1
M. Cicalese A. Braides and N.K. Yip. Crystalline motion of interfaces between patterns. Journal of Statistical Physics October 2016, Volume 165, Issue 2, pp 274–319, October 2016. URL: https://link.springer.com/article/10.1007/s10955-016-1609-6.
2
S. Sechelmann A.I. Bobenko, U. Bücking. Discrete minimal surfaces of koebe type. In R. Verge-Rebelo D. Levi and P. Winternitz, editors, Modern Approaches to Discrete Curvature, pages 259–291. Springer, 2017.
3
K. Adiprasito and B. Benedetti. Metric geometry, convexity and collapsibility. preprint, 2013.
4
K. Adiprasito and B. Benedetti. Subdivisions, shellability, and collapsibility of products. Combinatorica, 2015. accepted, preprint at arxiv.
5
K. Adiprasito and B. Benedetti. Tight complexes in $3$-space admit perfect discrete morse functions. Eur. J. Comb., 45:71–84, 2015.
6
K. Adiprasito, B. Benedetti, and F. H. Lutz. Extremal examples of collapsible complexes and random discrete morse theory. preprint, 2014.
7
Karim Adiprasito, Philip Brinkmann, Arnau Padrol, Pavel Paták, Zuzana Patáková, and Raman Sanyal. Colorful simplicial depth, minkowski sums, and generalized gale transforms. International Mathematics Research Notices, 2017. doi:10.1093/imrn/rnx184.
8
Karim Adiprasito and Arnau Padrol. The universality theorem for neighborly polytopes. Combinatorica, February 2015. accepted, preprint at arxiv.
9
Karim Adiprasito and Arnau Padrol. A universality theorem for projectively unique polytopes and a conjecture of shephard. Israel J. Math., 211:239–255, 2016.
10
Karim Adiprasito, Arnau Padrol, and Louis Theran. Universality theorems for inscribed polytopes and delaunay triangulations. Discrete Comput. Geom., 54:412–431, 2015.
11
Karim Adiprasito and Raman Sanyal. Relative stanley-reisner theory and upper bound theorems for minkowski sums. Publ. Math. Inst. Hautes Études Sci., 124:99–163, 2016. doi:10.1007/s10240-016-0083-7.
12
Karim Adiprasito and Raman Sanyal. Whitney numbers of arrangements via measure concentration of intrinsic volumes. Preprint, 2016.
13
Karim Alexander Adiprasito and Bruno Benedetti. The hirsch conjecture holds for normal flag complexes. preprint, revised April 2013, March 2013.
14
Niklas C Affolter. Miquel dynamics, clifford lattices and the dimer model. Preprint at arxiv, August 2018.
15
Sergey I. Agafonov. Confocal conics and 4-webs of maximal rank. preprint, December 2019.
16
Arseniy Akopyan and Alexander Bobenko. Incircular nets and confocal conics. Transactions of the American Mathematical Society, 370(4):2825–2854, 2018. doi:10.1090/tran/7292.
17
Roberto Alicandro, Marco Cicalese, and Marcello Ponsiglione. Variational equivalence between ginzburg-landau, $xy$ spin systems and screw dislocation energies. Indiana Univ. Math. J., 60(1):171–208, 2011. URL: https://www.jstor.org/stable/24903417?seq=1\#metadata\_info\_tab\_contents.
18
Roberto Alicandro, Marco Cicalese, and Matthias Ruf. Domain formation in magnetic polymer composites: an approach via stochastic homogenization. Archive for Rational Mechanics and Analysis, 218(2):945–984, 2015. doi:10.1007/s00205-015-0873-y.
19
Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael Joswig. Tropicalizing the simplex algorithm. SIAM Journal on Discrete Mathematics, 29(2):751–795, 2015. doi:10.1137/130936464.
20
Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael Joswig. Log-barrier interior point methods are not strongly polynomial. SIAM J. Appl. Algebra Geom., 2(1):140–178, 2018. doi:10.1137/17M1142132.
21
Stefano Almi and Ilaria Lucardesi. Energy release rate and stress intensity factors in planar elasticity in presence of smooth cracks. Nonlinear Differ. Equ. Appl. (2018) 25: 43., August 2018. doi:10.1007/s00030-018-0536-4.
22
Amir Vaxman, Christian Müller, and Ofir Weber. Canonical möbius subdivision. ACM Trans. Graphics (Proc. SIGGRAPH ASIA), 2018. URL: http://www.geometrie.tuwien.ac.at/geom/ig/publications/moebiussubdivision/moebiussubdivision.pdf.
23
Héctor Andrade-Loarca, Gitta Kutyniok, Ozan Öktem, and Philipp Petersen. Extraction of digital wavefront sets using applied harmonic analysis and deep neural networks. preprint, January 2019.
24
Oliver Junge Andres Denner and Daniel Matthes. Computing coherent sets using the fokker-planck equation. Journal of Computational Dynamics, 2016, Vol. 3, Issue 2, 2016. doi:10.3934/jcd.2016008.
25
L. Arcidiacono, M. Engel, and C. Kuehn. Discretized fast-slow systems near pitchfork singularities. Journal of Difference Equations and Applications, Vol. 25, No. 7, pp. 1024-1051, August 2019. doi:10.1080/10236198.2019.1647185.
26
Benjamin Assarf, Ewgenij Gawrilow, Katrin Herr, Michael Joswig, Benjamin Lorenz, Andreas Paffenholz, and Thomas Rehn. Computing convex hulls and counting integer points with $\texttt polymake$. Math. Program. Comput., 9(1):1–38, 2017. doi:10.1007/s12532-016-0104-z.
27
Benjamin Assarf, Michael Joswig, and Julian Pfeifle. Webs of stars or how to triangulate free sums of point configurations. J. Combin. Theory Ser. A, 159:183–214, 2018. doi:10.1016/j.jcta.2018.05.007.
28
Dror Atariah. Parameterizations in the Configuration Space and Approximations of Related Surfaces. PhD thesis, Freie Universität Berlin, 2014. URL: http://www.diss.fu-berlin.de/diss/receive/FUDISS\_thesis\_000000096803.
29
Dror Atariah, Günter Rote, and Mathijs Wintraecken. Optimal triangulation of saddle surfaces. Beiträge zur Algebra und Geometrie, 59(1):113–126, 2018. doi:10.1007/s13366-017-0351-9.
30
Dominique Attali, Ulrich Bauer, Olivier Devillers, Marc Glisse, and André Lieutier. Homological reconstruction and simplification in $\mathbb r^3$. Computational Geometry, 48(8):606–621, September 2015. doi:10.1016/j.comgeo.2014.08.010.
31
Yuen Au Yeung. Crystalline Order, Surface Energy Densities and Wulff Shapes: Emergence from Atomistic Models. PhD thesis, Technische Universität München, München, 2013. URL: http://mediatum.ub.tum.de/node?id=1142127.
32
C. Wagner B. Violet and E. Eremenko. Math creation- a math-art competition. In David Swart, Carlo H. Séquin, and Kristóf Fenyvesi, editors, Proceedings of Bridges 2017, 355–358. Phoenix, Arizona, 2018. Tessellations Publishing. URL: https://archive.bridgesmathart.org/2017/bridges2017-355.pdf.
33
A. Bach, M. Cicalese, and M. Ruf. Random finite-difference discretizations of the ambrosio-tortorelli functional with optimal mesh size. preprint, February 2019.
34
Spencer Backman, Sebastian Manecke, and Raman Sanyal. Cone valuations, gram's relation, and flag-angles. Preprint, September 2018.
35
Rufat Badal, Marco Cicalese, Lucia De Luca, and Marcello Ponsiglione. Γ-convergence analysis of a generalized $xy$ model: fractional vortices and string defects. Communications in Mathematical Physics, 358(2):705–739, March 2018. doi:10.1007/s00220-017-3026-3.
36
Changyeob Baek, Andrew O. Sageman-Furnas, Mohammad K. Jawed, and Pedro M. Reis. Form finding in elastic gridshells. Proceedings of the National Academy of Sciences, 115(1):75–80, 2018. URL: https://www.pnas.org/content/115/1/75, doi:10.1073/pnas.1713841115.
37
Djordje Baralić, Pavle V. M. Blagojević, Roman Karasev, and Aleksandar Vučić. Index of grassmann manifolds and orthogonal shadows. Forum Mathematicum, 30(6):1539–1572, July 2018. doi:10.1007/s00454-018-0006-0.
38
Ulrich Bauer. Ripser: efficient computation of vietoris-rips persistence barcodes. preprint, August 2019.
39
Ulrich Bauer, Magnus B. Botnan, Steffen Oppermann, and Johan Steen. Cotorsion torsion triples and the representation theory of filtered hierarchical clustering. preprint, April 2019.
40
Ulrich Bauer and Herbert Edelsbrunner. The morse theory of cech and delaunay filtrations. In Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG'14. New York, NY, USA, 2014. ACM. doi:10.1145/2582112.2582167.
41
Ulrich Bauer and Herbert Edelsbrunner. The morse theory of čech and delaunay complexes. Transactions of the American Mathematical Society, 369(5):3741–3762, 2017. doi:10.1090/tran/6991.
42
Ulrich Bauer, Herbert Edelsbrunner, Grzegorz Jablonski, and Marian Mrozek. Persistence in sampled dynamical systems faster. Preprint, September 2017.
43
Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. Phat-persistent homology algorithms toolbox. J. Symbolic Comput., 78:76–90, 2017. URL: http://bitbucket.org/phat-code/, doi:10.1016/j.jsc.2016.03.008.
44
Ulrich Bauer, Claudia Landi, and Facundo Memoli. The reeb graph edit distance is universal. preprint, January 2018.
45
Ulrich Bauer and Michael Lesnick. Induced matchings and the algebraic stability of persistence barcodes. Journal of Computational Geometry, 6(2):162–191, 2015. URL: http://jocg.org/index.php/jocg/article/view/205.
46
Ulrich Bauer and Michael Lesnick. Persistence diagrams as diagrams: a categorification of the stability theorem. Preprint, November 2016.
47
Ulrich Bauer and Florian Pausinger. Persistent betti numbers of random čech complexes. preprint, January 2018.
48
Ulrich Bauer, Konrad Polthier, and Max Wardetzky. Uniform convergence of discrete curvatures from nets of curvature lines. Discrete and Computational Geometry, 43(4):798–823, 2010. URL: http://www.springerlink.com/content/84210067816n0m78/.
49
Ulrich Bauer and Abhishek Rathod. Hardness of approximation for morse matching. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, 2663–2674. SIAM, Philadelphia, PA, 2019. doi:10.1137/1.9781611975482.165.
50
Andrey K. Belyaev, Caroline Lasser, and Giulio Trigila. Landau–zener type surface hopping algorithms. The Journal of Chemical Physics, 140(22):–, June 2014. doi:10.1063/1.4882073.
51
B. Benedetti. Smoothing discrete morse theory. Annali Sc. Norm. Sup. Cl. Sci., 2015. accepted, preprint at arxiv.
52
B. Benedetti and F. H. Lutz. Random discrete morse theory and a new library of triangulations. Experimental Mathematics, 23(1):66–94, 2014.
