.02814.
72
Pavle V. M. Blagojević, Aleksandra S. Dimitrijević Blagojević, and Günter M. Ziegler.
Polynomial partitioning for several sets of varieties.
J. Fixed Point Theory Appl., 19:1653–1660, 2017.
arXiv:1601.01629.
73
Pavle V. M. Blagojević, Florian Frick, Albert Haase, and Günter M. Ziegler.
Hyperplane mass partitions via relative equivariant obstruction theory.
Documenta Mathematica, 21:735–771, 2016.
URL: http://emis.ams.org/journals/DMJDMV/vol-21/20.pdf, arXiv:1509.02959.
74
Pavle V. M. Blagojević, Albert Haase, and Günter M. Ziegler.
Tverberg-type theorems for matroids: A counterexample and a proof.
Preprint, 2017.
arXiv:1705.03624.
75
Pavle V. M. Blagojević, Albert Haase, and Günter M. Ziegler.
Tverberg-Type Theorems for Matroids: A Counterexample and a Proof.
Combinatorica, February 2019.
doi:10.1007/s00493-018-3846-6.
76
Pavle V. M. Blagojević, Nevena Palić, and Günter M. Ziegler.
Cutting a part from many measures.
Preprint, 15 pages, October 2017.
arXiv:1710.05118.
77
Pavle V. M. Blagojević, Günter Rote, Johanna Steinmeyer, and Günter M. Ziegler.
Convex equipartitions of colored point sets.
Discrete Comput. Geometry, December 2017. Published online.
arXiv:1705.03953.
78
Pavle V. M. Blagojević, Günter Rote, Johanna K. Steinmeyer, and Günter M. Ziegler.
Convex Equipartitions of Colored Point Sets.
Discrete & Computational Geometry, 61(2):355–363, March 2019.
doi:10.1007/s00454-017-9959-7.
79
Pavle V. M. Blagojević and Pablo Soberón.
Thieves can make sandwiches.
preprint, September 2017.
arXiv:arXiv:1706.03640, doi:10.1112/blms.12109.
80
Pavle V. M. Blagojević and Günter M. Ziegler.
Beyond the Borsuk-Ulam Theorem: The Topological Tverberg Story.
In Martin Loebl, Jaroslav Nešetřil, and Robin Thomas, editors, Journey Through Discrete Mathematics. A Tribute to Jiří Matoušek, pages 273–341. Springer, May 2017.
arXiv:1605.07321, doi:10.1007/978-3-319-44479-6_11.
81
A. Bobenko, T. Hoffmann, and B. Springborn.
Minimal surfaces from circle patterns: Geometry from combinatorics.
Ann. of Math., 164(1):231–264, 2006.
arXiv:0305184.
82
A. Bobenko and U. Pinkall.
Discretization of surfaces and integrable systems.
In Discrete integrable geometry and physics, volume 16 of Oxford Lecture Ser. Math. Appl., pages 3–58. Oxford Univ. Press, 1999.
URL: http://page.math.tu-berlin.de/~bobenko/papers/1999_Bob_Pin.pdf.
83
A. I. Bobenko, N. Dimitrov, and S. Sechelmann.
Discrete uniformization of finite branched covers over the Riemann sphere via hyper-ideal circle patterns.
preprint, 2015.
arXiv:1510.04053.
84
A. I. Bobenko and F. Günther.
Discrete complex analysis on planar quad-graphs.
In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
arXiv:1505.05673.
85
A. I. Bobenko and T. Hoffmann.
S-conical cmc surfaces. Towards a unified theory of discrete surfaces with constant mean curvature.
In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
dgd:198.
86
A. I. Bobenko, T. Hoffmann, B. König, and S. Sechelmann.
S-conical minimal surfaces. Towards a unified theory of discrete minimal surfaces.
Preprint, 2015.
dgd:199.
87
A. I. Bobenko and A. Its.
The asymptotic behaviour of the discrete holomorphic map $Z^a$ via the Riemann-Hilbert method.
Duke Math. J., 2015. accepted.
arXiv:1409.2667.
88
A. I. Bobenko, U. Pinkall, and B. Springborn.
Discrete conformal maps and ideal hyperbolic polyhedra.
Geom. Topol., 19:2155–2215, 2015.
arXiv:1005.2698, doi:10.2140/gt.2015.19.2155.
89
A. I. Bobenko and W. Schief.
Discrete line complexes and integrable evolution of minors.
Proc. Royal Soc. A, 471(2175):23 pp., 2015.
arXiv:1410.5794, doi:10.1098/rspa.2014.0819.
90
A. I. Bobenko, S. Sechelmann, and B. Springborn.
Discrete conformal maps: Boundary value problems, circle domains, Fuchsian and Schottky uniformization.
In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
dgd:194.
91
A. I. Bobenko and Yu. B. Suris.
Discrete pluriharmonic functions as solutions of linear pluri-Lagrangian systems.
Commun. Math. Phys., 336(1):199–215, 2015.
arXiv:1403.2876.
92
A.I. Bobenko and B. Springborn.
Diskretisierung in Geometrie und Dynamik - Elastische Stäbe und Rauchringe.
Mitteilungen der DMV, 21(1):218–224, December 2013.
URL: http://www.degruyter.com/view/j/dmvm.2013.21.issue-00004/issue-files/dmvm.2013.21.issue-00004.xml.
93
Alexander Bobenko and Mikhail Skopenkov.
Discrete Riemann surfaces: linear discretization and its convergence.
J. reine und angew. Math., October 2014.
arXiv:1210.0561, doi:10.1515/crelle-2014-0065.
94
Alexander Bobenko and Yuri Suris.
Integrable linear systems on quad-graphs.
preprint, 2019.
arXiv:1911.03252.
95
Alexander I Bobenko and Ulrike Bücking.
Convergence of discrete period matrices and discrete holomorphic integrals for ramified coverings of the Riemann sphere.
Preprint at arXiv, September 2018.
arXiv:1809.04847.
96
Alexander I Bobenko, Nikolay Dimitrov, and Stefan Sechelmann.
Discrete Uniformization of Polyhedral Surfaces with Non-positive Curvature and Branched Covers over the Sphere via Hyper-ideal Circle Patterns.
Discrete & Computational Geometry, 57(2):431–469, 2017.
arXiv:1510.04053.
97
Alexander I Bobenko and Felix Günther.
Discrete Riemann surfaces based on quadrilateral cellular decompositions.
Advances in Mathematics, 311:885–932, 2017.
arXiv:1511.00652, doi:10.1016/j.aim.2017.03.010.
98
Alexander I Bobenko, Sebastian Heller, and Nicholas Schmitt.
Minimal n-Noids in hyperbolic and anti-de Sitter 3-space.
Proceedings A of Royal Society, July 2019.
arXiv:1902.07992, doi:10.1098/rspa.2019.0173.
99
Alexander I Bobenko, Emanuel Huhnen-Venedey, and Thilo Rörig.
Supercyclidic nets.
International Mathematics Research Notices, 2017(2):323–371, February 2017.
arXiv:1412.7422, doi:10.1093/imrn/rnv328.
100
Alexander I Bobenko, Helmut Pottmann, and Thilo Rörig.
Multi-Nets. Classification of discrete and smooth surfaces with characteristic properties on arbitrary parameter rectangles.
Discrete Comput. Geom., May 2019.
arXiv:1802.05063, doi:10.1007/s00454-019-00101-1.
101
Alexander I Bobenko and Wolfgang K Schief.
Circle complexes and the discrete CKP equation.
International Mathematics Research Notices, 2017(5):1504–1561, 2016.
arXiv:1509.04109, doi:10.1093/imrn/rnw021.
102
Alexander I Bobenko, Wolfgang K Schief, Yuri B Suris, and Jan Techter.
On a Discretization of Confocal Quadrics. A Geometric Approach to General Parametrizations.
International Mathematics Research Notices, December 2018.
arXiv:1708.06800, doi:10.1093/imrn/rny279.
103
Alexander I Bobenko and Ananth Sridhar.
Abelian Higgs vortices and discrete conformal maps.
Letters in Mathematical Physics, 108(2):249–260, 2018.
arXiv:1703.04735, doi:10.1007/s11005-017-1004-5.
104
Alexander I. Bobenko and Alexander Y. Fairley.
Nets of lines with the combinatorics of the square grid and with touching inscribed conics.
preprint, November 2019.
dgd:590.
105
Alexander I. Bobenko and Alexander Y. Fairley.
Circular Nets with Spherical Parameter Lines and Terminating Laplace Sequences.
preprint, December 2023.
arXiv:2312.04341.
106
Alexander I. Bobenko and Felix Günther.
On Discrete Integrable Equations with Convex Variational Principles.
Letters in Mathematical Physics, 102(2):181–202, September 2012.
arXiv:1111.6273, doi:10.1007/s11005-012-0583-4.
107
Alexander I. Bobenko and Felix Günther.
Discrete complex analysis – the medial graph approach.
Actes des rencontres du CIRM 3 no. 1: Courbure discrète: théorie et applications, pages 159–169, 2013.
URL: http://acirm.cedram.org/acirm-bin/fitem?id=ACIRM_2013__3_1_159_0, doi:10.5802/acirm.65.
108
Alexander I. Bobenko, Udo Hertrich-Jeromin, and Inna Lukyanenko.
Discrete constant mean curvature nets in space forms: Steiner's formula and Christoffel duality.
Discrete and Computational Geometry, 52(4):612–629, 2014.
arXiv:1409.2001, doi:10.1007/s00454-014-9622-5.
109
Alexander I. Bobenko, Tim Hoffmann, and Thilo Rörig.
Orthogonal ring patterns.
preprint, November 2019.
arXiv:1911.07095, dgd:588.
110
Alexander I. Bobenko, Tim Hoffmann, and Andrew O. Sageman-Furnas.
Compact Bonnet Pairs: isometric tori with the same curvatures.
preprint, October 2021.
arXiv:2110.06335.
111
Alexander I. Bobenko and Carl O. R. Lutz.
Decorated discrete conformal equivalence in non-Euclidean geometries.
preprint, October 2023.
arXiv:2310.17529.
112
Alexander I. Bobenko and Carl O. R. Lutz.
Decorated discrete conformal maps and convex polyhedral cusps.
preprint, May 2023.
arXiv:2305.10988.
113
Alexander I. Bobenko, Carl O. R. Lutz, Helmut Pottmann, and Jan Techter.
Non-Euclidean Laguerre geometry and incircular nets.
preprint, September 2020.
arXiv:2009.00978.
114
Alexander I. Bobenko and Pascal Romon.
Discrete CMC surfaces in $R^3$ and discrete minimal surfaces in $S^3$: a discrete Lawson correspondence.
Journal of Integrable Systems, 2(1):1–18, May 2017.
URL: https://academic.oup.com/integrablesystems/article/2/1/xyx010/4344752, arXiv:1705.01053.
115
Alexander I. Bobenko, Wolfgang K. Schief, Yuri B. Suris, and Jan Techter.
On a discretization of confocal quadrics. I. An integrable systems approach.
Journal of Integrable Systems, 1(1):xyw005, 2016.
arXiv:1511.01777, doi:10.1093/integr/xyw005.
116
Alexander I. Bobenko, Wolfgang K. Schief, and Jan Techter.
Checkerboard incircular nets: Laguerre geometry and parametrisation.
Geometriae Dedicata, April 2019.
arXiv:1808.07254, doi:10.1007/s10711-019-00449-x.
117
Alexander I. Bobenko and Boris A. Springborn.
A discrete Laplace-Beltrami operator for simplicial surfaces.
Discrete Comput. Geom., 38(4):740–756, 2007.
arXiv:math/0503219, doi:10.1007/s00454-007-9006-1.
118
B. Bodmann, A. Flinth, and G. Kutyniok.
Compressed Sensing for Analog Signals.
preprint, March 2018.
arXiv:1803.04218.
119
B. G. Bodmann, P. G. Casazza, and G. Kutyniok.
A Quantitative Notion of Redundancy for Finite Frames.
Appl. Comput. Harmon. Anal., 30:348–362, 2011.
arXiv:0910.5904.
120
B. G. Bodmann, G. Kutyniok, and X. Zhuang.
Coarse Quantization with the Fast Digital Shearlet Transform.
In Wavelets and Sparsity XIV (San Diego, CA, 2011), SPIE Proc., volume 8138, 8138OZ–1 – 8138OZ–10. SPIE, Bellingham, WA, 2011.
doi:10.1117/12.892720.
121
Bernhard G. Bodmann, Gitta Kutyniok, and Xiaosheng Zhuang.
Gabor Shearlets.
Appl. Comput. Harmon. Anal., March 2013. submitted.
URL: http://www.math.tu-berlin.de/fileadmin/i26_fg-kutyniok/Kutyniok/Papers/GaborShearlets.pdf, arXiv:1303.6556.
122
R. Boll.
Two-dimensional variational systems on the root lattice $Q(A_N)$.
preprint, 2016.
arXiv:1601.05296.
123
R. Boll, M. Petrera, and Yu. B. Suris.
Multi-time Lagrangian 1-forms for families of Bäcklund transformations. Relativistic Toda-type systems.
J. Phys. A: Math. Theor., 46(27):275024, 26 pp., 2013.
arXiv:1408.2405, doi:10.1088/1751-8113/46/27/275204.
124
R. Boll, M. Petrera, and Yu. B. Suris.
On integrability of discrete variational systems: Octahedron relations.
Internat. Math. Res. Notes, 2015:rnv140, 24 pp., 2015.
arXiv:1406.0741.
125
R. Boll, M. Petrera, and Yu. B.. Suris.
On the variational interpretation of the discrete KP equation.
In A.I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, Berlin-Heidelberg-New York, 2016.
arXiv:1506.00729.
126
Raphael Boll.
On Bianchi permutability of Bäcklund transformations for asymmetric quad-equations.
Journal of Nonlinear Mathematical Physics, 20(4):577–605, December 2013.
arXiv:1211.4374, doi:10.1080/14029251.2013.865829.
127
Raphael Boll, Matteo Petrera, and Yuri B. Suris.
What is integrability of discrete variational systems?
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, February 2014.
URL: http://rspa.royalsocietypublishing.org/content/470/2162/20130550.abstract, arXiv:1307.0523, doi:10.1098/rspa.2013.0550.
128
Mauro Bonafini, Massimo Fornasier, and Bernhard Schmitzer.
Data-driven entropic spatially inhomogeneous evolutionary games.
preprint, March 2021.
arXiv:2103.05429.
129
Ciprian S. Borcea and Ileana Streinu.
Kinematics of Expansive Planar Periodic Mechanisms.
Advances in Robot Kinematics (ARK'14), July 2014. preprint.
dgd:53.
130
Ciprian S. Borcea and Ileana Streinu.
Liftings and stresses for planar periodic frameworks.
in Proc. 30th Symposium on Computational Geometry (SoCG'14), June 2014. preprint.
dgd:54.
131
Stefan Born, Ulrike Bücking, and Boris Springborn.
Quasiconformal Dilatation of Projective Transformations and Discrete Conformal Maps.
Discrete & Computational Geometry, 57(2):305–317, 2017.
arXiv:1505.01341.
132
F. Bornemann, A. Its, S. Olver, and G. Wechslberger.
Numerical Methods for the Discrete Map $Z^a$.
In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
arXiv:1507.06805.
133
Folkmar Bornemann.
A note on the expansion of the smallest eigenvalue distribution of the LUE at the hard edge.
The Annals of Applied Probability, 26(3):1942–1946, 2016.
arXiv:1504.00235, doi:10.1214/15-AAP1121.
134
Folkmar Bornemann and Michael La Croix.
The Singular Values of the GOE.
Random Matrices: Theory Appl. 04, 1550009 (2015) (32 pages), June 2015.
arXiv:1502.05946, doi:10.1142/S2010326315500094.
135
Folkmar Bornemann and Peter J Forrester.
Singular values and evenness symmetry in random matrix theory.
In Forum Mathematicum, volume 28, 873–891. 2016.
arXiv:1503.07383, doi:10.1515/forum-2015-0055.
136
Folkmar Bornemann, Peter J. Forrester, and Anthony Mays.
Finite Size Effects for Spacing Distributions in Random Matrix Theory: Circular Ensembles and Riemann Zeros.
Studies in Applied Mathematics, 138(4):401–437, 2017.
doi:10.1111/sapm.12160.
137
Magnus Bakke Botnan and Michael Lesnick.
Algebraic Stability of Zigzag Persistence Modules.
Algebr. Geom. Topol., Volume 18, Number 6 (2018), 3133-3204, December 2018.
URL: https://msp.org/scripts/coming.php?jpath=agt, arXiv:1604.00655v3, doi:10.2140/agt.2018.18.3133.
138
P. Boufounos, G. Kutyniok, and H. Rauhut.
Sparse Recovery from Combined Fusion Frame Measurements.
IEEE Trans. Inform. Theory, 57:3864–3876, 2011.
arXiv:0912.4988.
139
A. Braides and M. Cicalese.
Interfaces, modulated phases and textures in lattice systems.
Arch. Rat. Mech. Anal., 223, (2017), 977-1017, February 2017.
URL: https://link.springer.com/article/10.1007/s00205-016-1050-7.