53
Bruno Benedetti and Frank H. Lutz. Knots in collapsible and non-collapsible balls. Electronic Journal of Combinatorics, August 2013. Paper P31, 29 pages. URL: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i3p31.
54
Ayush Bhandari, Felix Krahmer, and Ramesh Raskar. On unlimited sampling and reconstruction. Preprint, 2019.
55
R.F. Bikbaev, A.I. Bobenko, and A.R. Its. Landau-lifshitz equation, uniaxial anisotropy case: theory of exact solutions. Theoretical and Mathematical Physics, 178(2):143–193, February 2014. doi:10.1007/s11232-014-0135-4.
56
Havard Bakke Bjerkevik and Magnus Bakke Botnan. Computational complexity of the interleaving distance. Proceedings of the 34th International Symposium on Computational Geometry (SoCG 2018), May 2018. doi:10.4230/LIPIcs.SoCG.2018.13.
57
Håvard Bakke Bjerkevik, Magnus Bakke Botnan, and Michael Kerber. Computing the interleaving distance is np-hard. preprint, 2018.
58
Pavle V. M. Blagojevic, Florian Frick, Albert Haase, and Günter M. Ziegler. Hyperplane mass partitions via relative equivariant obstruction theory. preprint, September 2015.
59
Pavle V. M. Blagojevic, Florian Frick, Benjamin Matschke, and Günter M. Ziegler. Tight and non-tight topological tverberg type theorems. Oberwolfach Reports, 11(3):2284–2287, 2014.
60
Pavle V. M. Blagojevic, Florian Frick, and Günter M. Ziegler. Tverberg plus constraints. Bulletin of the London Mathematical Society, 46:953–967, 2014. Extended Abstract: Oberwolfach Reports, 11(1):14-16, 2014. URL: http://blms.oxfordjournals.org/cgi/content/abstract/bdu049?ijkey=s0zAd5sXaMm0aIt, doi:10.1112/blms/bdu049.
61
Pavle V. M. Blagojevic, Wolfgang Lück, and Günter M. Ziegler. On highly regular embeddings. Preprint, 19 pages; Transactions Amer. Math. Soc. to appear, Extended Abstract: in Proc. "Combinatorial Methods in Topology and Algebra” (CoMeTa), Cortona, May 2013.
62
Pavle V. M. Blagojević, Aleksandra S. Dimitrijević Blagojević, and Günter M. Ziegler. The topological transversal tverberg theorem plus constraints. Preprint, "Discrete and Intuitive Geometry – László Fejes Tóth 100 Festschrift" (G. Ambrus, I. Bárány, K. J. Böröczky, G. Fejes Tóth, J. Pach, eds.), Bolyai Society Mathematical Studies series, to appear, march 2016.
63
Pavle V. M. Blagojević, Aleksandra S. Dimitrijević Blagojević, and Günter M. Ziegler. Polynomial partitioning for several sets of varieties. J. Fixed Point Theory Appl., 19:1653–1660, 2017.
64
Pavle V. M. Blagojević, Florian Frick, Albert Haase, and Günter M. Ziegler. Hyperplane mass partitions via relative equivariant obstruction theory. Documenta Mathematica, 21:735–771, 2016. URL: http://emis.ams.org/journals/DMJDMV/vol-21/20.pdf.
65
Pavle V. M. Blagojević, Albert Haase, and Günter M. Ziegler. Tverberg-type theorems for matroids: a counterexample and a proof. Preprint, 2017.
66
Pavle V. M. Blagojević, Albert Haase, and Günter M. Ziegler. Tverberg-type theorems for matroids: a counterexample and a proof. Combinatorica, February 2019. doi:10.1007/s00493-018-3846-6.
67
Pavle V. M. Blagojević, Nevena Palić, and Günter M. Ziegler. Cutting a part from many measures. Preprint, 15 pages, October 2017.
68
Pavle V. M. Blagojević, Günter Rote, Johanna Steinmeyer, and Günter M. Ziegler. Convex equipartitions of colored point sets. Discrete Comput. Geometry, December 2017. Published online.
69
Pavle V. M. Blagojević, Günter Rote, Johanna K. Steinmeyer, and Günter M. Ziegler. Convex equipartitions of colored point sets. Discrete & Computational Geometry, 61(2):355–363, March 2019. doi:10.1007/s00454-017-9959-7.
70
Pavle V. M. Blagojević and Pablo Soberón. Thieves can make sandwiches. preprint, September 2017. doi:10.1112/blms.12109.
71
Pavle V. M. Blagojević and Günter M. Ziegler. Beyond the borsuk-ulam theorem: the topological tverberg story. In Martin Loebl, Jaroslav Nešetřil, and Robin Thomas, editors, Journey Through Discrete Mathematics. A Tribute to Jiří Matoušek, pages 273–341. Springer, May 2017. doi:10.1007/978-3-319-44479-6\_11.
72
A. Bobenko, T. Hoffmann, and B. Springborn. Minimal surfaces from circle patterns: geometry from combinatorics. Ann. of Math., 164(1):231–264, 2006.
73
A. Bobenko and U. Pinkall. Discretization of surfaces and integrable systems. In Discrete integrable geometry and physics, volume 16 of Oxford Lecture Ser. Math. Appl., pages 3–58. Oxford Univ. Press, 1999. URL: http://page.math.tu-berlin.de/\textasciitilde bobenko/papers/1999\_Bob\_Pin.pdf.
74
A. I. Bobenko, N. Dimitrov, and S. Sechelmann. Discrete uniformization of finite branched covers over the riemann sphere via hyper-ideal circle patterns. preprint, 2015.
75
A. I. Bobenko and F. Günther. Discrete complex analysis on planar quad-graphs. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
76
A. I. Bobenko and T. Hoffmann. S-conical cmc surfaces. towards a unified theory of discrete surfaces with constant mean curvature. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
77
A. I. Bobenko, T. Hoffmann, B. König, and S. Sechelmann. S-conical minimal surfaces. towards a unified theory of discrete minimal surfaces. Preprint, 2015.
78
A. I. Bobenko and A. Its. The asymptotic behaviour of the discrete holomorphic map $z^a$ via the riemann-hilbert method. Duke Math.~J., 2015. accepted.
79
A. I. Bobenko, U. Pinkall, and B. Springborn. Discrete conformal maps and ideal hyperbolic polyhedra. Geom. Topol., 19:2155–2215, 2015. doi:10.2140/gt.2015.19.2155.
80
A. I. Bobenko and W. Schief. Discrete line complexes and integrable evolution of minors. Proc. Royal Soc. A, 471(2175):23 pp., 2015. doi:10.1098/rspa.2014.0819.
81
A. I. Bobenko, S. Sechelmann, and B. Springborn. Discrete conformal maps: boundary value problems, circle domains, fuchsian and schottky uniformization. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
82
A. I. Bobenko and Yu. B. Suris. Discrete pluriharmonic functions as solutions of linear pluri-lagrangian systems. Commun. Math. Phys., 336(1):199–215, 2015.
83
A.I. Bobenko and B. Springborn. Diskretisierung in geometrie und dynamik - elastische stäbe und rauchringe. Mitteilungen der DMV, 21(1):218–224, December 2013. URL: http://www.degruyter.com/view/j/dmvm.2013.21.issue-00004/issue-files/dmvm.2013.21.issue-00004.xml.
84
Alexander Bobenko and Mikhail Skopenkov. Discrete riemann surfaces: linear discretization and its convergence. J. reine und angew. Math., October 2014. doi:10.1515/crelle-2014-0065.
85
Alexander Bobenko and Yuri Suris. Integrable linear systems on quad-graphs. preprint, 2019.
86
Alexander I Bobenko and Ulrike Bücking. Convergence of discrete period matrices and discrete holomorphic integrals for ramified coverings of the riemann sphere. Preprint at arXiv, September 2018.
87
Alexander I Bobenko, Nikolay Dimitrov, and Stefan Sechelmann. Discrete uniformization of polyhedral surfaces with non-positive curvature and branched covers over the sphere via hyper-ideal circle patterns. Discrete & Computational Geometry, 57(2):431–469, 2017.
88
Alexander I Bobenko and Felix Günther. Discrete riemann surfaces based on quadrilateral cellular decompositions. Advances in Mathematics, 311:885–932, 2017. doi:10.1016/j.aim.2017.03.010.
89
Alexander I Bobenko, Sebastian Heller, and Nicholas Schmitt. Minimal n-noids in hyperbolic and anti-de sitter 3-space. Proceedings A of Royal Society, July 2019. doi:10.1098/rspa.2019.0173.
90
Alexander I Bobenko, Emanuel Huhnen-Venedey, and Thilo Rörig. Supercyclidic nets. International Mathematics Research Notices, 2017(2):323–371, February 2017. doi:10.1093/imrn/rnv328.
91
Alexander I Bobenko, Helmut Pottmann, and Thilo Rörig. Multi-nets. classification of discrete and smooth surfaces with characteristic properties on arbitrary parameter rectangles. Discrete Comput. Geom., May 2019. doi:10.1007/s00454-019-00101-1.
92
Alexander I Bobenko and Wolfgang K Schief. Circle complexes and the discrete ckp equation. International Mathematics Research Notices, 2017(5):1504–1561, 2016. doi:10.1093/imrn/rnw021.
93
Alexander I Bobenko, Wolfgang K Schief, Yuri B Suris, and Jan Techter. On a discretization of confocal quadrics. a geometric approach to general parametrizations. International Mathematics Research Notices, December 2018. doi:10.1093/imrn/rny279.
94
Alexander I Bobenko and Ananth Sridhar. Abelian higgs vortices and discrete conformal maps. Letters in Mathematical Physics, 108(2):249–260, 2018. doi:10.1007/s11005-017-1004-5.
95
Alexander I. Bobenko and Alexander Y. Fairley. Nets of lines with the combinatorics of the square grid and with touching inscribed conics. preprint, November 2019.
96
Alexander I. Bobenko and Felix Günther. On discrete integrable equations with convex variational principles. Letters in Mathematical Physics, 102(2):181–202, September 2012. doi:10.1007/s11005-012-0583-4.
97
Alexander I. Bobenko and Felix Günther. Discrete complex analysis – the medial graph approach. Actes des rencontres du CIRM 3 no. 1: Courbure discrète: théorie et applications, pages 159–169, 2013. URL: http://acirm.cedram.org/acirm-bin/fitem?id=ACIRM\_2013\_\_3\_1\_159\_0, doi:10.5802/acirm.65.
98
Alexander I. Bobenko, Udo Hertrich-Jeromin, and Inna Lukyanenko. Discrete constant mean curvature nets in space forms: steiner's formula and christoffel duality. Discrete and Computational Geometry, 52(4):612–629, 2014. doi:10.1007/s00454-014-9622-5.
99
Alexander I. Bobenko, Tim Hoffmann, and Thilo Rörig. Orthogonal ring patterns. preprint, November 2019.
100
Alexander I. Bobenko, Carl O. R. Lutz, Helmut Pottmann, and Jan Techter. Laguerre geometry in space forms and incircular nets. preprint, November 2019.
101
Alexander I. Bobenko and Pascal Romon. Discrete cmc surfaces in $\mathbb R^3$ and discrete minimal surfaces in $\mathbb S^3$: a discrete lawson correspondence. Journal of Integrable Systems, 2(1):1–18, May 2017. URL: https://academic.oup.com/integrablesystems/article/2/1/xyx010/4344752.
102
Alexander I. Bobenko, Wolfgang K. Schief, Yuri B. Suris, and Jan Techter. On a discretization of confocal quadrics. i. an integrable systems approach. Journal of Integrable Systems, 1(1):xyw005, 2016. doi:10.1093/integr/xyw005.
103
Alexander I. Bobenko, Wolfgang K. Schief, and Jan Techter. Checkerboard incircular nets: laguerre geometry and parametrisation. Geometriae Dedicata, April 2019. doi:10.1007/s10711-019-00449-x.
104
Alexander I. Bobenko and Boris A. Springborn. A discrete laplace-beltrami operator for simplicial surfaces. Discrete Comput. Geom., 38(4):740–756, 2007. doi:10.1007/s00454-007-9006-1.
105
B. Bodmann, A. Flinth, and G. Kutyniok. Compressed sensing for analog signals. preprint, March 2018.
106
B. G. Bodmann, P. G. Casazza, and G. Kutyniok. A quantitative notion of redundancy for finite frames. Appl. Comput. Harmon. Anal., 30:348–362, 2011.
107
B. G. Bodmann, G. Kutyniok, and X. Zhuang. Coarse quantization with the fast digital shearlet transform. In Wavelets and Sparsity XIV (San Diego, CA, 2011), SPIE Proc., volume 8138, 8138OZ–1 – 8138OZ–10. SPIE, Bellingham, WA, 2011. doi:10.1117/12.892720.
108
Bernhard G. Bodmann, Gitta Kutyniok, and Xiaosheng Zhuang. Gabor shearlets. Appl. Comput. Harmon. Anal., March 2013. submitted. URL: http://www.math.tu-berlin.de/fileadmin/i26\_fg-kutyniok/Kutyniok/Papers/GaborShearlets.pdf.
109
R. Boll. Two-dimensional variational systems on the root lattice $q(a_n)$. preprint, 2016.
110
R. Boll, M. Petrera, and Yu. B. Suris. Multi-time lagrangian 1-forms for families of bäcklund transformations. relativistic toda-type systems. J. Phys. A: Math. Theor., 46(27):275024, 26 pp., 2013. doi:10.1088/1751-8113/46/27/275204.
111
R. Boll, M. Petrera, and Yu. B. Suris. On integrability of discrete variational systems: octahedron relations. Internat. Math. Res. Notes, 2015:rnv140, 24 pp., 2015.
112
R. Boll, M. Petrera, and Yu. B.. Suris. On the variational interpretation of the discrete kp equation. In A.I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, Berlin-Heidelberg-New York, 2016.
113
Raphael Boll. On bianchi permutability of bäcklund transformations for asymmetric quad-equations. Journal of Nonlinear Mathematical Physics, 20(4):577–605, December 2013. doi:10.1080/14029251.2013.865829.
114
Raphael Boll, Matteo Petrera, and Yuri B. Suris. What is integrability of discrete variational systems? Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, February 2014. URL: http://rspa.royalsocietypublishing.org/content/470/2162/20130550.abstract, doi:10.1098/rspa.2013.0550.
115
Ciprian S. Borcea and Ileana Streinu. Kinematics of expansive planar periodic mechanisms. Advances in Robot Kinematics (ARK'14), July 2014. preprint.
116
Ciprian S. Borcea and Ileana Streinu. Liftings and stresses for planar periodic frameworks. in Proc. 30th Symposium on Computational Geometry (SoCG'14), June 2014. preprint.
117
Stefan Born, Ulrike Bücking, and Boris Springborn. Quasiconformal dilatation of projective transformations and discrete conformal maps. Discrete & Computational Geometry, 57(2):305–317, 2017.
118
F. Bornemann, A. Its, S. Olver, and G. Wechslberger. Numerical methods for the discrete map $z^a$. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
119
Folkmar Bornemann. A note on the expansion of the smallest eigenvalue distribution of the lue at the hard edge. The Annals of Applied Probability, 26(3):1942–1946, 2016. doi:10.1214/15-AAP1121.
120
Folkmar Bornemann and Michael La Croix. The singular values of the goe. Random Matrices: Theory Appl. 04, 1550009 (2015) (32 pages), June 2015. doi:10.1142/S2010326315500094.
121
Folkmar Bornemann and Peter J Forrester. Singular values and evenness symmetry in random matrix theory. In Forum Mathematicum, volume 28, 873–891. 2016. doi:10.1515/forum-2015-0055.
122
Folkmar Bornemann, Peter J. Forrester, and Anthony Mays. Finite size effects for spacing distributions in random matrix theory: circular ensembles and riemann zeros. Studies in Applied Mathematics, 138(4):401–437, 2017. doi:10.1111/sapm.12160.
123
Magnus Bakke Botnan and Michael Lesnick. Algebraic stability of zigzag persistence modules. Algebr. Geom. Topol., Volume 18, Number 6 (2018), 3133-3204, December 2018. URL: https://msp.org/scripts/coming.php?jpath=agt, doi:10.2140/agt.2018.18.3133.
124
P. Boufounos, G. Kutyniok, and H. Rauhut. Sparse recovery from combined fusion frame measurements. IEEE Trans. Inform. Theory, 57:3864–3876, 2011.
125
A. Braides and M. Cicalese. Interfaces, modulated phases and textures in lattice systems. Arch. Rat. Mech. Anal., 223, (2017), 977-1017, February 2017. URL: https://link.springer.com/article/10.1007/s00205-016-1050-7.
126
A. Braides, M. Cicalese, and M. Ruf. Continuum limit and stochastic homogenization of discrete ferromagnetic thin films. Analysis & PDE, (2018), vol. 11, no.2, 499-553., March 2018. URL: https://msp.org/apde/2018/11-2/p06.xhtml.
127
Philip Brinkmann. f-Vector Spaces of Polytopes, Spheres, and Eulerian Lattices. PhD thesis, FU Berlin, June 2016. vii+132 pages. URL: http://www.diss.fu-berlin.de/diss/receive/FUDISS\_thesis\_000000103149.
128
Philip Brinkmann and Günter M Ziegler. A flag vector of a 3-sphere that is not the flag vector of a 4-polytope. Mathematika, 63(1):260–271, 2017. doi:10.1112/S0025579316000267.
129
Philip Brinkmann and Günter M. Ziegler. Small f-vectors of 3-spheres and of 4-polytopes. Mathematics of Computation, 87(314):2955–2975, February 2018. doi:10.1090/mcom/3300.
130
Sarah Brodsky, Michael Joswig, Ralph Morrison, and Bernd Sturmfels. Moduli of tropical plane curves. Research in the Mathematical Sciences, 2(1):4, 2015. doi:10.1186/s40687-014-0018-1.
131
Tatiana A. Bubba, Gitta Kutyniok, Matti Lassas, Maximilian März, Wojciech Samek, Samuli Siltanen, and Vignesh Srinivasan. Learning the invisible: a hybrid deep learning-shearlet framework for limited angle computed tomography. Inverse Problems, 35(6):064002, June 2019. doi:10.1088/1361-6420/ab10ca.
132
Timo Burggraf, Michael Joswig, Marc E. Pfetsch, Manuel Radons, and Stefan Ulbrich. Semi-automatically optimized calibration of internal combustion engines. Preprint, 2018.
133
Imre Bárány, Pavle V. M. Blagojević, and Günter M. Ziegler. Tverberg’s theorem at 50: extensions and counterexamples. Notices of the AMS, 63(7):732–739, 2016. doi:10.1090/noti1415.
134
Helmut Bölcskei, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. Memory-optimal neural network approximation. In Wavelets and Sparsity XVII, volume 10394, 103940Q. International Society for Optics and Photonics, 2017. URL: https://www.math.tu-berlin.de/fileadmin/i26\_fg-kutyniok/Kutyniok/Papers/EfficientMemoryDNNs.pdf, doi:10.1117/12.2272490.
135
Helmut Bölcskei, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. Optimal approximation with sparsely connected deep neural networks. SIAM J. Math. Data Sci., 1(1):8–45, 2019. doi:10.1137/18M118709X.
136
U. Bücking. Approximation of conformal mappings using confomally equivalent triangular lattices. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
137
U. Bücking. Introduction to linear and nonlinear integrable theories in discrete complex analysis. In R. Verge-Rebelo D. Levi and P. Winternitz, editors, Symmetries and Integrability of Difference Equations: Lecture Notes of the Abecederian of SIDE 12, Montréal 2016, CRM Ser. Math. Phys., pages 153–193. Springer, 2017. doi:10.1007/978-3-319-56666-5\_4.
138
U. Bücking. On rigidity and convergence of circle patterns. Discrete Comput. Geom., 61(2):380–420, 2019. doi:10.1007/s00454-018-0022-0.
139
U. Bücking and D. Matthes. Constructing solutions to the björling problem for isothermic surfaces by structure preserving discretization. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
140
Ulrike Bücking. $c^\infty $-convergence of conformal mappings for conformally equivalent triangular lattices. Results in Mathematics, 73(2):84, June 2018. doi:10.1007/s00025-018-0845-2.
141
Ulrike Bücking. Conformally symmetric triangular lattices and discrete θ-conformal maps. preprint, August 2018.
142
R. Schubert C. Lasser and S. Troppmann. Non-hermitian propagation of hagedorn wavepackets. 33pp, 2015.
143
Jason Cantarella, Joseph H. G. Fu, Robert B. Kusner, and John M. Sullivan. Ropelength criticality. Geom. Topol., 18:1973–2043, 2014.
144
Jason Cantarella, Joseph H. G. Fu, Robert B. Kusner, John M. Sullivan, and Nancy C. Wrinkle. Criticality for the gehring link problem. Geom. Topol., 10:2055–2115, 2006.
145
Jason Cantarella, Robert B. Kusner, and John M. Sullivan. On the minimum ropelength of knots and links. Invent. Math., 150:257–286, 2002.
146
Wolfgang Carl. A laplace operator on semi-discrete surfaces. Foundations of Computational Mathematics, pages 1–36, 2015. doi:10.1007/s10208-015-9271-y.
147
Wolfgang Carl and Johannes Wallner. Variational laplacians for semidiscrete surfaces. submitted, 2014. URL: http://www.geometrie.tugraz.at/carl/gradients.pdf.
148
P. Casazza, A. Heinecke, F. Krahmer, and G. Kutyniok. Optimally sparse frames. IEEE Trans. Inform. Theory, 57(11):7279–7287, 2011. URL: http://num.math.uni-goettingen.de/\textasciitilde f.krahmer/CHKK11.pdf.
149
Cesar Ceballos, Arnau Padrol, and Camilo Sarmiento. Dyck path triangulations and extendability. Journal of Combinatorial Theory, Series A, 131(0):187–208, 2015. URL: http://www.sciencedirect.com/science/article/pii/S009731651400140X.