140
A. Braides, M. Cicalese, and M. Ruf.
Continuum limit and stochastic homogenization of discrete ferromagnetic thin films.
Analysis & PDE, (2018), vol. 11, no.2, 499-553., March 2018.
URL: https://msp.org/apde/2018/11-2/p06.xhtml.
141
Philip Brinkmann.
f-Vector Spaces of Polytopes, Spheres, and Eulerian Lattices.
Dissertation, FU Berlin, June 2016. vii+132 pages.
URL: http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000103149.
142
Philip Brinkmann and Günter M Ziegler.
A flag vector of a 3-sphere that is not the flag vector of a 4-polytope.
Mathematika, 63(1):260–271, 2017.
arXiv:1506.08148, doi:10.1112/S0025579316000267.
143
Philip Brinkmann and Günter M. Ziegler.
Small f-vectors of 3-spheres and of 4-polytopes.
Mathematics of Computation, 87(314):2955–2975, February 2018.
arXiv:1610.01028, doi:10.1090/mcom/3300.
144
Sarah Brodsky, Michael Joswig, Ralph Morrison, and Bernd Sturmfels.
Moduli of tropical plane curves.
Research in the Mathematical Sciences, 2(1):4, 2015.
doi:10.1186/s40687-014-0018-1.
145
René M. Broeders and Anna M. Hartkopf.
A Mathematical Musical: “Dimensionen in Neukölln”.
In Carolyn Yackel, Robert Bosch, Eve Torrence, and Kristóf Fenyvesi, editors, Proceedings of Bridges 2020: Mathematics, Art, Music, Architecture, Education, Culture, 459–462. Phoenix, Arizona, 2020. Tessellations Publishing.
URL: http://archive.bridgesmathart.org/2020/bridges2020-459.html.
146
Tatiana A. Bubba, Gitta Kutyniok, Matti Lassas, Maximilian März, Wojciech Samek, Samuli Siltanen, and Vignesh Srinivasan.
Learning The Invisible: A Hybrid Deep Learning-Shearlet Framework for Limited Angle Computed Tomography.
Inverse Problems, 35(6):064002, June 2019.
arXiv:1811.04602, doi:10.1088/1361-6420/ab10ca.
147
Timo Burggraf, Michael Joswig, Marc E. Pfetsch, Manuel Radons, and Stefan Ulbrich.
Semi-automatically optimized calibration of internal combustion engines.
Preprint, 2018.
arXiv:1806.10980.
148
Imre Bárány, Pavle V. M. Blagojević, and Günter M. Ziegler.
Tverberg’s theorem at 50: extensions and counterexamples.
Notices of the AMS, 63(7):732–739, 2016.
doi:10.1090/noti1415.
149
Helmut Bölcskei, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen.
Memory-optimal neural network approximation.
In Wavelets and Sparsity XVII, volume 10394, 103940Q. International Society for Optics and Photonics, 2017.
URL: https://www.math.tu-berlin.de/fileadmin/i26_fg-kutyniok/Kutyniok/Papers/EfficientMemoryDNNs.pdf, doi:10.1117/12.2272490.
150
Helmut Bölcskei, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen.
Optimal Approximation with Sparsely Connected Deep Neural Networks.
SIAM J. Math. Data Sci., 1(1):8–45, 2019.
arXiv:1705.01714, doi:10.1137/18M118709X.
151
U. Bücking.
Approximation of conformal mappings using confomally equivalent triangular lattices.
In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
arXiv:1507.06449.
152
U. Bücking.
Introduction to linear and nonlinear integrable theories in discrete complex analysis.
In R. Verge-Rebelo D. Levi and P. Winternitz, editors, Symmetries and Integrability of Difference Equations: Lecture Notes of the Abecederian of SIDE 12, Montréal 2016, CRM Ser. Math. Phys., pages 153–193. Springer, 2017.
doi:10.1007/978-3-319-56666-5_4.
153
U. Bücking.
On rigidity and convergence of circle patterns.
Discrete Comput. Geom., 61(2):380–420, 2019.
doi:10.1007/s00454-018-0022-0.
154
U. Bücking and D. Matthes.
Constructing solutions to the Björling problem for isothermic surfaces by structure preserving discretization.
In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
arXiv:1506.07337.
155
Ulrike Bücking.
$C^\infty $-convergence of conformal mappings for conformally equivalent triangular lattices.
Results in Mathematics, 73(2):84, June 2018.
arXiv:1706.09145, doi:10.1007/s00025-018-0845-2.
156
Ulrike Bücking.
Conformally symmetric triangular lattices and discrete θ-conformal maps.
preprint, August 2018.
arXiv:1808.08064.
157
C. Lasser, R. Schubert and S. Troppmann.
Non-Hermitian propagation of Hagedorn wavepackets.
33pp, 2015.
arXiv:1507.02858.
158
Jason Cantarella, Joseph H. G. Fu, Robert B. Kusner, and John M. Sullivan.
Ropelength Criticality.
Geom. Topol., 18:1973–2043, 2014.
arXiv:1102.3234.
159
Jason Cantarella, Joseph H. G. Fu, Robert B. Kusner, John M. Sullivan, and Nancy C. Wrinkle.
Criticality for the Gehring Link Problem.
Geom. Topol., 10:2055–2115, 2006.
arXiv:math/0402212.
160
Jason Cantarella, Robert B. Kusner, and John M. Sullivan.
On the minimum ropelength of knots and links.
Invent. Math., 150:257–286, 2002.
arXiv:math/0103224.
161
Wolfgang Carl.
A Laplace Operator on Semi-Discrete Surfaces.
Foundations of Computational Mathematics, pages 1–36, 2015.
doi:10.1007/s10208-015-9271-y.
162
Wolfgang Carl and Johannes Wallner.
Variational Laplacians for semidiscrete surfaces.
submitted, 2014.
URL: http://www.geometrie.tugraz.at/carl/gradients.pdf.
163
P. Casazza, A. Heinecke, F. Krahmer, and G. Kutyniok.
Optimally sparse frames.
IEEE Trans. Inform. Theory, 57(11):7279–7287, 2011.
URL: http://num.math.uni-goettingen.de/~f.krahmer/CHKK11.pdf.
164
Cesar Ceballos, Arnau Padrol, and Camilo Sarmiento.
Dyck path triangulations and extendability.
Journal of Combinatorial Theory, Series A, 131(0):187–208, 2015.
URL: http://www.sciencedirect.com/science/article/pii/S009731651400140X, arXiv:1402.5111.
165
I. Chao, U. Pinkall, P. Sanan, and P. Schröder.
A simple geometric model for elastic deformations.
ACM Transactions on Graphics, 2010.
URL: http://www.eecs.berkeley.edu/~sequin/CS285/PAPERS/Chao_Elastic-Model.pdf.
166
Thomas Chappell, Tobias Friedl, and Raman Sanyal.
Two double poset polytopes.
SIAM Journal on Discrete Mathematics, 31(4):2378–2413, 2017.
URL: http://epubs.siam.org/doi/10.1137/16M1091800, arXiv:1606.04938.
167
Hao Chen and Arnau Padrol.
Scribability Problems for Polytopes.
Preprint, August 2015.
arXiv:1508.03537.
168
A. Chern, U. Pinkall, and P. Schröder.
Close-to-conformal deformations of volumes.
ACM Transactions on Graphics, 34(4):56, 2015.
169
Albert Chern.
A Reflectionless Discrete Perfectly Matched Layer.
With minor revision accepted by Journal of Computational Physics., March 2019.
arXiv:1804.01390v2.
170
Albert Chern and Oliver Gross.
Force-Free Fields are Conformally Geodesic.
preprint, December 2023.
arXiv:2312.05252.
171
Albert Chern, Felix Knöppel, Franz Pedit, and Ulrich Pinkall.
Commuting Hamiltonian flows of curves in real space forms.
Preprint, September 2018.
arXiv:1809.01394, dgd:493.
172
Albert Chern, Felix Knöppel, Franz Pedit, Ulrich Pinkall, and Peter Schröder.
Finding Conformal and Isometric Immersions of Surfaces.
Preprint, January 2019.
arXiv:1901.09432.
173
Albert Chern, Felix Knöppel, and Peter Pinkall, Ulrich and​ ​Schröder.
Inside Fluids: Clebsch Maps for Visualization and Processing.
ACM Trans. Graph., 36(4):142:1–142:11, July 2017.
doi:10.1145/3072959.3073591.
174
Albert Chern, Felix Knöppel, Peter Pinkall, Ulrich and​ ​Schröder, and Steffen Weißmann.
Schrödinger's Smoke.
ACM Trans. Graph., 35:77:1–77:13, July 2016.
doi:10.1145/2897824.2925868.
175
Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder.
Shape from Metric.
ACM Trans. Graph., 37(4):63:1–63:17, August 2018.
URL: http://multires.caltech.edu/pubs/ShapeFromMetric.pdf, doi:10.1145/3197517.3201276.
176
M. Cicalese and G.P. Leonardi.
Maximal fluctuations on periodic lattices: an approach via quantitative Wulff inequalities.
Commun. Math. Phys., September 2019. preprint.
URL: http://cvgmt.sns.it/paper/4195/.
177
M. Cicalese and F. Solombrino.
Frustrated ferromagnetic spin chains: a variational approach to chirality transitions.
Journal of Nonlinear Science, 25(291-313), 2015.
178
Marco Cicalese, Antoine Gloria, and Matthias Ruf.
From statistical polymer physics to nonlinear elasticity.
preprint, September 2018.
arXiv:1809.00598.
179
Marco Cicalese, Matthias Ruf, and Francesco Solombrino.
Chirality transitions in frustrated S2-valued spin systems.
Math. Models Methods Appl. Sci., 26, (2016), no. 8, 1481-1529, July 2016.
doi:10.1142/S0218202516500366.
180
Flore Nabet Clément Cancès, Daniel Matthes.
A two-phase two-fluxes degenerate Cahn-Hilliard model as constrained Wasserstein gradient flow.
Arch. Ration. Mech. Anal., 233(2):837–866, 2019.
arXiv:1712.06446, doi:10.1007/s00205-019-01369-6.
181
Giulia Codenotti, Lukas Katthän, and Raman Sanyal.
On $f$- and $h$-vectors of relative simplicial complexes.
Preprint, 2017.
arXiv:1711.02729.
182
David Cohen-Steiner, Herbert Edelsbrunner, and John Harer.
Stability of Persistence Diagrams.
Discrete and Computational Geometry, 37(1):103–120, January 2007.
doi:10.1007/s00454-006-1276-5.
183
Leonardo Colombo, Fernando Jiménez, and David Martín de Diego.
Variational integrators for underactuated mechanical control systems with symmetries.
submitted, September 2012.
arXiv:1209.6315.
184
Sergio Conti, Johannes Diermeier, Melanie Koser, and Barbara Zwicknagl.
Asymptotic Self-Similarity of Minimizers and Local Bounds in a Model of Shape-Memory Alloys.
Journal of Elasticity, December 2021.
doi:10.1007/s10659-021-09862-4.
185
Sergio Conti, Johannes Diermeier, and Barbara Zwicknagl.
Deformation concentration for martensitic microstructures in the limit of low volume fraction.
Calc. Var. Partial Differential Equations, 56(1):Art. 16, 24, 2017.
doi:10.1007/s00526-016-1097-1.
186
Sergio Conti and Barbara Zwicknagl.
Low volume-fraction microstructures in martensites and crystal plasticity.
Math. Models Methods Appl. Sci., 26(7):1319–1355, 2016.
doi:10.1142/S0218202516500317.
187
C. Cotar, G. Friesecke, and C. Klüppelberg.
Smoothing of transport plans with fixed marginals and rigorous semiclassical limit of the Hohenberg-Kohn functional.
Archive for Rational Mechanics and Analysis, 228 (3):891–922, 2018.
doi:10.1007/s00205-017-1208-y.
188
K. Crane, U. Pinkall, and P. Schröder.
Spin transformations of discrete surfaces.
ACM Transactions on Graphics, 2011.
URL: http://www.cs.columbia.edu/~keenan/Projects/SpinTransformations/paper.pdf.
189
Keenan Crane, Ulrich Pinkall, and Peter Schröder.
Robust Fairing via Conformal Curvature Flow.
ACM Trans. Graph., 2013.
URL: http://www.cs.columbia.edu/~keenan/Projects/ConformalWillmoreFlow/paper.pdf.
190
Daniel Matthes and Simon Plazotta.
A Variational Formulation of the BDF2 Method for Metric Gradient Flows.
ESAIM: M2AN, Forthcoming article, July 2018.
doi:10.1051/m2an/2018045.
191
S. Day, O. Junge, and K. Mischaikow.
A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems.
SIAM J. Appl. Dyn. Syst., 3(2):117–160, 2004.
doi:10.1137/030600210.
192
P. Degond, M.Engel, J.Liu, and R. Pego.
A Markov jump process modelling animal group size statistics.
Communications in Mathematical Sciences, January 2019.
193
P. Deift, C. S. Güntürk, and F. Krahmer.
An Optimal Family of Exponentially Accurate One-Bit Sigma-Delta Quantization Schemes.
Comm. Pure Appl. Math., 64(7):883–919, 2011.
URL: http://num.math.uni-goettingen.de/~f.krahmer/DGK11.pdf.
194
Felix Dellinger.
Discrete Isothermic Nets Based on Checkerboard Patterns.
Discrete & Computational Geometry, September 2023.
URL: https://link.springer.com/article/10.1007/s00454-023-00558-1.
195
Felix Dellinger, Xinye Li, and Hui Wang.
Discrete orthogonal structures.
Computers & Graphics, June 2023.
URL: https://www.sciencedirect.com/science/article/abs/pii/S0097849323000791?via%3Dihub.
196
Michael Dellnitz, Gary Froyland, and Oliver Junge.
The algorithms behind GAIO-set oriented numerical methods for dynamical systems.
In Ergodic theory, analysis, and efficient simulation of dynamical systems, pages 145–174, 805–807. Springer, Berlin, 2001.
doi:10.1007/978-3-642-56589-2.
197
Michael Dellnitz, Andreas Hohmann, Oliver Junge, and Martin Rumpf.
Exploring invariant sets and invariant measures.
Chaos, 7(2):221–228, 1997.
doi:10.1063/1.166223.
198
Michael Dellnitz and Oliver Junge.
On the approximation of complicated dynamical behavior.
SIAM J. Numer. Anal., 36(2):491–515, 1999.
doi:10.1137/S0036142996313002.
199
Michael Dellnitz and Oliver Junge.
Set oriented numerical methods for dynamical systems.
In Handbook of dynamical systems, Vol. 2, pages 221–264. North-Holland, Amsterdam, 2002.
doi:10.1016/S1874-575X(02)80026-1.
200
A. Delshams, M. Gonchenko, and S. Gonchenko.
On dynamics and bifurcations of area-preserving maps with homoclinic tangencies.
Submitted to Nonlinearity, July 2014.
arXiv:1407.5473.
201
A. Delshams, M. Gonchenko, and P. Gutiérrez.
A methodology for obtaining asymptotic estimates for the exponentially small splitting of separatrices to whiskered tori with quadratic frequencies.
To appear in Research Perspectives CRM Barcelona, July 2014.
arXiv:1407.6524.
202
Amadeu Delshams, Marina Gonchenko, and Sergey V. Gonchenko.
On bifurcations of area-preserving and nonorientable maps with quadratic homoclinic tangencies.
Regul. Chaotic Dyn., 19(6):702–717, 2014.
arXiv:1410.5704, doi:10.1134/S1560354714060082.
203
Amadeu Delshams, Marina Gonchenko, and Pere Gutiérrez.
Continuation of the exponentially small transversality for the splitting of separatrices to a whiskered torus with silver ratio.
Regul. Chaotic Dyn., 19(6):663–680, 2014.
arXiv:1409.4944, doi:10.1134/S1560354714060057.
204
Amadeu Delshams, Marina Gonchenko, and Pere Gutiérrez.
Exponentially Small Lower Bounds for the Splitting of Separatrices to Whiskered Tori with Frequencies of Constant Type.
International Journal of Bifurcation and Chaos, 24(08):1440011, 2014.
arXiv:1402.1654, doi:10.1142/S0218127414400112.
205
Amadeu Delshams, Marina Gonchenko, and Pere Gutiérrez.
Exponentially small asymptotic estimates for the splitting of separatrices to whiskered tori with quadratic and cubic frequencies.
Electron. Res. Announc. Math. Sci., 21:41–61, 2014.
arXiv:1306.0728, doi:10.3934/era.2014.21.41.
206
Elizabeth Denne, Yuanan Diao, and John M. Sullivan.
Quadrisecants give new lower bounds for the ropelength of a knot.
Geom. Topol., 10:1–26, 2006.
arXiv:math/0408026.
207
Elizabeth Denne and John M. Sullivan.
The Distortion of a Knotted Curve.
Proc. Amer. Math. Soc., 137:1139–1148, 2009.
arXiv:math/0409438.
208
N. Dimitrov.
Hyper-ideal Circle Patterns with Cone Singularities.
Results in Mathematics, pages 1–45, 2015.
arXiv:1406.6741, doi:10.1007/s00025-015-0453-3.