150
I. Chao, U. Pinkall, P. Sanan, and P. Schröder. A simple geometric model for elastic deformations. ACM Transactions on Graphics, 2010. URL: http://www.eecs.berkeley.edu/\textasciitilde sequin/CS285/PAPERS/Chao\_Elastic-Model.pdf.
151
Thomas Chappell, Tobias Friedl, and Raman Sanyal. Two double poset polytopes. SIAM Journal on Discrete Mathematics, 31(4):2378–2413, 2017. URL: http://epubs.siam.org/doi/10.1137/16M1091800.
152
Hao Chen and Arnau Padrol. Scribability problems for polytopes. Preprint, August 2015.
153
A. Chern, U. Pinkall, and P. Schröder. Close-to-conformal deformations of volumes. ACM Transactions on Graphics, 34(4):56, 2015.
154
Albert Chern. A reflectionless discrete perfectly matched layer. With minor revision accepted by Journal of Computational Physics., March 2019.
155
Albert Chern, Felix Knöppel, Franz Pedit, and Ulrich Pinkall. Commuting hamiltonian flows of curves in real space forms. Preprint, September 2018.
156
Albert Chern, Felix Knöppel, Franz Pedit, Ulrich Pinkall, and Peter Schröder. Finding conformal and isometric immersions of surfaces. Preprint, January 2019.
157
Albert Chern, Felix Knöppel, and Peter Pinkall, Ulrich and​ ​Schröder. Inside fluids: clebsch maps for visualization and processing. ACM Trans. Graph., 36(4):142:1–142:11, July 2017. doi:10.1145/3072959.3073591.
158
Albert Chern, Felix Knöppel, Peter Pinkall, Ulrich and​ ​Schröder, and Steffen Weißmann. Schrödinger's smoke. ACM Trans. Graph., 35:77:1–77:13, July 2016. doi:10.1145/2897824.2925868.
159
Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. Shape from metric. ACM Trans. Graph., 37(4):63:1–63:17, August 2018. URL: http://multires.caltech.edu/pubs/ShapeFromMetric.pdf, doi:10.1145/3197517.3201276.
160
M. Cicalese and G.P. Leonardi. Maximal fluctuations on periodic lattices: an approach via quantitative wulff inequalities. Commun. Math. Phys., September 2019. preprint. URL: http://cvgmt.sns.it/paper/4195/.
161
M. Cicalese and F. Solombrino. Frustrated ferromagnetic spin chains: a variational approach to chirality transitions. Journal of Nonlinear Science, 25(291-313), 2015.
162
Marco Cicalese, Antoine Gloria, and Matthias Ruf. From statistical polymer physics to nonlinear elasticity. preprint, September 2018.
163
Marco Cicalese, Matthias Ruf, and Francesco Solombrino. Chirality transitions in frustrated s2-valued spin systems. Math. Models Methods Appl. Sci., 26, (2016), no. 8, 1481-1529, July 2016. doi:10.1142/S0218202516500366.
164
Flore Nabet Clément Cancès, Daniel Matthes. A two-phase two-fluxes degenerate cahn-hilliard model as constrained wasserstein gradient flow. Arch. Ration. Mech. Anal., 233(2):837–866, 2019. doi:10.1007/s00205-019-01369-6.
165
Giulia Codenotti, Lukas Katthän, and Raman Sanyal. On $f$- and $h$-vectors of relative simplicial complexes. Preprint, 2017.
166
David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. Discrete and Computational Geometry, 37(1):103–120, January 2007. doi:10.1007/s00454-006-1276-5.
167
Leonardo Colombo, Fernando Jiménez, and David Martín de Diego. Variational integrators for underactuated mechanical control systems with symmetries. submitted, September 2012.
168
Sergio Conti, Johannes Diermeier, and Barbara Zwicknagl. Deformation concentration for martensitic microstructures in the limit of low volume fraction. Calc. Var. Partial Differential Equations, 56(1):Art. 16, 24, 2017. doi:10.1007/s00526-016-1097-1.
169
Sergio Conti and Barbara Zwicknagl. Low volume-fraction microstructures in martensites and crystal plasticity. Math. Models Methods Appl. Sci., 26(7):1319–1355, 2016. doi:10.1142/S0218202516500317.
170
C. Cotar, G. Friesecke, and C. Klüppelberg. Smoothing of transport plans with fixed marginals and rigorous semiclassical limit of the hohenberg-kohn functional. Archive for Rational Mechanics and Analysis, 228 (3):891–922, 2018. doi:10.1007/s00205-017-1208-y.
171
K. Crane, U. Pinkall, and P. Schröder. Spin transformations of discrete surfaces. ACM Transactions on Graphics, 2011. URL: http://www.cs.columbia.edu/\textasciitilde keenan/Projects/SpinTransformations/paper.pdf.
172
Keenan Crane, Ulrich Pinkall, and Peter Schröder. Robust fairing via conformal curvature flow. ACM Trans. Graph., 2013. URL: http://www.cs.columbia.edu/\textasciitilde keenan/Projects/ConformalWillmoreFlow/paper.pdf.
173
S. Day, O. Junge, and K. Mischaikow. A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems. SIAM J. Appl. Dyn. Syst., 3(2):117–160, 2004. doi:10.1137/030600210.
174
P. Degond, M.Engel, J.Liu, and R. Pego. A markov jump process modelling animal group size statistics. Communications in Mathematical Sciences, January 2019.
175
P. Deift, C. S. Güntürk, and F. Krahmer. An optimal family of exponentially accurate one-bit sigma-delta quantization schemes. Comm. Pure Appl. Math., 64(7):883–919, 2011. URL: http://num.math.uni-goettingen.de/\textasciitilde f.krahmer/DGK11.pdf.
176
Michael Dellnitz, Gary Froyland, and Oliver Junge. The algorithms behind gaio-set oriented numerical methods for dynamical systems. In Ergodic theory, analysis, and efficient simulation of dynamical systems, pages 145–174, 805–807. Springer, Berlin, 2001. doi:10.1007/978-3-642-56589-2.
177
Michael Dellnitz, Andreas Hohmann, Oliver Junge, and Martin Rumpf. Exploring invariant sets and invariant measures. Chaos, 7(2):221–228, 1997. doi:10.1063/1.166223.
178
Michael Dellnitz and Oliver Junge. On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal., 36(2):491–515, 1999. doi:10.1137/S0036142996313002.
179
Michael Dellnitz and Oliver Junge. Set oriented numerical methods for dynamical systems. In Handbook of dynamical systems, Vol. 2, pages 221–264. North-Holland, Amsterdam, 2002. doi:10.1016/S1874-575X(02)80026-1.
180
A. Delshams, M. Gonchenko, and S. Gonchenko. On dynamics and bifurcations of area-preserving maps with homoclinic tangencies. Submitted to Nonlinearity, July 2014.
181
A. Delshams, M. Gonchenko, and P. Gutiérrez. A methodology for obtaining asymptotic estimates for the exponentially small splitting of separatrices to whiskered tori with quadratic frequencies. To appear in Research Perspectives CRM Barcelona, July 2014.
182
Amadeu Delshams, Marina Gonchenko, and Sergey V. Gonchenko. On bifurcations of area-preserving and nonorientable maps with quadratic homoclinic tangencies. Regul. Chaotic Dyn., 19(6):702–717, 2014. doi:10.1134/S1560354714060082.
183
Amadeu Delshams, Marina Gonchenko, and Pere Gutiérrez. Continuation of the exponentially small transversality for the splitting of separatrices to a whiskered torus with silver ratio. Regul. Chaotic Dyn., 19(6):663–680, 2014. doi:10.1134/S1560354714060057.
184
Amadeu Delshams, Marina Gonchenko, and Pere Gutiérrez. Exponentially small lower bounds for the splitting of separatrices to whiskered tori with frequencies of constant type. International Journal of Bifurcation and Chaos, 24(08):1440011, 2014. doi:10.1142/S0218127414400112.
185
Amadeu Delshams, Marina Gonchenko, and Pere Gutiérrez. Exponentially small asymptotic estimates for the splitting of separatrices to whiskered tori with quadratic and cubic frequencies. Electron. Res. Announc. Math. Sci., 21:41–61, 2014. doi:10.3934/era.2014.21.41.
186
Elizabeth Denne, Yuanan Diao, and John M. Sullivan. Quadrisecants give new lower bounds for the ropelength of a knot. Geom. Topol., 10:1–26, 2006.
187
Elizabeth Denne and John M. Sullivan. The distortion of a knotted curve. Proc. Amer. Math. Soc., 137:1139–1148, 2009.
188
N. Dimitrov. Hyper-ideal circle patterns with cone singularities. Results in Mathematics, pages 1–45, 2015. doi:10.1007/s00025-015-0453-3.
189
Benedict Dingfelder and J.A.C. Weideman. An improved talbot method for numerical laplace transform inversion. Numerical Algorithms, 68(1):167–183, 2015. doi:10.1007/s11075-014-9895-z.
190
Thai Son Doan, Maximilian Engel, Jeroen S.W. Lamb, and Martin Rasmussen. Hopf bifurcation with additive noise. Nonlinearity 31 (2018), no. 10, 4567–4601, August 2018. doi:10.1088/1361-6544/aad208.
191
Joseph Doolittle, Jean-Philippe Labbé, Carsten Lange, Rainer Sinn, Jonathan Speer, and Günter M. Ziegler. Combinatorial inscribability obstructions for higher-dimensional polytopes. Preprint, October 2019.
192
Sebastian Eberhardt, Steffen Weissmann, Ulrich Pinkall, and Nils Thuerey. Hierarchical vorticity skeletons. Proceedings of the Symposium on Computer Animation (SCA '12), to appear:11, June 2017. URL: https://ge.in.tum.de/download/2017-sca-eberhardt.pdf, doi:10.1145/3099564.3099569.
193
Holger Eble, Michael Joswig, Lisa Lamberti, and Will Ludington. Cluster partitions and fitness landscapes of the drosophila fly microbiome. Preprint, 2018.
194
M-L Eckert, Wolfgang Heidrich, and Nils Thuerey. Coupled fluid density and motion from single views. In Computer Graphics Forum, volume 37, 47–58. Wiley Online Library, 2018. doi:10.1111/cgf.13511.
195
H. Edelsbrunner. The union of balls and its dual shape. Discrete and Computational Geometry, 13(1):415–440, December 1995. doi:10.1007/bf02574053.
196
Herbert Edelsbrunner. Surface reconstruction by wrapping finite sets in space. In Boris Aronov, Saugata Basu, János Pach, and Micha Sharir, editors, Discrete and Computational Geometry, volume 25 of Algorithms and Combinatorics, pages 379–404. Springer Berlin Heidelberg, 2003. doi:10.1007/978-3-642-55566-4\_17.
197
Herbert Edelsbrunner, Grzegorz Jablonski, and Marian Mrozek. The persistent homology of a self-map. Foundations of Computational Mathematics, pages 1–32, 2014. doi:10.1007/s10208-014-9223-y.
198
Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and simplification. Discrete & Computational Geometry, 28(4):511–533, November 2002. doi:10.1007/s00454-002-2885-2.
199
Herbert Edelsbrunner and Anton Nikitenko. Random inscribed polytopes have similar radius functions as poisson-delaunay mosaics. Ann. Appl. Probab., 28(5):3215–3238, 2018. doi:10.1214/18-AAP1389.
200
Herbert Edelsbrunner, Anton Nikitenko, and Matthias Reitzner. Expected sizes of poisson–delaunay mosaics and their discrete morse functions. Advances in Applied Probability, 49(3):745–767, 2017.
201
Herbert Edelsbrunner and Florian Pausinger. Approximation and convergence of the intrinsic volume. Advances in Mathematics, 2015. accepted.
202
Herbert Edelsbrunner and Katharina Ölsböck. Holes and dependences in an ordered complex. Computer Aided Geometric Design, August 2019. URL: http://pub.ist.ac.at/\textasciitilde edels/Papers/2018-J-06-HolesDependences.pdf.
203
M. Engel and H. Jardon-Kojakhmetov. Extended and symmetric loss of stability for canards in planar fast-slow maps. preprint, January 2020.
204
M. Engel and C. Kuehn. A random dynamical systems perspective on isochronicity for stochastic oscillations. preprint, November 2019.
205
M. Engel and C. Kuehn. Discretized fast-slow systems near transcritical singularities. Nonlinearity, Vol. 32, No. 7, 2365-2391, May 2019. doi:10.1088/1361-6544/ab15c1.
206
M. Engel, C. Kuehn, M. Petrera, and Y. Suris. Discretized fast-slow systems with canard points in two dimensions. preprint, July 2019.
207
M. Engel, J.S.W. Lamb, and M. Rasmussen. Bifurcation analysis of a stochastically driven limit cycle. Communications in Mathematical Physics 365(3), 2019, January 2019. doi:10.1007/s00220-019-03298-7.
208
M. Engel, J.S.W. Lamb, and M. Rasmussen. Conditioned lyapunov exponents for random dynamical systems. Transactions of the American Mathematical Society 372(9), 2019, May 2019. doi:10.1090/tran/7803.
209
Myfanwy E. Evans and Stephen T. Hyde. From three-dimensional weavings to swollen corneocytes. J.~R. Soc. Interface, 8:1274–1280, 2011. URL: http://rsif.royalsocietypublishing.org/content/8/62/1274.short, doi:10.1098/rsif.2010.0722.
210
Myfanwy E. Evans, Vanessa Robins, and Stephen Hyde. Periodic entanglement i: nets from hyperbolic reticulations. Acta Cryst., A69:241–261, 2013. URL: http://journals.iucr.org/a/issues/2013/03/00/eo5019/index.html, doi:10.1107/S0108767313001670.
211
Myfanwy E. Evans, Vanessa Robins, and Stephen Hyde. Periodic entanglement ii: weavings from hyperbolic line patterns. Acta Cryst., A69:262–275, 2013. URL: http://journals.iucr.org/a/issues/2013/03/00/eo5020/index.html, doi:10.1107/S0108767313001682.
212
Myfanwy E. Evans, Vanessa Robins, and Stephen Hyde. Ideal geometry of periodic entanglements. P. R. Soc. A, 471(2181):2015.0254, 2015. doi:10.1098/rspa.2015.0254.
213
Myfanwy E. Evans and Roland Roth. Shaping the skin: the interplay of mesoscale geometry and corneocyte swelling. Phys. Rev. Lett., 112(3):038102:1–5, 2014. URL: http://link.aps.org/doi/10.1103/PhysRevLett.112.038102.
214
Sebastián Ferraro, Fernando Jiménez, and David Martín de Diego. New developments on the geometric nonholonomic integrator. Nonlinearity, 28:871-900, 2015.
215
D. Ferus, K. Leschke, F. Pedit, and U. Pinkall. Quaternionic holomorphic geometry: plücker formula, dirac eigenvalue estimates and energy estimates of harmonic 2-tori. Inventiones Mathematicae, 146(3):507–593, 2001.
216
Moritz Firsching. Realizability and inscribability for some simplicial spheres and matroid polytopes. Preprint, August 2015.
217
Moritz Firsching. Optimization Methods in Discrete Geometry. PhD thesis, FU Berlin, January 2016. 85 pages. URL: http://www.diss.fu-berlin.de/diss/receive/FUDISS\_thesis\_000000101268.
218
Moritz Firsching. Realizability and inscribability for simplicial polytopes via nonlinear optimization. Mathematical Programming, 166(1-2):273–295, 2017. doi:10.1007/s10107-017-1120-0.
219
Moritz Firsching. The complete enumeration of $4$-polytopes and $3$-spheres with nine vertices. Preprint, March 2018.
220
Julian Fischer and Daniel Matthes. The waiting time phenomenon in spatially discretized porous medium and thin film equations. preprint at arXiv, 2019.
221
Michael Fisher, Boris Springborn, Peter Schröder, and Alexander I. Bobenko. An algorithm for the construction of intrinsic delaunay triangulations with applications to digital geometry processing. Computing, 81(2-3):199–213, 2007. doi:10.1007/s00607-007-0249-8.
222
Axel Flinth and Sandra Keiper. Recovery of binary sparse signals with biased measurement matrices. IEEE Transactions on Information Theory, 2019. doi:10.1109/TIT.2019.2929192.
223
Benedikt Fluhr. The mayer-vietoris pyramid sheaf-theoretically. May 2018. Poster Session: Bridging Statistics and Sheaves at IMA, Minneapolis. URL: http://bfluhr.com/bucket/poster-ima.pdf.
224
Simon Flöry, Yukie Nagai, Florin Isvoranu, Helmut Pottmann, and Johannes Wallner. Ruled free forms. In Lars Hesselgren, Shrikant Sharma, Johannes Wallner, Niccolo Baldassini, Philippe Bompas, and Jacques Raynaud, editors, Advances in Architectural Geometry 2012, pages 57–66. Springer, 2012. doi:10.1007/978-3-7091-1251-9\_4.
225
Marco Di Francesco, Massimo Fornasier, Jan-Christian Hütter, and Daniel Matthes. Asymptotic behavior of gradient flows driven by nonlocal power repulsion and attraction potentials in one dimension. accepted at SIAM-MA, January 2014.
226
Thomas Frerix, Matthias Nießner, and Daniel Cremers. Homogeneous linear inequality constraints for neural network activations. Preprint, 2019.
227
Florian Frick and Raman Sanyal. Minkowski complexes and convex threshold dimension. Journal of Combinatorial Theory, Series A, 151:202–206, 2017. URL: http://www.sciencedirect.com/science/article/pii/S0097316517300584.
228
Tobias Friedl, Cordian Riener, and Raman Sanyal. Reflection groups, reflection arrangements, and invariant real varieties. Proceedings of the American Mathematical Society, 2017. URL: http://www.ams.org/journals/proc/0000-000-00/S0002-9939-2017-13821-0/home.html, doi:10.1090/proc/13821.
229
G. Friesecke. Die schönheit der molekularen architektur von viren und ihre entschlüsselung durch beugungsmuster. Mitt. Dtsch. Math.-Ver., 24:208–213, 2016. URL: https://www.degruyter.com/view/j/dmvm.2016.24.issue-4/dmvm-2016-0078/dmvm-2016-0078.xml, doi:10.1515/dmvm-2016-0078.
230
Gero Friesecke, Daniel Matthes, and Bernhard Schmitzer. Barycenters for the hellinger–kantorovich distance over $\mathbb R^d$. preprint at arXiv, 2019.
231
R. D. James G. Friesecke and D. Jüstel. Twisted x-rays: incoming waveforms yielding discrete diffraction patterns for helical structures. 2015.
232
Wolfgang Gaim and Caroline Lasser. Corrections to wigner type phase space methods. Nonlinearity, 27(12):2951–2974, 2014. URL: http://stacks.iop.org/0951-7715/27/i=12/a=2951, doi:10.1088/0951-7715/27/12/2951.
233
Ewgenij Gawrilow and Michael Joswig. Polymake: a framework for analyzing convex polytopes. In Polytopes - combinatorics and computation (Oberwolfach, 1997), volume 29 of DMV Sem., pages 43–73. Birkhäuser, Basel, 2000. doi:10.1007/978-3-0348-8438-9\_2.
234
Laura Gellert and Raman Sanyal. On degree sequences of undirected, directed, and bidirected graphs. European Journal of Combinatorics, 64:113–124, 2017. URL: http://www.sciencedirect.com/science/article/pii/S0195669817300409.
235
M. Genzel, G. Kutyniok, and M. März. $\ell ^1$-analysis minimization and generalized (co-)sparsity: when does recovery succeed? preprint, October 2017.
236
Georg Glaeser and Konrad Polthier. Bilder der Mathematik. Springer Spektrum, 2 edition, 2010. ISBN 978-3-662-43416-1. Nachdruck 2014.
237
Georg Glaeser and Konrad Polthier. Wiskunde in beeld. Uitgevrij Veen Magazines BV, 2012. ISBN 978-90-8571-250-3.
238
Georg Glaeser and Konrad Polthier. Immagini Della Matematica. Springer, Italia, 2013. ISBN 978-88-6030-619-7.
239
Georg Glaeser and Konrad Polthier. Surprenantes images de mathématiques. Belin, 2013. ISBN 978-27-0115-695-8. Janie Molard(Übersetzerin).
240
Bernd Gonska and Arnau Padrol. Neighborly inscribed polytopes and delaunay triangulations. Preprint, August 2013.
241
Bernd Gonska and Arnau Padrol. Many neighborly inscribed polytopes and delaunay triangulations. In 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 161–168. 2014. URL: http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAT0115.
242
Bernd Gonska and Günter M. Ziegler. Inscribable stacked polytopes. Adv. Geom., 13:723–740, 2013.
243
O. Graf, F. Krahmer, and S. Krause-Solberg. Higher order 1-bit sigma-delta modulation on a circle. In Proc. Intl. Conf. on Sampling Theory and Applications (SampTA '19). 2019. URL: https://sampta2019.sciencesconf.org/273036/document.
244
Olga Graf, Ayush Bhandari, and Felix Krahmer. One-bit unlimited sampling. In Proc. IEEE Intl. Conf. Acoustics Speach Signal Proc. (ICASSP 2019). September 2019. doi:10.1109/ICASSP.2019.8683266.
245
Olga Graf, Felix Krahmer, and Sara Krause-Solberg. One-bit sigma-delta modulation on the circle. preprint, November 2019.
246
Francesco Grande, Arnau Padrol, and Raman Sanyal. Extension complexity and realization spaces of hypersimplices. Discrete Comput Geom, 2017. doi:10.1007/s00454-017-9925-4.
247
Francesco Grande and Raman Sanyal. Theta rank, levelness, and matroid minors. J. Combin. Theory Ser. B, 123:1–31, 2017. doi:10.1016/j.jctb.2016.11.002.
248
P. Grohs, G. Kutyniok, J. Ma, and P. Petersen. Anisotropic multiscale systems on bounded domains. preprint, 2015.
249
Philipp Grohs, Sandra Keiper, Gitta Kutyniok, and Martin Schäfer. Α-molecules. preprint, July 2014.