209
Benedict Dingfelder and J.A.C. Weideman.
An improved Talbot method for numerical Laplace transform inversion.
Numerical Algorithms, 68(1):167–183, 2015.
arXiv:1304.2505, doi:10.1007/s11075-014-9895-z.
210
Thai Son Doan, Maximilian Engel, Jeroen S.W. Lamb, and Martin Rasmussen.
Hopf bifurcation with additive noise.
Nonlinearity 31 (2018), no. 10, 4567–4601, August 2018.
arXiv:1710.09649, doi:10.1088/1361-6544/aad208.
211
Joseph Doolittle, Jean-Philippe Labbé, Carsten Lange, Rainer Sinn, Jonathan Speer, and Günter M. Ziegler.
Combinatorial inscribability obstructions for higher-dimensional polytopes.
Preprint, October 2019.
arXiv:1910.05241.
212
Sebastian Eberhardt, Steffen Weissmann, Ulrich Pinkall, and Nils Thuerey.
Hierarchical Vorticity Skeletons.
Proceedings of the Symposium on Computer Animation (SCA '12), to appear:11, June 2017.
URL: https://ge.in.tum.de/download/2017-sca-eberhardt.pdf, doi:10.1145/3099564.3099569.
213
Holger Eble, Michael Joswig, Lisa Lamberti, and Will Ludington.
Cluster partitions and fitness landscapes of the Drosophila fly microbiome.
Preprint, 2018.
arXiv:1809.02533.
214
M-L Eckert, Wolfgang Heidrich, and Nils Thuerey.
Coupled Fluid Density and Motion from Single Views.
In Computer Graphics Forum, volume 37, 47–58. Wiley Online Library, 2018.
doi:10.1111/cgf.13511.
215
H. Edelsbrunner.
The union of balls and its dual shape.
Discrete and Computational Geometry, 13(1):415–440, December 1995.
doi:10.1007/bf02574053.
216
Herbert Edelsbrunner.
Surface Reconstruction by Wrapping Finite Sets in Space.
In Boris Aronov, Saugata Basu, János Pach, and Micha Sharir, editors, Discrete and Computational Geometry, volume 25 of Algorithms and Combinatorics, pages 379–404. Springer Berlin Heidelberg, 2003.
doi:10.1007/978-3-642-55566-4_17.
217
Herbert Edelsbrunner, Grzegorz Jablonski, and Marian Mrozek.
The Persistent Homology of a Self-Map.
Foundations of Computational Mathematics, pages 1–32, 2014.
doi:10.1007/s10208-014-9223-y.
218
Herbert Edelsbrunner, David Letscher, and Afra Zomorodian.
Topological Persistence and Simplification.
Discrete & Computational Geometry, 28(4):511–533, November 2002.
doi:10.1007/s00454-002-2885-2.
219
Herbert Edelsbrunner and Anton Nikitenko.
Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics.
Ann. Appl. Probab., 28(5):3215–3238, 2018.
doi:10.1214/18-AAP1389.
220
Herbert Edelsbrunner, Anton Nikitenko, and Matthias Reitzner.
Expected sizes of Poisson–Delaunay mosaics and their discrete Morse functions.
Advances in Applied Probability, 49(3):745–767, 2017.
arXiv:1607.05915.
221
Herbert Edelsbrunner and Florian Pausinger.
Approximation and convergence of the intrinsic volume.
Advances in Mathematics, 2015. accepted.
222
Herbert Edelsbrunner and Katharina Ölsböck.
Holes and dependences in an ordered complex.
Computer Aided Geometric Design, August 2019.
URL: http://pub.ist.ac.at/~edels/Papers/2018-J-06-HolesDependences.pdf.
223
M. Engel and H. Jardon-Kojakhmetov.
Extended and symmetric loss of stability for canards in planar fast-slow maps.
preprint, January 2020.
arXiv:1912.10286.
224
M. Engel and C. Kuehn.
A random dynamical systems perspective on isochronicity for stochastic oscillations.
preprint, November 2019.
arXiv:1911.08993.
225
M. Engel and C. Kuehn.
Discretized fast-slow systems near transcritical singularities.
Nonlinearity, Vol. 32, No. 7, 2365-2391, May 2019.
doi:10.1088/1361-6544/ab15c1.
226
M. Engel, C. Kuehn, M. Petrera, and Y. Suris.
Discretized fast-slow systems with canard points in two dimensions.
preprint, July 2019.
arXiv:1907.06574.
227
M. Engel, J.S.W. Lamb, and M. Rasmussen.
Bifurcation analysis of a stochastically driven limit cycle.
Communications in Mathematical Physics 365(3), 2019, January 2019.
arXiv:1606.01137, doi:10.1007/s00220-019-03298-7.
228
M. Engel, J.S.W. Lamb, and M. Rasmussen.
Conditioned Lyapunov exponents for random dynamical systems.
Transactions of the American Mathematical Society 372(9), 2019, May 2019.
doi:10.1090/tran/7803.
229
Ekaterina Eremenko.
My Experience of Producing Mathematical Films.
In Anna Maria Hartkopf and Erin Henning, editors, Handbook of Mathematical Science Communication, pages 231–246. World Scientific, January 2023.
URL: https://doi.org/10.1142/9789811253072_0013.
230
Myfanwy E. Evans and Stephen T. Hyde.
From three-dimensional weavings to swollen corneocytes.
J. R. Soc. Interface, 8:1274–1280, 2011.
URL: http://rsif.royalsocietypublishing.org/content/8/62/1274.short, doi:10.1098/rsif.2010.0722.
231
Myfanwy E. Evans, Vanessa Robins, and Stephen Hyde.
Periodic entanglement I: nets from hyperbolic reticulations.
Acta Cryst., A69:241–261, 2013.
URL: http://journals.iucr.org/a/issues/2013/03/00/eo5019/index.html, doi:10.1107/S0108767313001670.
232
Myfanwy E. Evans, Vanessa Robins, and Stephen Hyde.
Periodic entanglement II: weavings from hyperbolic line patterns.
Acta Cryst., A69:262–275, 2013.
URL: http://journals.iucr.org/a/issues/2013/03/00/eo5020/index.html, doi:10.1107/S0108767313001682.
233
Myfanwy E. Evans, Vanessa Robins, and Stephen Hyde.
Ideal geometry of periodic entanglements.
P. R. Soc. A, 471(2181):2015.0254, 2015.
doi:10.1098/rspa.2015.0254.
234
Myfanwy E. Evans and Roland Roth.
Shaping the skin: the interplay of mesoscale geometry and corneocyte swelling.
Phys. Rev. Lett., 112(3):038102:1–5, 2014.
URL: http://link.aps.org/doi/10.1103/PhysRevLett.112.038102.
235
Alexander Yves Fairley.
Q-Nets and Quadrics.
Dissertation, TU Berlin, September 2023. Doctoral thesis.
doi:10.14279/depositonce-18877.
236
Sebastián Ferraro, Fernando Jiménez, and David Martín de Diego.
New developments on the Geometric Nonholonomic Integrator.
Nonlinearity, 28:871-900, 2015.
arXiv:1312.1587.
237
D. Ferus, K. Leschke, F. Pedit, and U. Pinkall.
Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori.
Inventiones Mathematicae, 146(3):507–593, 2001.
arXiv:math/0012238.
238
Moritz Firsching.
Realizability and inscribability for some simplicial spheres and matroid polytopes.
Preprint, August 2015.
arXiv:1508.02531.
239
Moritz Firsching.
Optimization Methods in Discrete Geometry.
Dissertation, FU Berlin, January 2016. 85 pages.
URL: http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000101268.
240
Moritz Firsching.
Realizability and Inscribability for Simplicial Polytopes via Nonlinear Optimization.
Mathematical Programming, 166(1-2):273–295, 2017.
arXiv:1508.02531, doi:10.1007/s10107-017-1120-0.
241
Moritz Firsching.
The complete enumeration of $4$-polytopes and $3$-spheres with nine vertices.
Preprint, March 2018.
arXiv:1803.05205.
242
Julian Fischer and Daniel Matthes.
The waiting time phenomenon in spatially discretized porous medium and thin film equations.
preprint at arXiv, 2019.
arXiv:1911.04185.
243
Michael Fisher, Boris Springborn, Peter Schröder, and Alexander I. Bobenko.
An algorithm for the construction of intrinsic Delaunay triangulations with applications to digital geometry processing.
Computing, 81(2-3):199–213, 2007.
doi:10.1007/s00607-007-0249-8.
244
Axel Flinth and Sandra Keiper.
Recovery of binary sparse signals with biased measurement matrices.
IEEE Transactions on Information Theory, 2019.
doi:10.1109/TIT.2019.2929192.
245
Benedikt Fluhr.
The Mayer-Vietoris Pyramid Sheaf-theoretically.
May 2018. Poster Session: Bridging Statistics and Sheaves at IMA, Minneapolis.
URL: http://bfluhr.com/bucket/poster-ima.pdf.
246
Simon Flöry, Yukie Nagai, Florin Isvoranu, Helmut Pottmann, and Johannes Wallner.
Ruled Free Forms.
In Lars Hesselgren, Shrikant Sharma, Johannes Wallner, Niccolo Baldassini, Philippe Bompas, and Jacques Raynaud, editors, Advances in Architectural Geometry 2012, pages 57–66. Springer, 2012.
doi:10.1007/978-3-7091-1251-9_4.
247
Marco Di Francesco, Massimo Fornasier, Jan-Christian Hütter, and Daniel Matthes.
Asymptotic Behavior of Gradient Flows Driven by Nonlocal Power Repulsion and Attraction Potentials in One Dimension.
accepted at SIAM-MA, January 2014.
arXiv:1401.2338.
248
Thomas Frerix, Matthias Nießner, and Daniel Cremers.
Homogeneous Linear Inequality Constraints for Neural Network Activations.
Preprint, 2019.
arXiv:1902.01785.
249
Florian Frick and Raman Sanyal.
Minkowski complexes and convex threshold dimension.
Journal of Combinatorial Theory, Series A, 151:202–206, 2017.
URL: http://www.sciencedirect.com/science/article/pii/S0097316517300584, arXiv:1607.07814.
250
Tobias Friedl, Cordian Riener, and Raman Sanyal.
Reflection groups, reflection arrangements, and invariant real varieties.
Proceedings of the American Mathematical Society, 2017.
URL: http://www.ams.org/journals/proc/0000-000-00/S0002-9939-2017-13821-0/home.html, arXiv:1602.06732, doi:10.1090/proc/13821.
251
G. Friesecke.
Die Schönheit der molekularen Architektur von Viren und ihre Entschlüsselung durch Beugungsmuster.
Mitt. Dtsch. Math.-Ver., 24:208–213, 2016.
URL: https://www.degruyter.com/view/j/dmvm.2016.24.issue-4/dmvm-2016-0078/dmvm-2016-0078.xml, doi:10.1515/dmvm-2016-0078.
252
Gero Friesecke, Daniel Matthes, and Bernhard Schmitzer.
Barycenters for the Hellinger–Kantorovich distance over $\mathbb R^d$.
preprint at arXiv, 2019.
arXiv:1910.14572.
253
G. Friesecke, R. D. James and D. Jüstel.
Twisted x-rays: incoming waveforms yielding discrete diffraction patterns for helical structures.
2015.
arXiv:1506.04240.
254
Wolfgang Gaim and Caroline Lasser.
Corrections to Wigner type phase space methods.
Nonlinearity, 27(12):2951–2974, 2014.
URL: http://stacks.iop.org/0951-7715/27/i=12/a=2951, arXiv:1403.2839, doi:10.1088/0951-7715/27/12/2951.
255
Ewgenij Gawrilow and Michael Joswig.
polymake: a framework for analyzing convex polytopes.
In Polytopes - combinatorics and computation (Oberwolfach, 1997), volume 29 of DMV Sem., pages 43–73. Birkhäuser, Basel, 2000.
doi:10.1007/978-3-0348-8438-9_2.
256
Laura Gellert and Raman Sanyal.
On degree sequences of undirected, directed, and bidirected graphs.
European Journal of Combinatorics, 64:113–124, 2017.
URL: http://www.sciencedirect.com/science/article/pii/S0195669817300409, arXiv:1512.08448.
257
M. Genzel, G. Kutyniok, and M. März.
$\ell ^1$-Analysis Minimization and Generalized (Co-)Sparsity: When Does Recovery Succeed?
preprint, October 2017.
258
Mark Gillespie, Boris Springborn, and Keenan Crane.
Discrete Conformal Equivalence of Polyhedral Surfaces.
ACM Trans. Graph., 40(4):103:1–103:20, August 2021.
doi:10.1145/3450626.3459763.
259
Janusz Ginster and Barbara Zwicknagl.
Energy Scaling Law for a Singularly Perturbed Four-Gradient Problem in Helimagnetism.
Journal of Nonlinear Science, December 2022.
doi:10.1007/s00332-022-09847-0.
260
Janusz Ginster and Barbara Zwicknagl.
Energy Scaling Laws for Microstructures: From Helimagnets to Martensites.
cvgmt preprint, April 2023.
261
Georg Glaeser and Konrad Polthier.
Bilder der Mathematik.
Springer Spektrum, 2 edition, 2010. ISBN 978-3-662-43416-1. Nachdruck 2014.
262
Georg Glaeser and Konrad Polthier.
Wiskunde in beeld.
Uitgevrij Veen Magazines BV, 2012. ISBN 978-90-8571-250-3.
263
Georg Glaeser and Konrad Polthier.
Immagini Della Matematica.
Springer, Italia, 2013. ISBN 978-88-6030-619-7.
264
Georg Glaeser and Konrad Polthier.
Surprenantes images de mathématiques.
Belin, 2013. ISBN 978-27-0115-695-8. Janie Molard(Übersetzerin).
265
Bernd Gonska and Arnau Padrol.
Neighborly inscribed polytopes and Delaunay triangulations.
Preprint, August 2013.
arXiv:1308.5798.
266
Bernd Gonska and Arnau Padrol.
Many neighborly inscribed polytopes and Delaunay triangulations.
In 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 161–168. 2014.
URL: http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAT0115.
267
Bernd Gonska and Günter M. Ziegler.
Inscribable stacked polytopes.
Adv. Geom., 13:723–740, 2013.
arXiv:1111.5322.
268
O. Graf, F. Krahmer, and S. Krause-Solberg.
Higher order 1-bit Sigma-Delta modulation on a circle.
In Proc. Intl. Conf. on Sampling Theory and Applications (SampTA '19). 2019.
URL: https://sampta2019.sciencesconf.org/273036/document.
269
Olga Graf, Ayush Bhandari, and Felix Krahmer.
One-Bit Unlimited Sampling.
In Proc. IEEE Intl. Conf. Acoustics Speach Signal Proc. (ICASSP 2019). September 2019.
doi:10.1109/ICASSP.2019.8683266, dgd:442.
270
Olga Graf, Felix Krahmer, and Sara Krause-Solberg.
One-Bit Sigma-Delta modulation on the circle.
preprint, November 2019.
dgd:587.
271
Francesco Grande, Arnau Padrol, and Raman Sanyal.
Extension complexity and realization spaces of hypersimplices.
Discrete Comput Geom, 2017.
arXiv:1601.02416, doi:10.1007/s00454-017-9925-4.
272
Francesco Grande and Raman Sanyal.
Theta rank, levelness, and matroid minors.
J. Combin. Theory Ser. B, 123:1–31, 2017.
arXiv:1408.1262, doi:10.1016/j.jctb.2016.11.002.
273
P. Grohs, G. Kutyniok, J. Ma, and P. Petersen.
Anisotropic multiscale systems on bounded domains.
preprint, 2015.
arXiv:1510.04538.
274
Philipp Grohs, Sandra Keiper, Gitta Kutyniok, and Martin Schäfer.
α-Molecules.
preprint, July 2014.
arXiv:1407.4424.
275
Philipp Grohs and Gitta Kutyniok.
Parabolic molecules.
Found. Comput. Math., 14(2):299–337, 2014.
doi:10.1007/s10208-013-9170-z.
276
Oliver Gross, Ulrich Pinkall, and Peter Schröder.
Plasma Knots.
Physics Letters A, August 2023.
URL: https://www.sciencedirect.com/science/article/abs/pii/S0375960123003663.
277
Oliver Gross, Yousuf Soliman, Marcel Padilla, Felix Knöppel, Ulrich Pinkall, and Peter Schröder.
Motion from Shape Change.
ACM Transactions on Graphics, July 2023.
URL: https://olligross.github.io/projects/MotionFromShapeChange/MotionFromShapeChange_project.html, doi:10.1145/3592417.
278
Romain Grunert.
Piecewise linear Morse theory.
Dissertation, Freie Universität Berlin, 2017.
URL: https://refubium.fu-berlin.de/handle/fub188/12531.
279
Romain Grunert, Wolfgang Kühnel, and Günter Rote.
PL Morse theory in low dimensions.
Advances in Geometry, January 2023.
URL: http://page.mi.fu-berlin.de/rote/Papers/pdf/PL+Morse+theory+in+low+dimensions.pdf.
280
Romain Grunert, Wolfgang Kühnel, and Günter Rote.
Pl Morse theory in low dimensions.
Advances in Geometry, 23(1):135–150, January 2023.