250
Philipp Grohs and Gitta Kutyniok. Parabolic molecules. Found. Comput. Math., 14(2):299–337, 2014. doi:10.1007/s10208-013-9170-z.
251
J. Guckenheimer and C. Kuehn. Homoclinic orbits of the fitzhugh-nagumo equation: bifurcations in the full system. SIAM J. Appl. Dyn. Syst., 9:138–153, 2010.
252
Felix Günther. Discrete Riemann surfaces and integrable systems. PhD thesis, TU Berlin, September 2014. URL: http://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/5659.
253
Felix Günther, Caigui Jiang, and Helmut Pottmann. Smooth polyhedral surfaces. preprint, March 2017.
254
J. Keller H. Dietert and S. Troppmann. An invariant class of hermite type multivariate polynomials for the wigner transform. 22pp, 2015.
255
Christian Haase, Martina Juhnke-Kubitzke, Raman Sanyal, and Thorsten Theobald. Mixed ehrhart polynomials. Electron. J. Combin., 24(Issue 1):Paper #P1.10, 2017. URL: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i1p10.
256
Simon Hampe and Michael Joswig. Tropical computations in polymake. In Gebhard Böckle, Wolfram Decker, and Gunter Malle, editors, Algorithmic and experimental methods in algebra, geometry, and number theory, pages 361–385. Springer, Cham, 2017.
257
Simon Hampe, Michael Joswig, and Benjamin Schröter. Algorithms for tight spans and tropical linear spaces. Journal of Symbolic Computation, 2018. Proceedings of MEGA 2017. doi:10.1016/j.jsc.2018.06.016.
258
R. Haraway, R. Löwe, D. Tate, and S. Tillmann. On moduli spaces of convex projective structures on surfaces: outitude and cell-decomposition in fock-goncharov coordinates. Preprint, 2019.
259
Anna Maria Hartkopf and Günter M. Ziegler. Adopt a polyhedron - a citizen art project in mathematics. In Eve Torrence, Bruce Torrence, Carlo Séquin, and Kristóf Fenyvesi, editors, Proceedings of Bridges 2018: Mathematics, Art, Music, Architecture, Education, Culture, 579–584. Phoenix, Arizona, 2018. Tessellations Publishing.
260
Sven Herrmann and Michael Joswig. Totally splittable polytopes. Discrete Comput. Geom., 44(1):149–166, 2010. doi:10.1007/s00454-009-9217-8.
261
Klaus Hildebrandt and Konrad Polthier. Generalized shape operators on polyhedral surfaces. Computer Aided Geometric Design, 28(5):321 – 343, 2011. URL: http://www.sciencedirect.com/science/article/pii/S0167839611000628, doi:10.1016/j.cagd.2011.05.001.
262
Klaus Hildebrandt and Konrad Polthier. On approximation of the laplace-beltrami operator and the willmore energy of surfaces. Computer Graphics Forum, 30(5):1513–1520, 2011. doi:10.1111/j.1467-8659.2011.02025.x.
263
Klaus Hildebrandt, Konrad Polthier, and Max Wardetzky. On the convergence of metric and geometric properties of polyhedral surfaces. Geometriae Dedicata, 123(1):89–112, 2006.
264
Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, and Konrad Polthier. Modal shape analysis beyond laplacian. Computer Aided Geometric Design, 29(5):204–218, 2012. doi:10.1016/j.cagd.2012.01.001.
265
Tim Hoffmann and Andrew O. Sageman-Furnas. A $2 \times 2$ lax representation, associated family, and bäcklund transformation for circular k-nets. Discrete & Computational Geometry, 56(2):472–501, September 2016. doi:10.1007/s00454-016-9802-6.
266
Tim Hoffmann, Andrew O. Sageman-Furnas, and Max Wardetzky. A discrete parametrized surface theory in $\mathbb R^3$. International Mathematics Research Notices, 2017(14):4217–4258, 2017. doi:10.1093/imrn/rnw015.
267
Tim Hoffmann and Zi Ye. A discrete extrinsic and intrinsic dirac operator. Preprint, February 2018.
268
Emanuel Huhnen-Venedey. Cyclidic and hyperbolic nets: A piecewise smooth discretization of orthogonal and asymptotic nets in discrete differential geometry. PhD thesis, TU Berlin, 2014.
269
Emanuel Huhnen-Venedey and Thilo Rörig. Discretization of asymptotic line parametrizations using hyperboloid surface patches. Geometriae Dedicata, 168(1):265–289, February 2014. doi:10.1007/s10711-013-9830-9.
270
Emanuel Huhnen-Venedey and Wolfgang K. Schief. On weingarten transformations of hyperbolic nets. International Mathematics Research Notices, 2014. URL: http://imrn.oxfordjournals.org/content/early/2014/01/24/imrn.rnt354.abstract, doi:10.1093/imrn/rnt354.
271
M. Iwen, S. Dirksen, J. Maly, and S. Krause-Solberg. Robust one-bit compressed sensing with manifold data. In Proc. Intl. Conf. on Sampling Theory and Applications (SampTA '19). September 2019. URL: https://sampta2019.sciencesconf.org/267528/document.
272
Mark A. Iwen, Felix Krahmer, Sara Krause-Solberg, and Johannes Maly. On recovery guarantees for one-bit compressed sensing on manifolds. preprint, July 2018.
273
Ivan Izmestiev, Robert B. Kusner, Günter Rote, Boris Springborn, and John M. Sullivan. There is no triangulation of the torus with vertex degrees 5, 6, ... , 6, 7 and related results: geometric proofs for combinatorial theorems. Geometriae Dedicata, 166(1):15–29, October 2013. doi:10.1007/s10711-012-9782-5.
274
C. Lasser J. Keller and T. Ohsawa. A new phase space density for quantum expectations. 24pp, 2015.
275
H. Jardon-Kojakhmetov and C. Kuehn. A survey on the blow-up method for fast-slow systems. Preprint, 2019.
276
Hildeberto Jardón-Kojakhmetov and Christian Kuehn. On fast-slow consensus networks with a dynamic weight. preprint, April 2019.
277
Caigui Jiang, Klara Mundilova, Florian Rist, Johannes Wallner, and Helmut Pottmann. Curve-pleated structures. ACM Trans. Graph., 38(6):169:1–169:13, November 2019. doi:10.1145/3355089.3356540.
278
Caigui Jiang, Chengcheng Tang, Marko Tomičić, Johannes Wallner, and Helmut Pottmann. Interactive modeling of architectural freeform structures - combining geometry with fabrication and statics. In P. Block, J. Knippers, and W. Wang, editors, Advances in Architectural Geometry. Springer, 2014.
279
Caigui Jiang, Chengcheng Tang, Amir Vaxman, Peter Wonka, and Helmut Pottmann. Polyhedral patterns. ACM Trans. Graphics, 2015. Proc. SIGGRAPH Asia.
280
Caigui Jiang, Jun Wang, Johannes Wallner, and Helmut Pottmann. Freeform honeycomb structures. Comput. Graph. Forum, 33(5):185–194, 2014. Proc. Symposium Geometry Processing. doi:10.1111/cgf.12444.
281
Fernando Jimenez and Juergen Scheurle. On the discretization of nonholonomic dynamics in $\mathbb R^n$. J. Geom. Mechanics, 7(1):43-80, 2015.
282
Michael R. Jimenez, Christian Müller, and Helmut Pottmann. Discretizations of surfaces with constant ratio of principal curvatures. Discrete Comput. Geom., 2019. accepted for publication. URL: http://www.geometrie.tuwien.ac.at/ig/publications/constratio/constratio.pdf, doi:10.1007/s00454-019-00098-7.
283
F. Jiménez. Hamilton-dirac systems for charged particles in gauge fields. J. Geom. Phys., 94:35-49, 2015.
284
F. Jiménez and J. Scheurle. On the discretization of the euler-poincaré-suslov equations in $so(3)$. preprint, 2015.
285
Fernando Jiménez and Hiroaki Yoshimura. Dirac structures in vakonomic mechanics. J. Geom. Phys., 2015. accepted.
286
Katharina Jochemko and Raman Sanyal. Combinatorial positivity of translation-invariant valuations and a discrete hadwiger theorem. accepted for publication, preprint on arxiv, 2015.
287
Katharina Jochemko and Raman Sanyal. Combinatorial mixed valuations. Advances in Mathematics, 319:630–652, 2017. doi:10.1016/j.aim.2017.08.032.
288
Charles Jordan, Michael Joswig, and Lars Kastner. Parallel enumeration of triangulations. Electron. J. Combin., 25(3):Paper 3.6, 27, 2018. URL: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i3p6.
289
Michael Joswig, Joe Kileel, Bernd Sturmfels, and André Wagner. Rigid multiview varieties. International Journal of Algebra and Computation, 26(04):775–788, 2016. doi:10.1142/S021819671650034X.
290
Michael Joswig and Georg Loho. Weighted digraphs and tropical cones. Linear Algebra and its Applications, 501:304–343, 2016. doi:10.1016/j.laa.2016.02.027.
291
Michael Joswig and Georg Loho. Monomial tropical cones for multicriteria optimization. Preprint, 2017.
292
Michael Joswig, Robert Löwe, and Boris Springborn. Secondary fans and secondary polyhedra of punctured riemann surfaces. Exp. Math., 2019. doi:10.1080/10586458.2018.1477078.
293
Michael Joswig, Milan Mehner, Stefan Sechelmann, Jan Techter, and Alexander I. Bobenko. Dgd gallery: storage, sharing, and publication of digital research data. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016. doi:10.1007/978-3-662-50447-5\_14.
294
Michael Joswig and Marc E. Pfetsch. Computing optimal morse matchings. SIAM J. Discrete Math., 20(1):11–25 (electronic), 2006. doi:10.1137/S0895480104445885.
295
Michael Joswig and Konrad Polthier. Eg-models - a new journal for digital geometry models. In J. Borwein, M. Morales, K. Polthier, and J.F. Rodrigues, editors, Multimedia Tools for Communicating Mathematics, pages 165–190. Springer, 2002.
296
Michael Joswig and Thilo Rörig. Polytope mit vielen splits und ihre sekundärfächer. Math. Semesterber., 59(2):145–152, 2012. doi:10.1007/s00591-012-0102-9.
297
Michael Joswig and Benjamin Schröter. Matroids from hypersimplex splits. Journal of Combinatorial Theory, Series A, 151:254–284, 2017. doi:10.1016/j.jcta.2017.05.001.
298
Michael Joswig and Benjamin Schrüter. The degree of a tropical basis. Proc. Amer. Math. Soc., 146(3):961–970, 2018. doi:10.1090/proc/13787.
299
Michael Joswig and Ben Smith. Polyhedral tropical geometry of higher rank. preprint, 2018.
300
Michael Joswig and Thorsten Theobald. Polyhedral and algebraic methods in computational geometry. Universitext. Springer, London, 2013. ISBN 978-1-4471-4816-6; 978-1-4471-4817-3. Revised and updated translation of the 2008 German original. doi:10.1007/978-1-4471-4817-3.
301
Michael Joswig and Günter M. Ziegler. Foldable triangulations of lattice polygons. Amer. Math. Monthly, 121(8):706–710, 2014. doi:10.4169/amermathmont.121.08.706.
302
Daniel Matthes José A. Carrillo, Bertram Düring and David S. McCormick. A lagrangian scheme for the solution of nonlinear diffusion equations using moving simplex meshes. Journal of Scientific Computing, June 2018, Volume 75, Issue 3, pp 1463–1499, November 2017. doi:10.1007/s10915-017-0594-5.
303
Oliver Junge and Ioannis G Kevrekidis. On the sighting of unicorns: a variational approach to computing invariant sets in dynamical systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, Nr. 6, Volume 27, June 2017. doi:10.1063/1.4983468.
304
Oliver Junge and Benjamin Söllner. A convergent lagrangian discretization for $p$-laplace and flux-limited diffusion equations. preprint, 2019.
305
D. Jüstel. The zak transform on strongly proper g-spaces and its applications. Journal of the London Math. Society, 97:47–76, 2017. doi:10.1112/jlms.12097.
306
U. Pinkall K. Crane and P. Schröder. Robust fairing via conformal curvature flow. ACM Trans. Graph, 32(4):61:1–61:10, July 2013.
307
G. Kamberov, F. Pedit, and U. Pinkall. Bonnet pairs and isothermic surfaces. Duke Math. J., 92(3):637–644, April 1998. doi:10.1215/S0012-7094-98-09219-5.
308
Günter M. Ziegler Karim Adiprasito. Many projectively unique polytopes. Inventiones math., 199:581–652, 2015. doi:10.1007/s00222-014-0519-y.
309
Oleg Karpenkov and Johannes Wallner. On offsets and curvatures for discrete and semidiscrete surfaces. Beitr. Algebra Geom., 55:207–228, 2014. doi:10.1007/s13366-013-0146-6.
310
Lars Kastner and Robert Löwe. The newton polytope of the discriminant of a cubic quaternary form. Preprint, 2019.
311
S. Keiper, G. Kutyniok, D. G. Lee, and G. E. Pfander. Compressed sensing for finite-valued signals. Linear Algebra and its Applications, 532:570–613, November 2017. doi:10.1016/j.laa.2017.07.006.
312
Sandra Keiper. Approximation of generalized ridge functions in high dimensions. Journal of Approximation Theory, 245:101–129, 2019. doi:10.1016/j.jat.2019.04.006.
313
J. Keller. Quantum Dynamics on Potential Energy Surfaces-Simpler States and Simpler Dynamics. PhD thesis, TU München, October 2015.
314
Johannes Keller and Caroline Lasser. Propagation of quantum expectations with husimi functions. SIAM Journal on Applied Mathematics, 73(4):1557–1581, July 2013. doi:10.1137/120889186.
315
Johannes Keller and Caroline Lasser. Quasi-classical description of molecular dynamics based on egorov's theorem. The Journal of Chemical Physics, August 2014. doi:10.1063/1.4891517.
316
Martin Kilian, Davide Pellis, Johannes Wallner, and Helmut Pottmann. Material-minimizing forms and structures. ACM Trans. Graphics, 36(6):article 173, 2017. Proc. SIGGRAPH Asia. doi:10.1145/3130800.3130827.
317
Pisamai Kittipoom, Gitta Kutyniok, and Wang-Q Lim. Construction of compactly supported shearlet frames. Constr. Approx., 35(1):21–72, 2012. doi:10.1007/s00365-011-9142-y.
318
F. Knöppel. Complex Line Bundles over Simplicial Complexes. PhD thesis, TU Berlin, 2015.
319
F. Knöppel, K. Crane, U. Pinkall, and P. Schröder. Stripe patterns on surfaces. ACM Trans. Graph., 34(4):39:1–39:11, July 2015.
320
F. Knöppel and U. Pinkall. Complex line bundles over simplicial complexes and their applications. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, January 2017.
321
Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. Globally optimal direction fields. ACM Trans. Graph., 2013. URL: http://www.cs.columbia.edu/\textasciitilde keenan/Projects/GloballyOptimalDirectionFields/paper.pdf.
322
Zoi Tokoutsi Konstantin Poelke and Konrad Polthier. Complex polynomial mandalas and their symmetries. In George Hart Gary Greenfield and Reza Sarhangi, editors, Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture, 433–436. Phoenix, Arizona, 2014. Tessellations Publishing. URL: http://archive.bridgesmathart.org/2014/bridges2014-433.html.
323
U. Kortenkamp and J. Richter-Gebert. Grundlagen dynamischer geometrie. In H.-J. Elschenbroich, Th. Gawlick, and H.-W. Henn, editors, Zeichnung - Figur - Zugfigur: Mathematische und didaktische Aspekte Dynamischer Geometrie-Software, pages 123–145. Franzbecker, Hildesheim, 2001.
324
U. Kortenkamp and J. Richter-Gebert. Using automatic theorem proving to improve the usability of geometry software. In Proceedings of the Mathematical User Interfaces Workshop. 2004.
325
Ulrich Kortenkamp, Stefan Kranich, Jürgen Richter-Gebert, M. Strobel, Martin von Gagern, and J. Wurster. Cindyjs: a growing collection of interactive demonstrations. 2015. URL: http://www.science-to-touch.com/DGD.
326
H. Kourimska, L. Skuppin, and B. Springborn. A variational principle for cyclic polygons with prescribed edge lengths. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
327
Hana Kouřimská and Boris Springborn. Discrete yamabe problem for polyhedral surfaces. Preprint, 2019. doi:10.14279/depositonce-9001.3.
328
F. Krahmer, C. Kuehn, and N. Sissouno. Predicting sparse circle maps from their dynamics. preprint, January 2020.
329
F. Krahmer, G. Kutyniok, and J. Lemvig. Sparsity and spectral properties of dual frames. Linear Algebra and its Applications, 439(4):982 – 998, 2013. URL: http://num.math.uni-goettingen.de/\textasciitilde f.krahmer/KKL12.pdf.
330
F. Krahmer, C. Kühn, and N. Sissouno. Predicting sparse circle maps from their dynamics. preprint, 2019.
331
F. Krahmer, S. Mendelson, and H. Rauhut. Suprema of chaos processes and the restricted isometry property. Comm. Pure Appl. Math., 67(11):1877–1904, 2014. URL: http://num.math.uni-goettingen.de/\textasciitilde f.krahmer/KMR12.pdf.
332
F. Krahmer, R. Saab, and R. Ward. Root-exponential accuracy for coarse quantization of finite frame expansions. IEEE Trans. Inform. Theory, 58(2):1069–1079, 2012. URL: http://num.math.uni-goettingen.de/\textasciitilde f.krahmer/KSW12.pdf.
333
F. Krahmer, R. Saab, and Ö. Yilmaz. Sigma-delta quantization of sub-gaussian frame expansions and its application to compressed sensing. Inform. Inference, 3(1):40–58, 2014. URL: http://num.math.uni-goettingen.de/\textasciitilde f.krahmer/KSY13.
334
F. Krahmer and R. Ward. Lower bounds for the error decay incurred by coarse quantization schemes. Appl. Comput. Harmonic Anal., 32(1):131–138, 2012. URL: http://num.math.uni-goettingen.de/\textasciitilde f.krahmer/KW12.pdf.
335
Stefan Kranich. An epsilon-delta bound for plane algebraic curves and its use for certified homotopy continuation of systems of plane algebraic curves. preprint, May 2015.
336
Stefan Kranich. Gpu-based visualization of domain-coloured algebraic riemann surfaces. preprint, July 2015.
337
Stefan Kranich. Generation of real algebraic loci via complex detours. preprint, October 2015.
338
Stefan Kranich. Continuity in Dynamic Geometry: An Algorithmic Approach. PhD thesis, TU München, April 2016. URL: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20160418-1281075-1-5.
339
Max Krause and John M. Sullivan. Classification of small links in the unmarked solid torus. Preprint, 2019.
340
Sara Krause-Solberg, Olga Graf, and Felix Krahmer. One-bit sigma-delta modulation on a closed loop. 2018 IEEE Statistical Signal Processing Workshop (SSP), pages 208–212, August 2018. URL: https://ieeexplore.ieee.org/document/8450721, doi:10.1109/SSP.2018.8450721.
341
B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dellnitz, and O. Junge. A survey of methods for computing (un)stable manifolds of vector fields. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15(3):763–791, 2005. doi:10.1142/S0218127405012533.
342
Niklas Krauth, Matthias Nieser, and Konrad Polthier. Differential-based geometry and texture editing with brushes. J. Math. Imaging Vis., 48(2):359–368, February 2014. doi:10.1007/s10851-013-0443-6.
343
C. Kuehn. A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics. Physica D, 240(12):1020–1035, 2011. doi:10.1016/j.physd.2011.02.012.
344
C. Kuehn. Multiscale dynamics of an adaptive catalytic network model. Math. Model. Nat. Pheno., 14(4):402, 2019. doi:10.1051/mmnp/2019015.
345
C. Kuehn and C. Münch. Duck traps: two-dimensional critical manifolds in planar systems. Dynamical Systems: An International Journal, Vol. 34, No. 4, pp. 584-612,, February 2019. doi:10.1080/14689367.2019.1575337.
346
C. Kuehn and P. Szmolyan. Multiscale geometry of the olsen model and non-classical relaxation oscillations. J. Nonlinear Sci., 25(3):583–629, 2015. doi:10.1007/s00332-015-9235-z.
347
Christian Kuehn. Normal hyperbolicity and unbounded critical manifolds. Nonlinearity, 27(6):1351–1366, may 2014. URL: https://doi.org/10.1088\%2F0951-7715\%2F27\%2F6\%2F1351, doi:10.1088/0951-7715/27/6/1351.
348
Christian Kuehn. Multiple time scale dynamics. Volume 191 of Applied Mathematical Sciences. Springer, Cham, 2015. ISBN 978-3-319-12315-8; 978-3-319-12316-5. doi:10.1007/978-3-319-12316-5.
349
Christian Kuehn. PDE Dynamics. Volume 23 of Mathematical Modeling and Computation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2019. ISBN 978-1-61197-565-9; 978-1-61197-566-6. URL: https://my.siam.org/Store/Product/viewproduct/?ProductId=30604306.
350
Gitta Kutyniok and Wang-Q Lim. Compactly supported shearlets are optimally sparse. J. Approx. Theory, 163(11):1564–1589, 2011. doi:10.1016/j.jat.2011.06.005.
351
Gitta Kutyniok and Wang-Q Lim. Dualizable shearlet frames and sparse approximation. preprint, 2014.
352
Gitta Kutyniok, Wang-Q Lim, and Rafael Reisenhofer. Shearlab 3d: faithful digital shearlet transforms based on compactly supported shearlets. Preprint, January 2014.
353
Gitta Kutyniok, Volker Mehrmann, and Philipp Petersen. Regularization and numerical solution of the inverse scattering problem using shearlet frames. preprint, July 2014.