URL: http://doi.org/10.1515/advgeom-2022-0027, arXiv:1912.05054.
281
J. Guckenheimer and C. Kuehn.
Homoclinic orbits of the FitzHugh-Nagumo equation: Bifurcations in the full system.
SIAM J. Appl. Dyn. Syst., 9:138–153, 2010.
282
Felix Günther.
Discrete Riemann surfaces and integrable systems.
Dissertation, TU Berlin, September 2014.
URL: http://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/5659.
283
Felix Günther, Caigui Jiang, and Helmut Pottmann.
Smooth polyhedral surfaces.
preprint, March 2017.
arXiv:1703.05318.
284
H. Dietert, J. Keller and S. Troppmann.
An invariant class of Hermite type multivariate polynomials for the Wigner transform.
22pp, 2015.
arXiv:1505.06192.
285
Christian Haase, Martina Juhnke-Kubitzke, Raman Sanyal, and Thorsten Theobald.
Mixed Ehrhart polynomials.
Electron. J. Combin., 24(Issue 1):Paper #P1.10, 2017.
URL: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i1p10, arXiv:1509.02254.
286
Simon Hampe and Michael Joswig.
Tropical computations in polymake.
In Gebhard Böckle, Wolfram Decker, and Gunter Malle, editors, Algorithmic and experimental methods in algebra, geometry, and number theory, pages 361–385. Springer, Cham, 2017.
arXiv:1612.02581.
287
Simon Hampe, Michael Joswig, and Benjamin Schröter.
Algorithms for Tight Spans and Tropical Linear Spaces.
Journal of Symbolic Computation, 2018. Proceedings of MEGA 2017.
arXiv:1612.03592, doi:10.1016/j.jsc.2018.06.016.
288
R. Haraway, R. Löwe, D. Tate, and S. Tillmann.
On Moduli Spaces of Convex Projective Structures on Surfaces: Outitude and Cell-Decomposition in Fock-Goncharov Coordinates.
Preprint, 2019.
arXiv:1911.04176.
289
Anna Hartkopf, Stefan Auerbach, and Martin Skrodzki.
Polytopia.
Adopt a Polyeder, February 2024.
URL: https://www.polytopia.eu/.
290
Anna M Hartkopf.
Developments towards Mathematical Citizen Science.
In Forum Citizen Science 2019, 53–58. OSF, September 2019.
doi:10.17605/OSF.IO/WBS8Y.
291
Anna M. Hartkopf.
Citizen Art – Collective Mathematical Art to Raise the Public Awareness of Mathematics.
In Susan Goldstine, Douglas McKenna, and Kristóf Fenyvesi, editors, Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture, 355–358. Phoenix, Arizona, 2019. Tessellations Publishing.
URL: http://archive.bridgesmathart.org/2019/bridges2019-355.pdf.
292
Anna Maria Hartkopf.
Mathematical Science Communication.
Dissertation, Freie Universität Berlin, 2020.
doi:10.17169/refubium-28451.
293
Anna Maria Hartkopf and Erin Henning.
Über die Wissenschaft der Wissenschaftskommunikation in Mathematik.
Mitteilungen der Deutschen Mathematiker-Vereinigung, 30(4):261–265, December 2022.
URL: https://doi.org/10.1515/dmvm-2022-0084.
294
Anna Maria Hartkopf and Erin Henning.
Handbook of Mathematical Science Communication. World Scientific Series on Science Communication.
World Scientific, January 2023.
URL: https://doi.org/10.1142/12747.
295
Anna Maria Hartkopf and Günter M. Ziegler.
Adopt a Polyhedron - A Citizen Art Project in Mathematics.
In Eve Torrence, Bruce Torrence, Carlo Séquin, and Kristóf Fenyvesi, editors, Proceedings of Bridges 2018: Mathematics, Art, Music, Architecture, Education, Culture, 579–584. Phoenix, Arizona, 2018. Tessellations Publishing.
296
Sven Herrmann and Michael Joswig.
Totally splittable polytopes.
Discrete Comput. Geom., 44(1):149–166, 2010.
arXiv:0901.0231, doi:10.1007/s00454-009-9217-8.
297
Klaus Hildebrandt and Konrad Polthier.
Generalized shape operators on polyhedral surfaces.
Computer Aided Geometric Design, 28(5):321 – 343, 2011.
URL: http://www.sciencedirect.com/science/article/pii/S0167839611000628, doi:10.1016/j.cagd.2011.05.001.
298
Klaus Hildebrandt and Konrad Polthier.
On approximation of the Laplace-Beltrami operator and the Willmore energy of surfaces.
Computer Graphics Forum, 30(5):1513–1520, 2011.
doi:10.1111/j.1467-8659.2011.02025.x.
299
Klaus Hildebrandt, Konrad Polthier, and Max Wardetzky.
On the convergence of metric and geometric properties of polyhedral surfaces.
Geometriae Dedicata, 123(1):89–112, 2006.
300
Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, and Konrad Polthier.
Modal shape analysis beyond Laplacian.
Computer Aided Geometric Design, 29(5):204–218, 2012.
doi:10.1016/j.cagd.2012.01.001.
301
Tim Hoffmann and Andrew O. Sageman-Furnas.
A $2 \times 2$ Lax Representation, Associated Family, and Bäcklund Transformation for Circular K-Nets.
Discrete & Computational Geometry, 56(2):472–501, September 2016.
arXiv:1510.06654, doi:10.1007/s00454-016-9802-6.
302
Tim Hoffmann, Andrew O. Sageman-Furnas, and Jannik Steinmeier.
Skew parallelogram nets and universal factorization.
preprint, January 2024.
arXiv:2401.08467.
303
Tim Hoffmann, Andrew O. Sageman-Furnas, and Max Wardetzky.
A Discrete Parametrized Surface Theory in $\mathbb R^3$.
International Mathematics Research Notices, 2017(14):4217–4258, 2017.
arXiv:1412.7293, doi:10.1093/imrn/rnw015.
304
Tim Hoffmann, Wolfgang K Schief, and Jannik Steinmeier.
On Discrete Conjugate Semi-Geodesic Nets.
International Mathematics Research Notices, June 2022.
URL: https://academic.oup.com/imrn/article-abstract/2022/11/8685/6122824?redirectedFrom=fulltext.
305
Tim Hoffmann and Gudrun Szewieczek.
Isothermic nets with spherical parameter lines from discrete holomorphic maps.
preprint, March 2024.
arXiv:2403.13476.
306
Tim Hoffmann and Zi Ye.
A discrete extrinsic and intrinsic Dirac operator.
Preprint, February 2018.
arXiv:1802.06278.
307
Florian Hofherr, Lukas Koestler, Florian Bernard, and Daniel Cremers.
Neural Implicit Representations for Physical Parameter Inference From a Single Video.
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 2093–2103, 2023.
arXiv:2204.14030.
308
Emanuel Huhnen-Venedey.
Cyclidic and hyperbolic nets: A piecewise smooth discretization of orthogonal and asymptotic nets in discrete differential geometry.
Dissertation, TU Berlin, 2014.
309
Emanuel Huhnen-Venedey and Thilo Rörig.
Discretization of asymptotic line parametrizations using hyperboloid surface patches.
Geometriae Dedicata, 168(1):265–289, February 2014.
arXiv:1112.3508, doi:10.1007/s10711-013-9830-9.
310
Emanuel Huhnen-Venedey and Wolfgang K. Schief.
On Weingarten Transformations of Hyperbolic Nets.
International Mathematics Research Notices, 2014.
URL: http://imrn.oxfordjournals.org/content/early/2014/01/24/imrn.rnt354.abstract, arXiv:1305.4783, doi:10.1093/imrn/rnt354.
311
Felix Hummel, Samuel Jelbart, and Christian Kuehn.
Geometric blow-up of a dynamic Turing instability in the Swift-Hohenberg equation.
preprint, July 2022.
arXiv:2207.03967.
312
M. Iwen, S. Dirksen, J. Maly, and S. Krause-Solberg.
Robust One-bit Compressed Sensing With Manifold Data.
In Proc. Intl. Conf. on Sampling Theory and Applications (SampTA '19). September 2019.
URL: https://sampta2019.sciencesconf.org/267528/document.
313
Mark A. Iwen, Felix Krahmer, Sara Krause-Solberg, and Johannes Maly.
On Recovery Guarantees for One-Bit Compressed Sensing on Manifolds.
preprint, July 2018.
arXiv:arXiv:1807.06490v1.
314
Ivan Izmestiev, Robert B. Kusner, Günter Rote, Boris Springborn, and John M. Sullivan.
There is no triangulation of the torus with vertex degrees 5, 6, ... , 6, 7 and related results: geometric proofs for combinatorial theorems.
Geometriae Dedicata, 166(1):15–29, October 2013.
arXiv:1207.3605, doi:10.1007/s10711-012-9782-5.
315
J. Keller, C. Lasser and T. Ohsawa.
A new phase space density for quantum expectations.
24pp, 2015.
arXiv:1506.08880.
316
H. Jardon-Kojakhmetov and C. Kuehn.
A survey on the blow-up method for fast-slow systems.
Preprint, 2019.
arXiv:1901.01402.
317
Hildeberto Jardón-Kojakhmetov and Christian Kuehn.
On fast-slow consensus networks with a dynamic weight.
preprint, April 2019.
arXiv:1904.02690.
318
S. Jelbart.
Rate and bifurcation induced transitions in asymptotically slow-fast systems.
preprint, January 2024.
arXiv:2401.08482.
319
S. Jelbart and C. Kuehn.
Extending discrete geometric singular perturbation theory to non-hyperbolic points.
preprint, August 2023.
arXiv:2308.06141.
320
Samuel Jelbart, Kristian Uldall Kristiansen, and Martin Wechselberger.
Singularly perturbed boundary-equilibrium bifurcations.
Nonlinearity, March 2021.
arXiv:2103.09613.
321
Samuel Jelbart and Christian Kuehn.
Discrete Geometric Singular Perturbation Theory.
Discrete and Continuous Dynamical Systems, January 2022.
arXiv:2201.06996.
322
Samuel Jelbart and Christian Kuehn.
A Formal Geometric Blow-up Method for Pattern Forming Systems.
preprint, February 2023.
arXiv:2302.06343.
323
Samuel Jelbart, Sara-Viola Kuntz, and Christian Kuehn.
Geometric blow-up for folded limit cycle manifolds in three time-scale systems.
Nonlinear Science, August 2022.
arXiv:2208.01361.
324
Samuel Jelbart, Nathan Pages, Vivien Kirk, James Sneyd, and Martin Wechselberger.
Process-oriented geometric singular perturbation theory and calcium dynamics.
SIAM Journal on Applied Dynamical Systems, September 2021.
arXiv:2104.07304.
325
Caigui Jiang, Klara Mundilova, Florian Rist, Johannes Wallner, and Helmut Pottmann.
Curve-pleated Structures.
ACM Trans. Graph., 38(6):169:1–169:13, November 2019.
doi:10.1145/3355089.3356540, dgd:608.
326
Caigui Jiang, Chengcheng Tang, Marko Tomičić, Johannes Wallner, and Helmut Pottmann.
Interactive modeling of architectural freeform structures - combining geometry with fabrication and statics.
In P. Block, J. Knippers, and W. Wang, editors, Advances in Architectural Geometry. Springer, 2014.
327
Caigui Jiang, Chengcheng Tang, Amir Vaxman, Peter Wonka, and Helmut Pottmann.
Polyhedral Patterns.
ACM Trans. Graphics, 2015. Proc. SIGGRAPH Asia.
328
Caigui Jiang, Jun Wang, Johannes Wallner, and Helmut Pottmann.
Freeform Honeycomb Structures.
Comput. Graph. Forum, 33(5):185–194, 2014. Proc. Symposium Geometry Processing.
doi:10.1111/cgf.12444.
329
Fernando Jimenez and Juergen Scheurle.
On the discretization of nonholonomic dynamics in $\mathbb R^n$.
J. Geom. Mechanics, 7(1):43-80, 2015.
arXiv:1407.2116.
330
Michael R. Jimenez, Christian Müller, and Helmut Pottmann.
Discretizations of Surfaces with Constant Ratio of Principal Curvatures.
Discrete Comput. Geom., 2019. accepted for publication.
URL: http://www.geometrie.tuwien.ac.at/ig/publications/constratio/constratio.pdf, doi:10.1007/s00454-019-00098-7.
331
F. Jiménez.
Hamilton-Dirac systems for charged particles in gauge fields.
J. Geom. Phys., 94:35-49, 2015.
arXiv:1410.3249.
332
F. Jiménez and J. Scheurle.
On the discretization of the Euler-Poincaré-Suslov equations in $SO(3)$.
preprint, 2015.
arXiv:1506.01289.
333
Fernando Jiménez and Hiroaki Yoshimura.
Dirac Structures in Vakonomic Mechanics.
J. Geom. Phys., 2015. accepted.
arXiv:1405.5394.
334
Katharina Jochemko and Raman Sanyal.
Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem.
accepted for publication, preprint on arxiv, 2015.
arXiv:1505.07440.
335
Katharina Jochemko and Raman Sanyal.
Combinatorial mixed valuations.
Advances in Mathematics, 319:630–652, 2017.
arXiv:1605.07431, doi:10.1016/j.aim.2017.08.032.
336
Charles Jordan, Michael Joswig, and Lars Kastner.
Parallel enumeration of triangulations.
Electron. J. Combin., 25(3):Paper 3.6, 27, 2018.
URL: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i3p6, arXiv:1709.04746.
337
Michael Joswig, Joe Kileel, Bernd Sturmfels, and André Wagner.
Rigid multiview varieties.
International Journal of Algebra and Computation, 26(04):775–788, 2016.
arXiv:1509.03257, doi:10.1142/S021819671650034X.
338
Michael Joswig and Georg Loho.
Weighted digraphs and tropical cones.
Linear Algebra and its Applications, 501:304–343, 2016.
arXiv:1503.04707, doi:10.1016/j.laa.2016.02.027.
339
Michael Joswig and Georg Loho.
Monomial tropical cones for multicriteria optimization.
Preprint, 2017.
arXiv:1707.09305.
340
Michael Joswig, Robert Löwe, and Boris Springborn.
Secondary fans and secondary polyhedra of punctured Riemann surfaces.
Exp. Math., 2019.
arXiv:1708.08714, doi:10.1080/10586458.2018.1477078.
341
Michael Joswig, Milan Mehner, Stefan Sechelmann, Jan Techter, and Alexander I. Bobenko.
DGD Gallery: Storage, sharing, and publication of digital research data.
In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
doi:10.1007/978-3-662-50447-5_14, dgd:208.
342
Michael Joswig and Marc E. Pfetsch.
Computing optimal Morse matchings.
SIAM J. Discrete Math., 20(1):11–25 (electronic), 2006.
arXiv:math/0408331, doi:10.1137/S0895480104445885.
343
Michael Joswig and Konrad Polthier.
EG-Models - a New Journal for Digital Geometry Models.
In J. Borwein, M. Morales, K. Polthier, and J.F. Rodrigues, editors, Multimedia Tools for Communicating Mathematics, pages 165–190. Springer, 2002.
344
Michael Joswig and Thilo Rörig.
Polytope mit vielen Splits und ihre Sekundärfächer.
Math. Semesterber., 59(2):145–152, 2012.
doi:10.1007/s00591-012-0102-9.
345
Michael Joswig and Benjamin Schröter.
Matroids from hypersimplex splits.
Journal of Combinatorial Theory, Series A, 151:254–284, 2017.
arXiv:1607.06291, doi:10.1016/j.jcta.2017.05.001.
346
Michael Joswig and Benjamin Schrüter.
The degree of a tropical basis.
Proc. Amer. Math. Soc., 146(3):961–970, 2018.
arXiv:1511.08123, doi:10.1090/proc/13787.
347
Michael Joswig and Ben Smith.
Polyhedral Tropical Geometry of Higher Rank.
preprint, 2018.
arXiv:1809.01457.
348
Michael Joswig and Thorsten Theobald.
Polyhedral and algebraic methods in computational geometry. Universitext.
Springer, London, 2013. ISBN 978-1-4471-4816-6; 978-1-4471-4817-3. Revised and updated translation of the 2008 German original.
doi:10.1007/978-1-4471-4817-3.
349
Michael Joswig and Günter M. Ziegler.
Foldable triangulations of lattice polygons.
Amer. Math. Monthly, 121(8):706–710, 2014.
arXiv:1207.6865, doi:10.4169/amermathmont.121.08.706.
350
Daniel Matthes José A. Carrillo, Bertram Düring and David S. McCormick.
A Lagrangian Scheme for the Solution of Nonlinear Diffusion Equations Using Moving Simplex Meshes.
Journal of Scientific Computing, June 2018, Volume 75, Issue 3, pp 1463–1499, November 2017.
doi:10.1007/s10915-017-0594-5.
351
Oliver Junge and Ioannis G Kevrekidis.
On the sighting of unicorns: A variational approach to computing invariant sets in dynamical systems.
Chaos: An Interdisciplinary Journal of Nonlinear Science, Nr. 6, Volume 27, June 2017.
doi:10.1063/1.4983468.
352
Oliver Junge and Benjamin Söllner.
A convergent Lagrangian discretization for $p$-Laplace and flux-limited diffusion equations.
preprint, 2019.
arXiv:1906.01321.
353
D. Jüstel.
The Zak transform on strongly proper G-spaces and its applications.
Journal of the London Math. Society, 97:47–76, 2017.
doi:10.1112/jlms.12097.
354
K. Crane, U. Pinkall and P. Schröder.
Robust fairing via conformal curvature flow.
ACM Trans. Graph, 32(4):61:1–61:10, July 2013.
355
G. Kamberov, F. Pedit, and U. Pinkall.
Bonnet pairs and isothermic surfaces.
Duke Math. J., 92(3):637–644, April 1998.
arXiv:dg-ga/9610006, doi:10.1215/S0012-7094-98-09219-5.
356
Günter M. Ziegler Karim Adiprasito.
Many projectively unique polytopes.
Inventiones math., 199:581–652, 2015.
arXiv:1212.5812, doi:10.1007/s00222-014-0519-y.
357
Oleg Karpenkov, Christian Müller, Gaiane Panina, Brigitte Servatius, Herman Servatius, and Dirk Siersma.
Equilibrium stressability of multidimensional frameworks.
Eur. J. Math., 8(1):33–61, 2022.
doi:10.1007/s40879-021-00523-3.
358
Oleg Karpenkov and Christian Mueller.
Geometric criteria for realizability of tensegrities in higher dimensions.
SIAM J. Discrete Math., 35(2):637–660, 2021.
doi:10.1137/19M1281903.
359
Oleg Karpenkov and Johannes Wallner.
On offsets and curvatures for discrete and semidiscrete surfaces.
Beitr. Algebra Geom., 55:207–228, 2014.
doi:10.1007/s13366-013-0146-6.
360
Lars Kastner and Robert Löwe.
The Newton polytope of the discriminant of a cubic quaternary form.
Preprint, 2019.
arXiv:1909.08910.
361
S. Keiper, G. Kutyniok, D. G. Lee, and G. E. Pfander.
Compressed sensing for finite-valued signals.
Linear Algebra and its Applications, 532:570–613, November 2017.
arXiv:1609.09450, doi:10.1016/j.laa.2017.07.006.
362
Sandra Keiper.
Approximation of generalized ridge functions in high dimensions.
Journal of Approximation Theory, 245:101–129, 2019.
doi:10.1016/j.jat.2019.04.006.
363
J. Keller.
Quantum Dynamics on Potential Energy Surfaces-Simpler States and Simpler Dynamics.
Dissertation, TU München, October 2015.
dgd:187.
364
Johannes Keller and Caroline Lasser.
Propagation of Quantum Expectations with Husimi Functions.
SIAM Journal on Applied Mathematics, 73(4):1557–1581, July 2013.
arXiv:1207.7211, doi:10.1137/120889186.
365
Johannes Keller and Caroline Lasser.
Quasi-classical description of molecular dynamics based on Egorov's theorem.
The Journal of Chemical Physics, August 2014.
arXiv:1405.7355, doi:10.1063/1.4891517.
366
Martin Kilian, Antonio S Ramos Cisneros, Helmut Pottmann, and Christian Müller.
Meshes with Spherical Faces.
ACM Trans. Graphics, 2023. Proc. SIGGRAPH Asia.
doi:10.1145/3618345.
367
Martin Kilian, Christian Müller, and Jonas Tervooren.
Smooth and discrete cone-nets.
Results Math., 78(3):Paper No. 110, 40, 2023.
doi:10.1007/s00025-023-01884-9.
368
Martin Kilian, Davide Pellis, Johannes Wallner, and Helmut Pottmann.
Material-minimizing forms and structures.
ACM Trans. Graphics, 36(6):article 173, 2017. Proc. SIGGRAPH Asia.
doi:10.1145/3130800.3130827.
369
Pisamai Kittipoom, Gitta Kutyniok, and Wang-Q Lim.
Construction of compactly supported shearlet frames.
Constr. Approx., 35(1):21–72, 2012.
arXiv:1003.5481, doi:10.1007/s00365-011-9142-y.
370
F. Knöppel.
Complex Line Bundles over Simplicial Complexes.
Dissertation, TU Berlin, 2015.
dgd:191.
371
F. Knöppel, K. Crane, U. Pinkall, and P. Schröder.
Stripe patterns on surfaces.
ACM Trans. Graph., 34(4):39:1–39:11, July 2015.
372
F. Knöppel and U. Pinkall.
Complex Line Bundles over Simplicial Complexes and their Applications.
In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, January 2017.
arXiv:1506.07853.
373
Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder.
Globally optimal direction fields.
ACM Trans. Graph., 2013.
URL: http://www.cs.columbia.edu/~keenan/Projects/GloballyOptimalDirectionFields/paper.pdf.
374
Zoi Tokoutsi Konstantin Poelke and Konrad Polthier.
Complex Polynomial Mandalas and their Symmetries.
In George Hart Gary Greenfield and Reza Sarhangi, editors, Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture, 433–436. Phoenix, Arizona, 2014. Tessellations Publishing.
URL: http://archive.bridgesmathart.org/2014/bridges2014-433.html.
375
Mara Kortenkamp, Erin Henning, and Anna Maria Hartkopf.
Adopt a polyhedron.
April 2020.
URL: https://chalkdustmagazine.com/features/adopt-a-polyhedron/.
376
U. Kortenkamp and J. Richter-Gebert.
Grundlagen Dynamischer Geometrie.
In H.-J. Elschenbroich, Th. Gawlick, and H.-W. Henn, editors, Zeichnung - Figur - Zugfigur: Mathematische und didaktische Aspekte Dynamischer Geometrie-Software, pages 123–145. Franzbecker, Hildesheim, 2001.
377
U. Kortenkamp and J. Richter-Gebert.
Using automatic theorem proving to improve the usability of geometry software.
In Proceedings of the Mathematical User Interfaces Workshop. 2004.
378
Ulrich Kortenkamp, Stefan Kranich, Jürgen Richter-Gebert, M. Strobel, Martin von Gagern, and J. Wurster.
CindyJS: A growing collection of interactive demonstrations.
2015.
URL: http://www.science-to-touch.com/DGD.
379
H. Kourimska, L. Skuppin, and B. Springborn.
A variational principle for cyclic polygons with prescribed edge lengths.
In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
arXiv:1506.08069.
380
Hana Kourimská.
Polyhedral surfaces of constant curvature and discrete uniformization.
Dissertation, TU Berlin, March 2020.
doi:10.14279/depositonce-9883.
381
Hana Kouřimská and Boris Springborn.
Discrete Yamabe problem for polyhedral surfaces.
Preprint, 2019.
doi:10.14279/depositonce-9001.3.
382
Hana Dal Poz Kouřimská.
Discrete Yamabe Problem for Polyhedral Surfaces.
Discrete & Computational Geometry, March 2023.
arXiv:2103.15693, doi:10.1007/s00454-023-00484-2.
383
F. Krahmer, C. Kuehn, and N. Sissouno.
Predicting sparse circle maps from their dynamics.
preprint, January 2020.
arXiv:1911.06312.
384
F. Krahmer, G. Kutyniok, and J. Lemvig.
Sparsity and spectral properties of dual frames.
Linear Algebra and its Applications, 439(4):982 – 998, 2013.
URL: http://num.math.uni-goettingen.de/~f.krahmer/KKL12.pdf.
385
F. Krahmer, C. Kühn, and N. Sissouno.
Predicting sparse circle maps from their dynamics.
preprint, 2019.
arXiv:1911.06312.
386
F. Krahmer, S. Mendelson, and H. Rauhut.
Suprema of Chaos Processes and the Restricted Isometry Property.
Comm. Pure Appl. Math., 67(11):1877–1904, 2014.
URL: http://num.math.uni-goettingen.de/~f.krahmer/KMR12.pdf.
387
F. Krahmer, R. Saab, and R. Ward.
Root-exponential accuracy for coarse quantization of finite frame expansions.
IEEE Trans. Inform. Theory, 58(2):1069–1079, 2012.
URL: http://num.math.uni-goettingen.de/~f.krahmer/KSW12.pdf.
388
F. Krahmer, R. Saab, and Ö. Yilmaz.
Sigma-Delta quantization of sub-Gaussian frame expansions and its application to compressed sensing.
Inform. Inference, 3(1):40–58, 2014.
URL: http://num.math.uni-goettingen.de/~f.krahmer/KSY13.
389
F. Krahmer and R. Ward.
Lower bounds for the error decay incurred by coarse quantization schemes.
Appl. Comput. Harmonic Anal., 32(1):131–138, 2012.
URL: http://num.math.uni-goettingen.de/~f.krahmer/KW12.pdf.
390
Stefan Kranich.
An epsilon-delta bound for plane algebraic curves and its use for certified homotopy continuation of systems of plane algebraic curves.
preprint, May 2015.
arXiv:1505.03432.
391
Stefan Kranich.
GPU-based visualization of domain-coloured algebraic Riemann surfaces.
preprint, July 2015.
arXiv:1507.04571.
392
Stefan Kranich.
Generation of real algebraic loci via complex detours.
preprint, October 2015.
arXiv:1510.05464.
393
Stefan Kranich.
Continuity in Dynamic Geometry: An Algorithmic Approach.
Dissertation, TU München, April 2016.
URL: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20160418-1281075-1-5.
394
Max Krause and John M. Sullivan.
Classification of small links in the unmarked solid torus.
Preprint, 2019.
395
Sara Krause-Solberg, Olga Graf, and Felix Krahmer.
One-Bit Sigma-Delta Modulation on a Closed Loop.
2018 IEEE Statistical Signal Processing Workshop (SSP), pages 208–212, August 2018.
URL: https://ieeexplore.ieee.org/document/8450721, doi:10.1109/SSP.2018.8450721.
396
B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dellnitz, and O. Junge.
A survey of methods for computing (un)stable manifolds of vector fields.
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15(3):763–791, 2005.
doi:10.1142/S0218127405012533.
397
Niklas Krauth, Matthias Nieser, and Konrad Polthier.
Differential-Based Geometry and Texture Editing with Brushes.
J. Math. Imaging Vis., 48(2):359–368, February 2014.
doi:10.1007/s10851-013-0443-6.
398
C. Kuehn.
A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics.
Physica D, 240(12):1020–1035, 2011.
doi:10.1016/j.physd.2011.02.012.
399
C. Kuehn.
Multiscale dynamics of an adaptive catalytic network model.
Math. Model. Nat. Pheno., 14(4):402, 2019.
doi:10.1051/mmnp/2019015.
400
C. Kuehn and C. Münch.
Duck traps: two-dimensional critical manifolds in planar systems.
Dynamical Systems: An International Journal, Vol. 34, No. 4, pp. 584-612,, February 2019.
doi:10.1080/14689367.2019.1575337.
401
C. Kuehn and P. Szmolyan.
Multiscale geometry of the Olsen model and non-classical relaxation oscillations.
J. Nonlinear Sci., 25(3):583–629, 2015.
doi:10.1007/s00332-015-9235-z.
402
Christian Kuehn.
Normal hyperbolicity and unbounded critical manifolds.
Nonlinearity, 27(6):1351–1366, may 2014.
URL: https://doi.org/10.1088%2F0951-7715%2F27%2F6%2F1351, doi:10.1088/0951-7715/27/6/1351.
403
Christian Kuehn.
Multiple time scale dynamics. Volume 191 of Applied Mathematical Sciences.
Springer, Cham, 2015. ISBN 978-3-319-12315-8; 978-3-319-12316-5.
doi:10.1007/978-3-319-12316-5.
404
Christian Kuehn.
PDE Dynamics. Volume 23 of Mathematical Modeling and Computation.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2019. ISBN 978-1-61197-565-9; 978-1-61197-566-6.
URL: https://my.siam.org/Store/Product/viewproduct/?ProductId=30604306.
405
Gitta Kutyniok and Wang-Q Lim.
Compactly supported shearlets are optimally sparse.
J. Approx. Theory, 163(11):1564–1589, 2011.
arXiv:1002.2661, doi:10.1016/j.jat.2011.06.005.
406
Gitta Kutyniok and Wang-Q Lim.
Dualizable Shearlet Frames and Sparse Approximation.
preprint, 2014.
dgd:130.
407
Gitta Kutyniok, Wang-Q Lim, and Rafael Reisenhofer.
ShearLab 3D: Faithful Digital Shearlet Transforms based on Compactly Supported Shearlets.
Preprint, January 2014.
arXiv:1402.5670, dgd:49.
408
Gitta Kutyniok, Volker Mehrmann, and Philipp Petersen.
Regularization and Numerical Solution of the Inverse Scattering Problem using Shearlet Frames.
preprint, July 2014.
arXiv:1407.7349.
409
Gitta Kutyniok and Philipp Petersen.
Classification of edges using compactly supported shearlets.
Applied and Computational Harmonic Analysis, 2015.
arXiv:1411.5657, doi:10.1016/j.acha.2015.08.006.
410
Florian Käferböck.
Affine arc length polylines and curvature continuous uniform B-splines.
Computer-Aided Geom. Design, 2014.
411
Florian Käferböck and Helmut Pottmann.
Smooth surfaces from bilinear patches: discrete affine minimal surfaces.
Computer-Aided Geom. Design, 30:476–489, 2013.
412
Felix Kälberer, Matthias Nieser, and Konrad Polthier.
QuadCover - Surface Parameterization using Branched Coverings.
Comput. Graph. Forum, 26(3):375–384, 2007.
413
Benno König.
A Geometric Construction for the Associated Family of S–Isothermic CMC Surfaces.
Dissertation, Technische Universität München, September 2018. Dissertation.
URL: http://mediatum.ub.tum.de?id=1368384.
414
G. Friesecke L. De Luca.
Classification of Particle Numbers with Unique Heitmann-Radin Minimizer.
J. Stat. Phys. 167, Issue 6, 1586–1592, 2017, April 2017.
URL: https://link.springer.com/article/10.1007/s10955-017-1781-3.
415
G. Friesecke L. De Luca.
Crystallization in two dimensions and a discrete Gauss-Bonnet theorem.
J Nonlinear Sci 28, 69-90, 2017, June 2017.
URL: https://link.springer.com/article/10.1007%2Fs00332-017-9401-6.
416
D. Labate, W-Q. Lim, G. Kutyniok, and G. Weiss.
Sparse multidimensional representation using shearlets.
SPIE Proc. 5914, SPIE, Bellingham, pages 254–262, 2005.
URL: http://en.wikipedia.org/wiki/Bandelet_(computer_science).
417
Jean-Philippe Labbé and Carsten Lange.
Cambrian acyclic domains: counting $c$-singletons.
Preprint, 2018.
arXiv:1802.07978.
418
Jean-Philippe Labbé, Günter Rote, and Günter M. Ziegler.
Area difference bounds for dissections of a square into an odd number of triangles.
Preprint, August 2017.
arXiv:1708.02891.
419
Elisa Lafuente Hernández, Stefan Sechelmann, Thilo Rörig, and Christoph Gengnagel.
Topology Optimisation of Regular and Irregular Elastic Gridshells by Means of a Non-linear Variational Method.
In Lars Hesselgren, Shrikant Sharma, Johannes Wallner, Niccolo Baldassini, Philippe Bompas, and Jacques Raynaud, editors, Advances in Architectural Geometry 2012, pages 147–160. Springer Vienna, 2013.
doi:10.1007/978-3-7091-1251-9_11.
420
W. Y. Lam and U. Pinkall.
Holomorphic Vector Fields and Quadratic Differentials on Planar Triangular Meshes.
In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
arXiv:1506.08099.
421
W.Y. Lam.
Infinitesimal conformal deformations of triangulated surfaces.
Master's thesis, Technische Universität Berlin, 2013.
dgd:190.
422
Wai Yeung Lam.
Discrete minimal surfaces: critical points of the area functional from integrable systems.
International Mathematics Research Notices, 2018(6):1808–1845, December 2016.
arXiv:1510.08788, doi:10.1093/imrn/rnw267.
423
Wai Yeung Lam and Ulrich Pinkall.
Isothermic Triangulated Surfaces.
preprint, January 2015.
arXiv:1501.02587.
424
Wai Yeung Lam and Ulrich Pinkall.
Infinitesimal conformal deformations of triangulated surfaces in space.
Discrete & Computational Geometry, 60(4):831–858, December 2018.
arXiv:1702.04019, doi:10.1007/s00454-018-0008-y.
425
Carsten Lange and Konrad Polthier.
Anisotropic smoothing of point sets.
Computer Aided Geometric Design, 22(7):680–692, 2005.
426
Caroline Lasser and Stephanie Troppmann.
Hagedorn Wavepackets in Time-Frequency and Phase Space.
Journal of Fourier Analysis and Applications, 20(4):679–714, May 2014.
arXiv:1303.5192, doi:10.1007/s00041-014-9330-9.
427
Christian Lessig, Philipp Petersen, and Martin Schäfer.
Bendlets: A second-order shearlet transform with bent elements.
Applied and Computational Harmonic Analysis, 2017.
arXiv:1607.05520, doi:10.1016/j.acha.2017.06.002.
428
D. Liu, D. Pellis, Y.-C. Chiang, F. Rist, J. Wallner, and H. Pottmann.
Deployable strip structures.
ACM Trans. Graph., pages 1–16, 2023.
429
Lauri Loiskekoski and Günter M Ziegler.
Simple polytopes without small separators.
Israel Journal of Mathematics, 221(2):731–739, 2017.
arXiv:1510.00511, doi:10.1007/s11856-017-1572-1.
430
Lauri Loiskekoski and Günter M. Ziegler.
Simple polytopes without small separators, II: Thurston's bound.
Preprint, Israel J. Math., to appear, 2017.
arXiv:1708.06718.
431
Andreas Loos and Günter M Ziegler.
„Was ist Mathematik" lernen und lehren.
Mathematische Semesterberichte, 63(1):155–169, 2016.
doi:10.1007/s00591-016-0167-y.
432
Carl O. R. Lutz.
Canonical tessellations of decorated hyperbolic surfaces.
Geom Dedicata, 217(14):1–37, April 2023.
arXiv:2206.13461, doi:10.1007/s10711-022-00746-y.
433
F. H. Lutz, J. K. Mason, E. A. Lazar, and R. D. MacPherson.
Roundness of grains in cellular microstructures.
Phys. Rev. E, 96:023001, August 2017.
doi:10.1103/PhysRevE.96.023001.
434
Z. Lähner, D. Cremers, and T. Tung.
DeepWrinkles: Accurate and Realistic Clothing Modeling.
In European Conference on Computer Vision (ECCV), 667–684. 2018.
URL: https://www.springerprofessional.de/deepwrinkles-accurate-and-realistic-clothing-modeling/16183404.
435
A. Bach M. Cicalese and A. Braides.
Discrete-to-continuum limits of multi-body systems with bulk and surface long-range interactions.
preprint, July 2019.
URL: http://cvgmt.sns.it/paper/4406/.
436
G. Orlando M. Cicalese and M. Ruf.
From the N-clock model to the XY model: emergence of concentration effects in the variational analysis.
preprint, August 2019.
URL: http://cvgmt.sns.it/paper/4432/.
437
M. Forster M. Cicalese and G. Orlando.
Variational analysis of a two-dimensional frustrated spin system: emergence and rigidity of chirality transitions.
SIAM J. Math. Anal., 2019. preprint.
arXiv:1904.07792.
438
Christian Müller and Helmut Pottmann.
The geometry of discrete asymptotic-geodesic 4-webs in isotropic 3-space.
Monatsh. Math., 203(1):223–246, 2024.
doi:10.1007/s00605-023-01916-0.
439
Christian Müller and Helmut Pottmann.
The geometry of discrete asymptotic-geodesic 4-webs in isotropic 3-space.
Monatsh. Math., 203(1):223–246, 2024.
doi:10.1007/s00605-023-01916-0.
440
Christian Müller and Amir Vaxman.
Discrete curvature and torsion from cross-ratios.
Ann. Mat. Pura Appl. (4), 200(5):1935–1960, 2021.
doi:10.1007/s10231-021-01065-x.
441
Jackie Ma and Philipp Petersen.
Linear independence of compactly supported separable shearlet systems.
Journal of Mathematical Analysis and Applications, 428:238–257, 2015.
arXiv:1404.1690, doi:10.1016/j.jmaa.2015.03.001.
442
Jan Maas and Daniel Matthes.
Long-Time Behavior of a Finite Volume Discretization for a Fourth Order Diffusion Equation.
Nonlinearity, Volume 29, Number 7, June 2016.
URL: http://iopscience.iop.org/article/10.1088/0951-7715/29/7/1992/meta.
443
Tomas Sauer Mariantonia Cotronei, Caroline Moosmüller and Nada Sissouno.
Level-Dependent Interpolatory Hermite Subdivision Schemes and Wavelets.
Constructive Approximation, July 2018.
doi:10.1007/s00365-018-9444-4.
444
Daniel Matthes and Horst Osberger.
Convergence of a Variational Lagrangian Scheme for a Nonlinear Drift Diffusion Equation.
ESAIM: Mathematical Modelling and Numerical Analysis, 48(03):697–726, 2014. Cambridge Univ Press.
arXiv:1301.0747.
445
Daniel Matthes and Horst Osberger.
A convergent Lagrangian discretization for a nonlinear fourth order equation.
Found. Comput. Math., 2015. online first.
arXiv:1410.1728.
446
Daniel Matthes and Benjamin Söllner.
Convergent Lagrangian Discretization for Drift-Diffusion with Nonlocal Aggregation.
Innovative Algorithms and Analysis pp 313-351, March 2017.
doi:10.1007/978-3-319-49262-9_12.
447
Daniel Matthes and Benjamin Söllner.
Discretization of Flux-Limited Gradient Flows: Γ-convergence and numerical schemes.
preprint, 2019.
arXiv:1910.09843.
448
Tim Meinhardt, Michael Moeller, Caner Hazirbas, and Daniel Cremers.
Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems.
In IEEE International Conference on Computer Vision (ICCV), 1781–1790. 2017.
URL: http://openaccess.thecvf.com/content_ICCV_2017/papers/Meinhardt_Learning_Proximal_Operators_ICCV_2017_paper.pdf.
449
J-F Mennemann, D Matthes, R-M Weishäupl, and T Langen.
Optimal control of Bose-Einstein condensates in three dimensions.
New Journal of Physics, 17(11):113027, November 2015.
URL: http://stacks.iop.org/1367-2630/17/i=11/a=113027.
450
Hiroyuki Miyata and Arnau Padrol.
Enumeration of neighborly polytopes and oriented matroids.
Experimental Math., 24:489–505, 2015.
arXiv:1408.0688, doi:10.1080/10586458.2015.1015084.
451
Aaron Montag and Jürgen Richter-Gebert.
CindyGL: Authoring GPU-Based Interactive Mathematical Content.
ICMS 2016: Mathematical Software – ICMS 2016 pp 359-365, July 2016.
doi:10.1007/978-3-319-42432-3_44.
452
Aaron Montag and Jürgen Richter-Gebert.
Bringing Together Dynamic Geometry Software and the Graphics Processing Unit.
preprint, August 2018.
arXiv:1808.04579.
453
Christian Müller.
On Discrete Constant Mean Curvature Surfaces.
Discrete Comput. Geom., 51(3):516–538, 2014.
doi:10.1007/s00454-014-9577-6.
454
Christian Müller.
Semi-Discrete Constant Mean Curvature Surfaces.
Math. Z., 279:459–478, 2015.
doi:10.1007/s00209-014-1377-4.
455
Christian Müller.
Semi-discrete constant mean curvature surfaces.
Mathematische Zeitschrift, 279(1-2):459–478, 2015.
URL: http://www.geometrie.tuwien.ac.at/geom/ig/publications/2015/sdcmc2015/sdcmc.pdf, doi:10.1007/s00209-014-1377-4.
456
Christian Müller.
Planar discrete isothermic nets of conical type.
Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 57(2):459–482, June 2016.
doi:10.1007/s13366-015-0256-4.
457
E. Nava-Yazdani and K. Polthier.
De Casteljauʼs algorithm on manifolds.
Computer Aided Geometric Design, 30(7):722 – 732, 2013.
URL: http://www.sciencedirect.com/science/article/pii/S0167839613000551, doi:10.1016/j.cagd.2013.06.002.
458
Matteo Negri, Stefano Almi, and Sandro Belz.
Convergence of discrete and continuous unilateral flows for Ambrosio-Tortorelli energies and application to mechanics.
ESAIM: Mathematical Modelling and Numerical Analysis, September 2018.
doi:10.1051/m2an/2018057.
459
Matthias Nieser, Jonathan Palacios, Konrad Polthier, and Eugene Zhang.
Hexagonal Global Parameterization of Arbitrary Surfaces.
IEEE Transactions on Visualization and Computer Graphics, 18(6):865–878, 2012.
doi:10.1109/TVCG.2011.118.
460
Benjamin Nill and Arnau Padrol.
The degree of point configurations: Ehrhart theory, Tverberg points and almost neighborly polytopes.
European Journal of Combinatorics (special issue in honour of Michel Las Vergnas), 50:159–179, 2015.
arXiv:1209.5712.
461
Daniel Matthes Oliver Junge and Horst Osberger.
A Fully Discrete Variational Scheme for Solving Nonlinear Fokker-Planck Equations in Multiple Space Dimensions.
SIAM Journal on Numerical Analysis, 55(1):419–443, 2017.
arXiv:1509.07721, doi:10.1137/16M1056560.
462
H. Osberger.
Fully variational Lagrangian discretizations for second and fourth order evolution equations.
Dissertation, Technische Universität München, September 2015.
URL: https://mediatum.ub.tum.de/1271651, dgd:182.
463
Horst Osberger.
Long-Time Behaviour of a Fully Discrete Lagrangian Scheme for a Family of Fourth Order.
Submitted, 2015.
arXiv:1501.04800.
464
Horst Osberger and Daniel Matthes.
Convergence of a Fully Discrete Variational Scheme for a Thin Film Equation.
Radon Series on Computational and Applied Mathematics, 2015. accepted.
arXiv:1509.01513.
465
M. R. Oswald, J. Stühmer, and D. Cremers.
Generalized Connectivity Constraints for Spatio-temporal 3D Reconstruction.
In European Conference on Computer Vision (ECCV), 32–46. 2014.
doi:10.1007/978-3-319-10593-2_3.
466
Marcel Padilla.
The solar corona: modeled, discretized, visualized.
Dissertation, TU Berlin, September 2023. Doctoral thesis.
doi:10.14279/depositonce-18889.
467
Marcel Padilla, Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder.
On Bubble Rings and Ink Chandeliers.
ACM Trans. Graph. 38, 4, Article 129, July 2019.
doi:10.1145/3306346.3322962.
468
Marcel Padilla, Oliver Gross, Felix Knöppel, Ulrich Pinkall, and Peter Schröder.
Filament based plasma.
ACM Transactions on Graphics, July 2022.
doi:10.1145/3528223.3530102.
469
Arnau Padrol.
Many neighborly polytopes and oriented matroids.
Discrete Comput. Geom., 50(4):865–902, December 2013.
arXiv:1202.2810, doi:10.1007/s00454-013-9544-7.
470
Arnau Padrol and Julian Pfeifle.
Polygons as slices of higher-dimensional polytopes.
Preprint, April 2014.
arXiv:1404.2443.
471
Arnau Padrol and Louis Theran.
Delaunay triangulations with disconnected realization spaces.
In Siu-Wing Cheng and Olivier Devillers, editors, 30th Annual Symposium on Computational Geometry, SOCG'14, Kyoto, Japan, June 08 - 11, 2014, 163 – 170. ACM, 2014.
doi:10.1145/2582112.2582119.
472
Arnau Padrol and Günter M Ziegler.
Six topics on inscribable polytopes.
In Advances in Discrete Differential Geometry, pages 407–419. Springer, 2016.
arXiv:1511.03458, doi:10.1007/978-3-662-50447-5_13.
473
Hao Pan, Yi-King Choi, Yang Liu, Wenchao Hu, Qiang Du, Konrad Polthier, Caiming Zhang, and Wenping Wang.
Robust Modeling of Constant Mean Curvature Surfaces.
ACM Trans. Graph., 31(4):85:1–85:11, July 2012.
doi:10.1145/2185520.2185581.
474
Tatiana Pavljukevich.
Spinor representation of Bryant surfaces with catenoidal and smooth ends.
Dissertation, TU Berlin, 2014.
475
D. Pellis, M. Kilian, F. Dellinger, J. Wallner, and H. Pottmann.
Visual Smoothness of polyhedral surfaces.
ACM Trans. Graphics, 2019.
URL: http://hdl.handle.net/10754/653104.
476
Davide Pellis, Martin Kilian, Hui Wang, Caigui Jiang, Christian Müller, and Helmut Pottmann.
Architectural freeform surfaces designed for cost-effective paneling mold re-use.
preprint, 2020.
URL: https://www.geometrie.tuwien.ac.at/geom/ig/publications/aagweingarten/aagweingarten.pdf.
477
Davide Pellis and Helmut Pottmann.
Aligning principal stress and curvature directions.
Advances in Architectural Geometry, pages 34–53, 2018.
478
Davide Pellis, Hui Wang, Florian Rist, Martin Kilian, Helmut Pottmann, and Christian Müller.
Principal Symmetric Meshes.
ACM Trans. Graphics, 2020. Proc. SIGGRAPH.
doi:10.1145/3386569.3392446.
479
Chi-Han Peng, Helmut Pottmann, and Peter Wonka.
Designing patterns using triangle-quad hybrid meshes.
ACM Trans. Graphics, 37(4):14, 2018. Proc. SIGGRAPH.
480
Philipp Petersen.
Shearlet approximation of functions with discontinuous derivatives.
preprint, August 2015.
arXiv:1508.00409.
481
Philipp Petersen and Mones Raslan.
Approximation properties of hybrid shearlet-wavelet frames for Sobolev spaces.
Advances in Computational Mathematics, 45(3):1581–1606, June 2019.
arXiv:1712.01047, doi:10.1007/s10444-019-09679-9.
482
Philipp Petersen and Felix Voigtlaender.
Optimal approximation of piecewise smooth functions using deep ReLU neural networks.
Neural Networks, 108:296–330, 2018.
arXiv:1709.05289, doi:10.1016/j.neunet.2018.08.019.
483
M. Petrera, A. Pfadler, and Yu. Suris.
On integrability of Hirota-Kimura type discretizations.
Regular and Chaotic Dynamics, 16(3):245–289, June 2011.
doi:10.1134/S1560354711030051.
484
M. Petrera and Y. B. Suris.
S. Kovalevskaya system, its generalization and discretization.
Frontiers of Mathematics in China, 2013, 8, No. 5, p. 1047-1065, August 2012.
arXiv:1208.3726, doi:10.1007/s11464-013-0305-y.
485
M. Petrera and Y. B. Suris.
Spherical geometry and integrable systems.
Geometriae Dedicata, August 2012.
arXiv:1208.3625, doi:10.1007/s10711-013-9843-4.
486
Matteo Petrera.
Mathematical Physics I: Dynamical Systems and Classical Mechanics. Lecture Notes.
Logos Verlag Berlin GmbH, 2013. ISBN 978-3-8325-3569-8.
URL: http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=3569&lng=deu&id=.
487
Matteo Petrera.
Mathematical Physics II: Classical Statistical Mechanics. Lecture Notes.
Logos Verlag Berlin GmbH, 2014. ISBN 978-3-8325-3719-7.
URL: http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=3719&lng=deu&id=.
488
Matteo Petrera.
Mathematical Physics III - Integrable Systems of Classical Mechanics. Lecture Notes.
Logos Verlag Berlin GmbH, 2015. ISBN 978-3-8325-3950-4.
URL: http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=3950&lng=deu&id=.
489
Matteo Petrera, Andreas Pfadler, and Yuri B Suris.
On the construction of elliptic solutions of integrable birational maps.
Experimental Mathematics, 26(3):324–341, 2017.
arXiv:1409.1741, doi:10.1080/10586458.2016.1166354.
490
Matteo Petrera and Yuri B Suris.
A construction of commuting systems of integrable symplectic birational maps.
Preprint, 2016.
arXiv:1607.07085.
491
Matteo Petrera and Yuri B Suris.
A construction of commuting systems of integrable symplectic birational maps. Lie-Poisson case.
Preprint, 2016.
arXiv:1612.04349.
492
Matteo Petrera and Yuri B Suris.
A construction of a large family of commuting pairs of integrable symplectic birational four-dimensional maps.
Proceedings of the Royal Society of London A: Mathematical, 2017.
arXiv:1606.08238, doi:10.1098/rspa.2016.0535.
493
Matteo Petrera and Yuri B Suris.
On the classification of multidimensionally consistent 3D maps.
Letters in Mathematical Physics, 107(11):2013–2027, 2017.
arXiv:1509.03129, doi:10.1007/s11005-017-0976-5.
494
Matteo Petrera and Yuri B Suris.
Variational symmetries and pluri-Lagrangian systems in classical mechanics.
Journal of Nonlinear Mathematical Physics, 24(sup1):121–145, 2017.
arXiv:1710.01526, doi:10.1080/14029251.2017.1418058.
495
Matteo Petrera and Yuri B. Suris.
New results on integrability of the Kahan-Hirota-Kimura discretizations.
In Nonlinear systems and their remarkable mathematical structures. Vol. 1, pages 94–121. CRC Press, Boca Raton, FL, 2019.
URL: https://www.crcpress.com/Nonlinear-Systems-and-Their-Remarkable-Mathematical-Structures-Volume-I/Euler/p/book/9781138601000.
496
Matteo Petrera and Mats Vermeeren.
Variational symmetries and pluri-Lagrangian structures for integrable hierarchies of PDEs.
preprint, 2019.
arXiv:1906.04535.
497
Matteo Petrera and René Zander.
New classes of quadratic vector fields admitting integral-preserving Kahan–Hirota–Kimura discretizations.
Journal of Physics A: Mathematical and Theoretical, 50(20):205203, 2017.
arXiv:1610.03664, doi:10.1088/1751-8121/aa6a0f.
498
U. Pinkall and K. Polthier.
Computing discrete minimal surfaces and their conjugates.
Experimental Mathematics, 2(1):15–36, 1993.
URL: http://www.cs.jhu.edu/~misha/Fall09/Pinkall93.pdf.
499
Ulrich Pinkall and Oliver Gross.
Differential Geometry, From Elastic Curves to Willmore Surfaces.
Birkhäuser Cham, 2024. ISBN 978-3-031-39838-4.
doi:10.1007/978-3-031-39838-4.
500
Ulrich Pinkall and Boris Springborn.
A discrete version of Liouville's theorem on conformal maps.
Geom Dedicata, 214:389–398, April 2021.
arXiv:1911.00966, doi:10.1007/s10711-021-00621-2.
501
Ulrich Pinkall and Jonas Tervooren.
A Weierstrass representation for 2D elasticity.
preprint, June 2017.
arXiv:1706.06387.
502
Simon Plazotta.
A BDF2-approach for the non-linear Fokker-Planck equation.
Discrete Contin. Dyn. Syst., 39(5):2893–2913, May 2019.
arXiv:1801.09603, doi:10.3934/dcds.2019120.
503
Simon Plazotta and Jonathan Zinsl.
High-frequency limit of non-autonomous gradient flows of functionals with time-periodic forcing.
Journal of Differential Equations, Vol. 261, Issue 12, 15 December 2016, Pages 6806-6855, December 2016.
doi:10.1016/j.jde.2016.09.003.
504
K. Poelke and K. Polthier.
Domain Coloring of Complex Functions: An Implementation-Oriented Introduction.
IEEE Computer Graphics and Applications, 32(5):90–97, 2012.
doi:10.1109/MCG.2012.100.
505
Konstantin Poelke and Konrad Polthier.
Boundary-aware Hodge decompositions for piecewise constant vector fields.
Computer-Aided Design, 78:126 – 136, 2016.
doi:10.1016/j.cad.2016.05.004.
506
Konstantin Poelke and Konrad Polthier.
Discrete Topology-Revealing Vector Fields on Simplicial Surfaces with Boundary.
In Proc. of TopoInVis 2017. 2017.
URL: https://www.semanticscholar.org/paper/Discrete-Topology-Revealing-Vector-Fields-on-with-Poelke-Polthier/e21049641234976a56bbb668287b382412ccdfe1.
507
Konrad Polthier and Faniry Razafindrazaka.
Discrete Geometry for Reliable Surface Quad-Remeshing.
In Robert S. Anderssen, Philip Broadbridge, Yasuhide Fukumoto, Kenji Kajiwara, Tsuyoshi Takagi, Evgeny Verbitskiy, and Masato Wakayama, editors, Applications + Practical Conceptualization + Mathematics = fruitful Innovation, volume 11 of Mathematics for Industry, pages 261–275. Springer Japan, 2016.
doi:10.1007/978-4-431-55342-7_22.
508
Helmut Pottmann, Michael Eigensatz, Amir Vaxman, and Johannes Wallner.
Architectural Geometry.
Computers and Graphics, 47:145–164, 2015.
URL: http://www.geometrie.tugraz.at/wallner/survey.pdf, doi:10.1016/j.cag.2014.11.002.
509
Helmut Pottmann, Caigui Jiang, Mathias Höbinger, Jun Wang, Philippe Bompas, and Johannes Wallner.
Cell packing structures.
Computer-Aided Design, 2014. to appear. Special issue on Material Ecology.
doi:10.1016/j.cad.2014.02.009.
510
Helmut Pottmann and Johannes Wallner.
Geometry and freeform architecture.
In Wolfgang König, editor, Mathematics and Society, pages 131–151. EMS, 2016.
doi:10.4171/164.
511
Jürgen Richter-Gebert Qingchun Ren and Bernd Sturmfels.
Cayley-Bacharach Formulas.
The American Mathematical Monthly, 122(9):845–854, 2015.
arXiv:1405.6438.
512
A. Garroni R. Alicandro, L. De Luca and M. Ponsiglione.
Metastability and dynamics of discrete topological singularities in two dimensions: a Gamma-convergence approach.
Archive for Rational Mechanics and Analysis, 214(1):269–330, 2014.
513
Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung.
Discrete Geodesic Nets for Modeling Developable Surfaces.
ACM Trans. Graph., 37(2):16:1–16:17, July 2018.
doi:10.1145/3180494.
514
Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung.
The Shape Space of Discrete Orthogonal Geodesic Nets.
ACM Trans. Graph., Vol. 37, No. 6, Article 228, November 2018.
URL: http://igl.ethz.ch/projects/dog-space/Shape-Space-Of-DOGS-SA-2018-Rabinovich.pdf, doi:10.1145/3272127.3275088.
515
B. Rahmani, S. Jelbart, V. Kirk, and J. Sneyd.
Understanding broad-spike oscillations in a model of intracellular calcium dynamics.
preprint, January 2024.
arXiv:2401.16839.
516
Faniry Razafindrazaka and Konrad Polthier.
Regular Map Smoothing.
IMAGEN-A, March 2013.
URL: http://munkres.us.es/Volume3/Volumen3/N_5_files/5.4.pdf.
517
Faniry Razafindrazaka and Konrad Polthier.
The 6-ring.
In George W. Hart and Reza Sarhangi, editors, Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture, 279–286. Phoenix, Arizona, 2013. Tessellations Publishing.
URL: http://archive.bridgesmathart.org/2013/bridges2013-279.html.
518
Faniry Razafindrazaka and Konrad Polthier.
Regular Surfaces and Regular Maps.
In George Hart Gary Greenfield and Reza Sarhangi, editors, Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture, 225–234. Phoenix, Arizona, 2014. Tessellations Publishing.
URL: http://archive.bridgesmathart.org/2014/bridges2014-225.html.
519
Faniry Razafindrazaka and Konrad Polthier.
Realization of Regular Maps Large Genus.
In Valerio Pascucci Janine Bennet, Fabien Vivodtzev, editor, Topological and Statistical Methods for Complex Data, pages 239–252. Springer Berlin Heidelberg, 2015.
URL: http://page.mi.fu-berlin.de/faniry/files/faniryTSCD2015.pdf, doi:10.1007/978-3-662-44900-4_14.
520
Faniry H. Razafindrazaka, Ulrich Reitebuch, and Konrad Polthier.
Perfect Matching Quad Layouts for Manifold Meshes.
Computer Graphics Forum (proceedings of EUROGRAPHICS Symposium on Geometry Processing), 2015.
URL: http://www.mi.fu-berlin.de/en/math/groups/ag-geom/publications/db/2015_RRP_PerfectMatchingQuadLayoutsForManifoldMeshes_New.pdf.
521
R. Reisenhofer, S. Bosse, G. Kutyniok, and T. Wiegand.
A Haar Wavelet-Based Perceptual Similarity Index for Image Quality Assessment.
Signal Proc. Image Comm., 61:33–43, February 2018.
arXiv:1607.06140, doi:10.1016/j.image.2017.11.001.
522
Ulrich Reitebuch, Eric Zimmermann, and Konrad Polthier.
Two-Layer Woven Surfaces with Planar Faces.
In Proceedings of Bridges 2018: Mathematics, Art, Music, Architecture, Education, Culture, 147–154. Phoenix, Arizona, 2018. Tessellations Publishing.
URL: http://archive.bridgesmathart.org/2018/bridges2018-147.pdf.
523
J. Richter-Gebert.
Perspectives on Projective Geometry: A Guided Tour Through Real and Complex Geometry.
Springer, 2011.
524
J. Richter-Gebert and U. Kortenkamp.
Complexity issues in dynamic geometry.
In M. Rojas and F. Cucker, editors, Foundations of Computational Mathematics: Proceedings of the Smalefest 2000, Hong Kong, July 13-17, 2000, 355–404. Singapore, 2002. World Scientific.
525
J. Richter-Gebert and U. Kortenkamp.
The power of scripting: DGS meets programming.
Acta didactica Napocensia, 3(2):67–78, 2010.
526
J. Richter-Gebert and U. Kortenkamp.
The Cinderella.2 Manual: Working with The Interactive Geometry Software.
Springer, 2012.
URL: https://www.springer.com/de/book/9783540349242.
527
Jürgen Richter-Gebert.
Touch und Tablet: Stationen einer Designstudie.
Heintz, G., Pinkernell, G., Schacht, F. (Hrsg.): Digitale Werkzeuge für den Mathematikunterricht. Festschrift für Hans-Jürgen Elschenbroich, 2015.
URL: http://science-to-touch.com/articles.
528
Matthias Ruf.
Motion of discrete interfaces in low-contrast random environments.
ESAIM: COCV, Volume 24, Number 3, July–September 2018, October 2017.
doi:10.1051/cocv/2017067.
529
Thilo Rörig, Stefan Sechelmann, Agata Kycia, and Moritz Fleischmann.
Surface panelization using periodic conformal maps.
In Philippe Block, Jan Knippers, Niloy Mitra, and Wenping Wang, editors, Advances in Architectural Geometry 2014. Springer, September 2014. Best Paper Award.
530
Thilo Rörig and Gudrun Szewieczek.
The Ribaucour families of discrete R-congruences.
preprint, April 2020.
arXiv:2004.04447.
531
Angkana Rüland, Christian Zillinger, and Barbara Zwicknagl.
Higher Sobolev Regularity of Convex Integration Solutions in Elasticity: The Dirichlet Problem with Affine Data in int ($K^lc$).
SIAM Journal on Mathematical Analysis, 50(4):3791–3841, 2018.
doi:10.1137/17M1149687.
532
Angkana Rüland, Christian Zillinger, and Barbara Zwicknagl.
Higher Sobolev Regularity of Convex Integration Solutions in Elasticity: The Planar Geometrically Linearized Hexagonal-to-Rhombic Phase Transformation.
Journal of Elasticity, January 2019.
doi:10.1007/s10659-018-09719-3.
533
S. Weissmann, U. Pinkall and P. Schröder.
Smoke rings from smoke.
ACM Transactions on Graphics, 33, 2014.
534
Andrew O. Sageman-Furnas, Albert Chern, Mirela Ben-Chen, and Amir Vaxman.
Chebyshev Nets from Commuting PolyVector Fields.
ACM Trans. Graphics, 38(6):172:1–172:16, 2019. Proc. SIGGRAPH Asia.
doi:10.1145/3355089.3356564.
535
Manuele Santoprete, Jürgen Scheurle, and Sebastian Walcher.
Motion in a Symmetric Potential on the Hyperbolic Plane.
Canadian J. of Mathematics, August 2013. 27 pages.
arXiv:1305.3788, doi:10.4153/CJM-2013-026-2.
536
Raman Sanyal and Christian Stump.
Lipschitz polytopes of posets and permutation statistics.
Preprint, 2017.
arXiv:1703.10586.
537
Felix Krahmer Sara Krause-Solberg, Olga Graf.
One-bit sigma-delta modulation on a closed loop.
november 2018. poster.
dgd:443.
538
Katharina Schaar.
Fundamental Properties of Phirotopes.
Dissertation, Technische Universität München, July 2017. Dissertation.
URL: http://mediatum.ub.tum.de/603815?show_id=1341483.
539
Jürgen Scheurle and Sebastian Walcher.
Minima of invariant functions: The inverse problem.
Acta Applicandae Mathematicae, 137(1):233-252, 2015. accepted for publication by Acta Applicandae Mathematicae.
doi:10.1007/s10440-014-9997-6.
540
Eike Schling, Martin Kilian, Hui Wang, Denis Schikore, and Helmut Pottmann.
Design and construction of curved support structures with repetitive parameters.
In Lars Hesselgren, Axel Kilian, Samar Malek, Karl-Gunnar Olsson, Olga Sorkine-Hornung, and Chris Williams, editors, Advances in Architectural Geometry, pages 140–165. Klein Publishing Ltd, 2018.
541
Patrick Schnell, Philipp Holl, and Nils Thuerey.
Half-Inverse Gradients for Physical Deep Learning.
International Conference on Learning Representations, March 2022.
URL: https://arxiv.org/abs/2203.10131.
542
Stefan Sechelmann.
Variational Methods for Discrete Surface Parameterization. Applications and Implementation.
Dissertation, TU Berlin, June 2016.
URL: http://dx.doi.org/10.14279/depositonce-5415.
543
Stefan Sechelmann, Thilo Rörig, and Alexander I. Bobenko.
Quasiisothermic Mesh Layout.
In Lars Hesselgren, Shrikant Sharma, Johannes Wallner, Niccolo Baldassini, Philippe Bompas, and Jacques Raynaud, editors, Advances in Architectural Geometry 2012, pages 243–258. Springer Vienna, 2013.
doi:10.1007/978-3-7091-1251-9_20.
544
Christoph Seidel, Thilo Rörig, and Stefan Sechelmann.
Planar quad layout on NURBS-surfaces from symmetric conjugate curves.
September 2014. Presented at Advances in Architectural Geometry 2014.
dgd:141.
545
Ling Shi, Jun Wang, and Helmut Pottmann.
Smooth surfaces from rational bilinear patches.
Comput. Aided Geom. Design, 31(1):1–12, 2014.
doi:10.1016/j.cagd.2013.11.001.
546
Hannah Sjöberg and Günter M. Ziegler.
Semi-algebraic sets of $f$-vectors.
Preprint, November 2017.
arXiv:1711.01864.
547
Hannah Sjöberg and Günter M. Ziegler.
Characterizing face and flag vector pairs for polytopes.
Preprint, March 2018.
arXiv:1803.04801.
548
"Martin Skrodzki and Eric Zimmermann".
"A Large-Scale Evaluation Of Shape-Aware Neighborhood Weights And Neighborhood Sizes".
"Computer-Aided Design", 141:103107, 2021.
doi:10.1016/j.cad.2021.103107.
549
Martin Skrodzki.
Neighborhood Computation of Point Set Surfaces.
Master's thesis, Freie University Berlin, 2014.
dgd:202.
550
Martin Skrodzki.
Computational and Structural Aspects of Point Set Surfaces.
In BMS Days 2017. February 2017.
URL: https://ms-math-computer.science/posters/2017_bms_days.pdf.
551
Martin Skrodzki, Ulrike Bath, Kevin Guo, and Konrad Polthier.
A leap forward: a user study on gestural geometry exploration.
Journal of Mathematics and the Arts, 13(4):369–382, 2019.
doi:10.1080/17513472.2019.1667209.
552
Martin Skrodzki, Johanna Jansen, and Konrad Polthier.
Directional density measure to intrinsically estimate and counteract non-uniformity in point clouds.
Computer Aided Geometric Design, 64:73 – 89, 2018.
URL: http://www.sciencedirect.com/science/article/pii/S0167839618300256, doi:10.1016/j.cagd.2018.03.011.
553
Martin Skrodzki and Konrad Polthier.
Turing-Like Patterns Revisited: A Peek Into The Third Dimension.
In David Swart, Carlo H. Séquin and Kristóf Fenyvesi, editors, Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education, Culture, 415–418. Phoenix, Arizona, 2017. Tessellations Publishing.
URL: http://archive.bridgesmathart.org/2017/bridges2017-415.pdf.
554
Martin Skrodzki and Konrad Polthier.
Mondrian Revisited: A Peek Into The Third Dimension.
In Proceedings of Bridges 2018: Mathematics, Art, Music, Architecture, Education, Culture, 99–106. Phoenix, Arizona, 2018. Tessellations Publishing.
URL: http://archive.bridgesmathart.org/2018/bridges2018-99.pdf.
555
Martin Skrodzki and Ulrich Reitebuch.
Computational and Structural Aspects of Point Set Surfaces.
In SIAM Conference on Industrial and Applied Geometry. July 2017.
URL: https://ms-math-computer.science/posters/2017_siam_2.pdf.
556
Martin Skrodzki, Ulrich Reitebuch, and Konrad Polthier.
Chladni Figures Revisited: A Peek Into The Third Dimension.
In Eve Torrence, Bruce Torrence, Carlo Séquin, Douglas McKenna, Kristóf Fenyvesi, and Reza Sarhangi, editors, Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture, 481–484. Phoenix, Arizona, 2016. Tessellations Publishing.
URL: http://archive.bridgesmathart.org/2016/bridges2016-481.html.
557
Martin Skrodzki, Ulrich Reitebuch, and Konrad Polthier.
Asymptotical & Combinatorial Results on the Neighborhood Grid Data Structure.
In Einstein Workshop Discrete Geometry and Topology. March 2018.
URL: https://ms-math-computer.science/posters/2018_einstein_workshop.pdf.
558
Martin Skrodzki, Ulrich Reitebuch, and Konrad Polthier.
Computational and Structural Aspects of Point Set Surfaces.
In BMS Days 2018. February 2018.
URL: https://ms-math-computer.science/posters/2018_bms_days.pdf.
559
Martin Skrodzki, Ulrich Reitebuch, Konrad Polthier, and Shagnik Das.
Combinatorial and Asymptotical Results on the Neighborhood Grid Data Structure.
Eurographics Conference on Computer Graphics 2018, 2018.
URL: https://conference.imp.fu-berlin.de/eurocg18/download/paper_30.pdf.
560
Martin Skrodzki, Ulrich Reitebuch, and Eric Zimmermann.
Investigations of structures in the parameter space of three-dimensional Turing-like patterns.
HAL, July 2021.
URL: https://hal.science/hal-03270664/file/AUTOMATA2021-exploratory15.pdf.
561
Martin Skrodzki, Ulrich Reitebuch, and Eric Zimmermann.
Investigations of structures in the parameter space of three-dimensional Turing-like patterns.
In AUTOMATA2021. July 2021.
URL: https://ms-math-computer.science/posters/2020_visually_3D_Turing.pdf.
562
Martin Skrodzki and Eric Zimmermann.
A Large-Scale Evaluation Of Shape-Aware Neighborhood Weights And Neighborhood Sizes.
In Computer-Aided Design. December 2021.
URL: https://ms-math-computer.science/posters/2020_large_scale_evaluation.pdf.
563
Martin Skrodzki, Eric Zimmermann, and Konrad Polthier.
Variational Shape Approximation of Point Set Surfaces.
In IGS 2019 International Geometry Summit - Poster Proceedings, 54–57. 2019.
URL: https://drive.google.com/file/d/1eq3LDDOtpFH77fXsv37ugk7ORdf5k3e1/view.
564
Martin Skrodzki, Eric Zimmermann, and Konrad Polthier.
Variational shape approximation of point set surfaces.
Computer Aided Geometric Design, June 2020.
arXiv:2005.01003, doi:10.1016/j.cagd.2020.101875.
565
Martin Skrodzki, Eric Zimmermann, Ulrich Reitebuch, Sunil Yadav, and Konrad Polthier.
Processing of Point Set Surfaces.
In FU Berlin. September 2019.
URL: https://ms-math-computer.science/posters/2019_icerm.pdf.
566
Sergey V. Smirnov.
Integral preserving discretization of 2D Toda lattices.
Journal of Physics A: Mathematical and Theoretical, June 2023.
arXiv:2306.01632.
567
Gard Spreemann, Benjamin Dunn, Magnus Bakke Botnan, and Nils A. Baas.
Using persistent homology to reveal hidden covariates in systems governed by the kinetic Ising model.
Journal: Phys. Rev. E 97, 032313, March 2018.
doi:10.1103/PhysRevE.97.032313.
568
B. Springborn.
The hyperbolic geometry of Markov's theorem on Diophantine approximation and quadratic forms.
Enseign. Math., 63(3-4):333–373, 2017.
doi:10.4171/LEM/63-3/4-5.
569
B. Springborn, P. Schröder, and U. Pinkall.
Conformal equivalence of triangle meshes.
ACM Transactions on Graphics, 2008.
URL: http://www.multires.caltech.edu/pubs/ConfEquiv.pdf, doi:10.1145/1360612.1360676.
570
Boris Springborn.
A variational principle for weighted Delaunay triangulations and hyperideal polyhedra.
J. Differential Geom., 78(2):333–367, 2008.
URL: http://projecteuclid.org/euclid.jdg/1203000270, arXiv:math/0603097.
571
Boris Springborn.
Ideal Hyperbolic Polyhedra and Discrete Uniformization.
Discrete Comput. Geom., September 2019.
arXiv:1707.06848, doi:10.1007/s00454-019-00132-8.
572
Ananth Sridhar and Yuri B Suris.
Commutativity in Lagrangian and Hamiltonian mechanics.
J. Geom. Phys., 137:154–161, 2019.
arXiv:1801.06076, doi:10.1016/j.geomphys.2018.09.019.
573
Sandro Belz Stefano Almi.
Consistent Finite-Dimensional Approximation of Phase-Field Models of Fracture.
Ann. Mat. Pura Appl. (4), 198(4):1191–1225, 2019.
arXiv:1707.00578, doi:10.1007/s10231-018-0815-z.
574
Michael Strobel.
First Steps in Non-standard Projective Geometry.
Preprint, March 2018.
arXiv:1804.01850.
575
Michael Strobel.
Non-standard Analysis in Projective Geometry.
Dissertation, Technische Universität München, 2018.
URL: http://mediatum.ub.tum.de/1444961.
576
Michael Strobel.
Non-standard Analysis in Dynamic Geometry.
Journal of Symbolic Computation: Special Issue on Dynamic Geometry and Automated Reasoning, 2019.
arXiv:1801.10507, doi:10.1016/j.jsc.2018.12.006.
577
Xian Sun, Caigui Jiang, Johannes Wallner, and Helmut Pottmann.
Vertex normals and face curvatures of triangle meshes.
In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
578
Yu. B. Suris.
Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms.
J. Geometric Mechanics, 5(3):365–379, 2013.
arXiv:1212.3314, doi:10.3934/jgm.2013.5.365.
579
Yu. B. Suris.
Variational symmetries and pluri-Lagrangian systems.
In Th. Hagen, F. Rupp, and J. Scheurle, editors, Dynamical Systems, Number Theory and Applications: A Festschrift in Honor of Professor Armin Leutbecher's 80th Birthday. World Scientific, Singapore, 2015.
arXiv:1307.2639.
580
Yu. B. Suris and M. Vermeeren.
On the Lagrangian structure of integrable hierarchies.
In A.I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, Berlin-Heidelberg-New York, 2016.
arXiv:1510.03724.
581
Yuri B. Suris.
Billiards in confocal quadrics as a pluri-Lagrangian system.
Theoretical and Applied Mechanics, 43(2):221–228, 2016.
arXiv:1511.06123, doi:10.2298/TAM160304008S.
582
Chengcheng Tang, Pengbo Bo, Johannes Wallner, and Helmut Pottmann.
Interactive design of developable surfaces.
ACM Trans. Graphics, 2015. accepted.
583
Chengcheng Tang, Martin Kilian, Pengbo Bo, Johannes Wallner, and Helmut Pottmann.
Analysis and design of curved support structures.
In Sigrid Adriaenssens, Fabio Gramazio, Matthias Kohler, Achim Menges, and Mark Pauly, editors, Advances in Architectural Geometry 2016, pages 8–23. VDF Hochschulverlag, ETH Zürich, 2016.
584
Chengcheng Tang, Xiang Sun, Alexandra Gomes, Johannes Wallner, and Helmut Pottmann.
Form-finding with Polyhedral Meshes Made Simple.
ACM Trans. Graphics, 33(4):$#$70,1–9, 2014. Proc. SIGGRAPH.
doi:10.1145/2601097.2601213.
585
Peg Tyre.
Math Revolution.
Atlantic Daily, March 2016.
URL: https://www.theatlantic.com/magazine/archive/2016/03/the-math-revolution/426855.
586
Amir Vaxman, Christian Müller, and Ofir Weber.
Conformal mesh deformations with Möbius transformations.
ACM Trans. Graphics, 34:$#$ 55, 1–11, 2015. Proc. SIGGRAPH.
587
Amir Vaxman, Christian Müller, and Ofir Weber.
Conformal mesh deformations with Möbius transformations.
ACM Transactions on Graphics (TOG), 34(4):55, 2015.
URL: http://www.geometrie.tuwien.ac.at/geom/ig/publications/2015/conformal2015/conformal2015.pdf.
588
Amir Vaxman, Christian Müller, and Ofir Weber.
Regular meshes from polygonal patterns.
ACM Transactions on Graphics (TOG), 36(4):113, 2017.
doi:10.1145/3072959.3073593.
589
Amir Vaxman, Christian Müller, and Ofir Weber.
Canonical Möbius Subdivision.
ACM Trans. Graphics (Proc. SIGGRAPH ASIA), 2018.
URL: http://www.geometrie.tuwien.ac.at/geom/ig/publications/moebiussubdivision/moebiussubdivision.pdf.
590
M. Vermeeren.
A dynamical solution to the Basel problem.
preprint, 2015.
arXiv:1506.05288.
591
Mats Vermeeren.
Modified equations for variational integrators.
Num. Math., 137:1001–1037, 2017.
arXiv:1505.05411, doi:10.1007/s00211-017-0896-4.
592
Mats Vermeeren.
Numerical precession in variational discretizations of the Kepler problem.
In K. Ebrahimi-Fard and M. Barbero Linan, editors, Discrete Mechanics, Geometric Integration and Lie–Butcher Series, pages 333–348. Springer, Cham, 2018.
doi:10.1007/978-3-030-01397-4_10.
593
Mats Vermeeren.
A variational perspective on continuum limits of ABS and lattice GD equations.
SIGMA Symmetry Integrability Geom. Methods Appl., 15:044, 2019.
doi:10.3842/SIGMA.2019.044.
594
Mats Vermeeren.
Continuum limits of pluri-Lagrangian systems.
J. Integrable Syst., 4(1):1–34, February 2019.
arXiv:1706.06830, doi:10.1093/integr/xyy020.
595
Mats Vermeeren.
Modified equations for variational integrators applied to Lagrangians linear in velocities.
J. Geom. Mech., 11(1):1–22, March 2019.
arXiv:1709.09567, doi:10.3934/jgm.2019001.
596
Mats Vermeeren, Alessandro Bravetti, and Marcello Seri.
Contact variational integrators.
Journal of Physics A: Mathematical and Theoretical, 52(44):445206, 2019.
doi:10.1088/1751-8121/ab4767.
597
Dominic Volland.
A Discrete Hilbert Transform with Circle Packings.
Springer Spektrum, Weisbaden, 2017. ISBN 978-3-658-20456-3/pbk; 978-3-658-20457-0/ebook.
doi:10.1007/978-3-658-20457-0.
598
Martin von Gagern, Ulrich Kortenkamp, Jürgen Richter-Gebert, and Michael Strobel.
CindyJS.
In International Congress on Mathematical Software, 319–326. Springer, 2016.
doi:10.1007/978-3-319-42432-3_39.
599
Martin von Gagern and Jürgen Richter-Gebert.
CindyJS Plugins.
In International Congress on Mathematical Software, 327–334. Springer, 2016.
doi:10.1007/978-3-319-42432-3_40.
600
Christoph von Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt.
An Efficient Construction of Reduced Deformable Objects.
ACM Trans. Graph., 32(6):213:1–213:10, November 2013.
doi:10.1145/2508363.2508392.
601
Masato Wakayama, Robert S. Anderssen, Jin Cheng, Yasuhide Fukumoto, Robert McKibbin, Konrad Polthier, Tsuyoshi Takagi, and Kim-Chuan Toh, editors.
The Impact of Applications on Mathematics. Proceedings of the Forum of Mathematics for Industry 2013, Japan, 2014. Springer.
602
Hui Wang, Davide Pellis, Florian Rist, Helmut Pottmann, and Christian Müller.
Discrete Geodesic Parallel Coordinates.
ACM Trans. Graph., 38(6):173:1–173:13, November 2019.
doi:10.1145/3355089.3356541, dgd:607.
603
J. Wang, C. Jiang, P. Bompas, J. Wallner, and H. Pottmann.
Discrete Line Congruences for Shading and Lighting.
Computer Graphics Forum, 32(5):53–62, 2013. Proc. Symposium Geometry Processing.
doi:10.1111/cgf.12172.
604
G. Wechslberger.
Automatic Contour Deformation of Riemann-Hilbert Problems.
Dissertation, TU Munich, July 2015.
dgd:192.
605
G. Wechslberger and F. Bornemann.
Automatic deformation of Riemann-Hilbert problems with applications to the Painlevé II transcendents.
Constr. Approx., 39(1):151–171, 2014.
doi:10.1007/s00365-013-9199-x.
606
Georg Wechslberger and Folkmar Bornemann.
Automatic Deformation of Riemann–Hilbert Problems with Applications to the Painlevé II Transcendents.
Constructive Approximation, pages 1–21, June 2013.
arXiv:1206.2446, doi:10.1007/s00365-013-9199-x.
607
S. Weißmann and U. Pinkall.
Filament-based smoke with vortex shedding and variational reconnection.
ACM Transactions on Graphics, 2010.
608
Steffen Weißmann, Ulrich Pinkall, and Peter Schröder.
Smoke Rings from Smoke.
ACM Trans. Graph., 33(4):140:1–140:8, July 2014.
doi:10.1145/2601097.2601171.
609
Steffen Wiewel, Moritz Becher, and Nils Thuerey.
Latent-space physics: Towards learning the temporal evolution of fluid flow.
In Computer Graphics Forum, volume 38. Wiley Online Library, 2019.
doi:10.1111/cgf.13620.
610
N.S. Witte, F. Bornemann, and P.J. Forrester.
Joint distribution of the first and second eigenvalues at the soft edge of unitary ensembles.
Nonlinearity, Volume 26, Number 6, pp. 1799-1822, June 2013.
arXiv:1209.2190, doi:10.1088/0951-7715/26/6/1799.
611
You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey.
tempogan: A temporally coherent, volumetric gan for super-resolution fluid flow.
TOG, 37(4):95, 2018.
doi:10.1145/3197517.3201304.
612
Sunil Kumar Yadav, Ulrich Reitebuch, and Konrad Polthier.
Mesh Denoising Based on Normal Voting Tensor and Binary Optimization.
IEEE Transactions on Visualization and Computer Graphics, 24(8):2366–2379, August 2018.
doi:10.1109/TVCG.2017.2740384.
613
Sunil Kumar Yadav, Ulrich Reitebuch, Martin Skrodzki, Eric Zimmermann, and Konrad Polthier.
Constraint-based point set denoising using normal voting tensor and restricted quadratic error metrics.
Computers and Graphics, 74:234 – 243, 2018.
doi:10.1016/j.cag.2018.05.014.
614
Sunil Kumar Yadav, Martin Skrodzki, Eric Zimmermann, and Konrad Polthier.
"Surface Denoising Based on Normal Filtering in a Robust Statistics Framework".
"Proceedings of the Forum "Math-for-Industry" 2018", 35:103–132, 2021.
doi:10.1007/978-981-16-5576-0_6.
615
N. Yang, R. Wang, J. Stueckler, and D. Cremers.
Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry.
In European Conference on Computer Vision (ECCV), 817–833. 2018.
URL: https://eccv2018.org/openaccess/content_ECCV_2018/papers/Nan_Yang_Deep_Virtual_Stereo_ECCV_2018_paper.pdf.
616
Zi Ye, Olga Diamanti, Chengcheng Tang, Leonidas Guibas, and Tim Hoffmann.
A unified discrete framework for intrinsic and extrinsic Dirac operators for geometry processing.
Computer Graphics Forum, 37(5):93–106, August 2018.
doi:10.1111/cgf.13494.
617
Y. Au Yeung, G. Friesecke, and B. Schmidt.
Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff shape.
Calc. Var. PDE, 44:81–100, 2012.
doi:10.1007/s00526-011-0427-6.
618
Günter M Ziegler and Andreas Loos.
“What is Mathematics?” and why we should ask, where one should experience and learn that, and how to teach it.
In Proceedings of the 13th International Congress on Mathematical Education, 63–77. Springer, November 2017.
doi:10.1007/978-3-319-62597-3_5.
619
Günter M. Ziegler.
Additive structures on f-vector sets of polytopes.
Advances in Geometry, October 2018. Published online.
arXiv:1709.02021.
620
Günter M. Ziegler.
Die Superellipse.
In Mathematikkalender. Meyerthole Siems Kohlruss Gesellschaft für aktuarische Beratung, August 2019.
621
Günter M. Ziegler.
Mathematik als Sport. Ein Gespräch mit Lisa Sauermann.
Mitteilungen der Deutschen Mathematiker-Vereinigung, 28(3):162–170, 2020.
doi:10.1515/dmvm-2020-0050.
622
Günter M. Ziegler and Andreas Loos.
Teaching and Learning "What is Mathematics".
In Proc. International Congress of Mathematicians, Seoul 2014, volume IV, pages 1201–1215. Kyung Moon Books, Seoul, Korea, 2014.
dgd:68.
623
Günter M. Ziegler and Andreas Loos.
ZEIT-Akademie Mathematik.
Zeitverlag Gerd Bucerius, Hamburg, 2014. 4 DVDs mit Begleitheft (95 Seiten).
624
Eric Zimmermann, Sunil Yadav, Martin Skrodzki, Ulrich Reitebuch, and Konrad Polthier.
Analysis of NVT-based Point Set Denoising in Parameter Space.
In Computers & Graphics. June 2018.
URL: https://ms-math-computer.science/posters/2018_smi.pdf.
625
Jonathan Zinsl.
Geodesically Convex Energies and Confinement of Solutions for a Multi-Component System of Nonlocal Interaction Equations.
Submitted, 2014.
arXiv:1412.3266.
626
Jonathan Zinsl and Daniel Matthes.
Exponential Convergence to Equilibrium in a Coupled Gradient Flow System Modelling Chemotaxis.
Analysis & PDE, 8(2):425–466, 2015.
arXiv:1310.3977.
627
Jonathan Zinsl and Daniel Matthes.
Transport Distances and Geodesic Convexity for Systems of Degenerate Diffusion Equations.
Calculus of Variations and Partial Differential Equations, 2015. accepted.
arXiv:1409.6520.
628
Barbara Zwicknagl.
Microstructures in low-hysteresis shape memory alloys: scaling regimes and optimal needle shapes.
Arch. Ration. Mech. Anal., 213(2):355–421, 2014.
doi:10.1007/s00205-014-0736-y.