354
Gitta Kutyniok and Philipp Petersen. Classification of edges using compactly supported shearlets. Applied and Computational Harmonic Analysis, 2015. doi:10.1016/j.acha.2015.08.006.
355
Florian Käferböck. Affine arc length polylines and curvature continuous uniform b-splines. Computer-Aided Geom. Design, 2014.
356
Florian Käferböck and Helmut Pottmann. Smooth surfaces from bilinear patches: discrete affine minimal surfaces. Computer-Aided Geom. Design, 30:476–489, 2013.
357
Felix Kälberer, Matthias Nieser, and Konrad Polthier. Quadcover - surface parameterization using branched coverings. Comput. Graph. Forum, 26(3):375–384, 2007.
358
Benno König. A Geometric Construction for the Associated Family of S–Isothermic CMC Surfaces. PhD thesis, Technische Universität München, September 2018. Dissertation. URL: http://mediatum.ub.tum.de?id=1368384.
359
G. Friesecke L. De Luca. Classification of particle numbers with unique heitmann-radin minimizer. J. Stat. Phys. 167, Issue 6, 1586–1592, 2017, April 2017. URL: https://link.springer.com/article/10.1007/s10955-017-1781-3.
360
G. Friesecke L. De Luca. Crystallization in two dimensions and a discrete gauss-bonnet theorem. J Nonlinear Sci 28, 69-90, 2017, June 2017. URL: https://link.springer.com/article/10.1007\%2Fs00332-017-9401-6.
361
D. Labate, W-Q. Lim, G. Kutyniok, and G. Weiss. Sparse multidimensional representation using shearlets. SPIE Proc. 5914, SPIE, Bellingham, pages 254–262, 2005. URL: http://en.wikipedia.org/wiki/Bandelet\_(computer\_science).
362
Jean-Philippe Labbé and Carsten Lange. Cambrian acyclic domains: counting $c$-singletons. Preprint, 2018.
363
Jean-Philippe Labbé, Günter Rote, and Günter M. Ziegler. Area difference bounds for dissections of a square into an odd number of triangles. Preprint, August 2017.
364
Elisa Lafuente Hernández, Stefan Sechelmann, Thilo Rörig, and Christoph Gengnagel. Topology optimisation of regular and irregular elastic gridshells by means of a non-linear variational method. In Lars Hesselgren, Shrikant Sharma, Johannes Wallner, Niccolo Baldassini, Philippe Bompas, and Jacques Raynaud, editors, Advances in Architectural Geometry 2012, pages 147–160. Springer Vienna, 2013. doi:10.1007/978-3-7091-1251-9\_11.
365
W. Y. Lam and U. Pinkall. Holomorphic vector fields and quadratic differentials on planar triangular meshes. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
366
W.Y. Lam. Infinitesimal conformal deformations of triangulated surfaces. Master's thesis, Technische Universität Berlin, 2013.
367
Wai Yeung Lam. Discrete minimal surfaces: critical points of the area functional from integrable systems. International Mathematics Research Notices, 2018(6):1808–1845, December 2016. doi:10.1093/imrn/rnw267.
368
Wai Yeung Lam and Ulrich Pinkall. Isothermic triangulated surfaces. preprint, January 2015.
369
Wai Yeung Lam and Ulrich Pinkall. Infinitesimal conformal deformations of triangulated surfaces in space. Discrete & Computational Geometry, 60(4):831–858, December 2018. doi:10.1007/s00454-018-0008-y.
370
Carsten Lange and Konrad Polthier. Anisotropic smoothing of point sets. Computer Aided Geometric Design, 22(7):680–692, 2005.
371
Caroline Lasser and Stephanie Troppmann. Hagedorn wavepackets in time-frequency and phase space. Journal of Fourier Analysis and Applications, 20(4):679–714, May 2014. doi:10.1007/s00041-014-9330-9.
372
Christian Lessig, Philipp Petersen, and Martin Schäfer. Bendlets: a second-order shearlet transform with bent elements. Applied and Computational Harmonic Analysis, 2017. doi:10.1016/j.acha.2017.06.002.
373
Lauri Loiskekoski and Günter M Ziegler. Simple polytopes without small separators. Israel Journal of Mathematics, 221(2):731–739, 2017. doi:10.1007/s11856-017-1572-1.
374
Lauri Loiskekoski and Günter M. Ziegler. Simple polytopes without small separators, ii: thurston's bound. Preprint, Israel J. Math., to appear, 2017.
375
Andreas Loos and Günter M Ziegler. „was ist mathematik" lernen und lehren. Mathematische Semesterberichte, 63(1):155–169, 2016. doi:10.1007/s00591-016-0167-y.
376
F. H. Lutz, J. K. Mason, E. A. Lazar, and R. D. MacPherson. Roundness of grains in cellular microstructures. Phys. Rev. E, 96:023001, August 2017. doi:10.1103/PhysRevE.96.023001.
377
Z. Lähner, D. Cremers, and T. Tung. Deepwrinkles: accurate and realistic clothing modeling. In European Conference on Computer Vision (ECCV), 667–684. 2018. URL: https://www.springerprofessional.de/deepwrinkles-accurate-and-realistic-clothing-modeling/16183404.
378
A. Bach M. Cicalese and A. Braides. Discrete-to-continuum limits of multi-body systems with bulk and surface long-range interactions. preprint, July 2019. URL: http://cvgmt.sns.it/paper/4406/.
379
G. Orlando M. Cicalese and M. Ruf. From the n-clock model to the xy model: emergence of concentration effects in the variational analysis. preprint, August 2019. URL: http://cvgmt.sns.it/paper/4432/.
380
M. Forster M. Cicalese and G. Orlando. Variational analysis of a two-dimensional frustrated spin system: emergence and rigidity of chirality transitions. SIAM J. Math. Anal., 2019. preprint.
381
Jackie Ma and Philipp Petersen. Linear independence of compactly supported separable shearlet systems. Journal of Mathematical Analysis and Applications, 428:238–257, 2015. doi:10.1016/j.jmaa.2015.03.001.
382
Jan Maas and Daniel Matthes. Long-time behavior of a finite volume discretization for a fourth order diffusion equation. Nonlinearity, Volume 29, Number 7, June 2016. URL: http://iopscience.iop.org/article/10.1088/0951-7715/29/7/1992/meta.
383
Tomas Sauer Mariantonia Cotronei, Caroline Moosmüller and Nada Sissouno. Level-dependent interpolatory hermite subdivision schemes and wavelets. Constructive Approximation, July 2018. doi:10.1007/s00365-018-9444-4.
384
Daniel Matthes and Horst Osberger. Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation. ESAIM: Mathematical Modelling and Numerical Analysis, 48(03):697–726, 2014. Cambridge Univ Press.
385
Daniel Matthes and Horst Osberger. A convergent lagrangian discretization for a nonlinear fourth order equation. Found. Comput. Math., 2015. online first.
386
Daniel Matthes and Simon Plazotta. A variational formulation of the bdf2 method for metric gradient flows. ESAIM: M2AN, Forthcoming article, July 2018. doi:10.1051/m2an/2018045.
387
Daniel Matthes and Benjamin Söllner. Convergent lagrangian discretization for drift-diffusion with nonlocal aggregation. Innovative Algorithms and Analysis pp 313-351, March 2017. doi:10.1007/978-3-319-49262-9\_12.
388
Daniel Matthes and Benjamin Söllner. Discretization of flux-limited gradient flows: γ-convergence and numerical schemes. preprint, 2019.
389
Tim Meinhardt, Michael Moeller, Caner Hazirbas, and Daniel Cremers. Learning proximal operators: using denoising networks for regularizing inverse imaging problems. In IEEE International Conference on Computer Vision (ICCV), 1781–1790. 2017. URL: http://openaccess.thecvf.com/content\_ICCV\_2017/papers/Meinhardt\_Learning\_Proximal\_Operators\_ICCV\_2017\_paper.pdf.
390
J-F Mennemann, D Matthes, R-M Weishäupl, and T Langen. Optimal control of bose-einstein condensates in three dimensions. New Journal of Physics, 17(11):113027, November 2015. URL: http://stacks.iop.org/1367-2630/17/i=11/a=113027.
391
Hiroyuki Miyata and Arnau Padrol. Enumeration of neighborly polytopes and oriented matroids. Experimental Math., 24:489–505, 2015. doi:10.1080/10586458.2015.1015084.
392
Aaron Montag and Jürgen Richter-Gebert. Cindygl: authoring gpu-based interactive mathematical content. ICMS 2016: Mathematical Software – ICMS 2016 pp 359-365, July 2016. doi:10.1007/978-3-319-42432-3\_44.
393
Aaron Montag and Jürgen Richter-Gebert. Bringing together dynamic geometry software and the graphics processing unit. preprint, August 2018.
394
Christian Müller. On discrete constant mean curvature surfaces. Discrete Comput. Geom., 51(3):516–538, 2014. doi:10.1007/s00454-014-9577-6.
395
Christian Müller. Semi-discrete constant mean curvature surfaces. Math. Z., 279:459–478, 2015. doi:10.1007/s00209-014-1377-4.
396
Christian Müller. Semi-discrete constant mean curvature surfaces. Mathematische Zeitschrift, 279(1-2):459–478, 2015. URL: http://www.geometrie.tuwien.ac.at/geom/ig/publications/2015/sdcmc2015/sdcmc.pdf, doi:10.1007/s00209-014-1377-4.
397
Christian Müller. Planar discrete isothermic nets of conical type. Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 57(2):459–482, June 2016. doi:10.1007/s13366-015-0256-4.
398
E. Nava-Yazdani and K. Polthier. De casteljauʼs algorithm on manifolds. Computer Aided Geometric Design, 30(7):722 – 732, 2013. URL: http://www.sciencedirect.com/science/article/pii/S0167839613000551, doi:10.1016/j.cagd.2013.06.002.
399
Matteo Negri, Stefano Almi, and Sandro Belz. Convergence of discrete and continuous unilateral flows for ambrosio-tortorelli energies and application to mechanics. ESAIM: Mathematical Modelling and Numerical Analysis, September 2018. doi:10.1051/m2an/2018057.
400
Matthias Nieser, Jonathan Palacios, Konrad Polthier, and Eugene Zhang. Hexagonal global parameterization of arbitrary surfaces. IEEE Transactions on Visualization and Computer Graphics, 18(6):865–878, 2012. doi:10.1109/TVCG.2011.118.
401
Benjamin Nill and Arnau Padrol. The degree of point configurations: ehrhart theory, tverberg points and almost neighborly polytopes. European Journal of Combinatorics (special issue in honour of Michel Las Vergnas), 50:159–179, 2015.
402
Daniel Matthes Oliver Junge and Horst Osberger. A fully discrete variational scheme for solving nonlinear fokker-planck equations in multiple space dimensions. SIAM Journal on Numerical Analysis, 55(1):419–443, 2017. doi:10.1137/16M1056560.
403
H. Osberger. Fully variational Lagrangian discretizations for second and fourth order evolution equations. PhD thesis, Technische Universität München, September 2015. URL: https://mediatum.ub.tum.de/1271651.
404
Horst Osberger. Long-time behaviour of a fully discrete lagrangian scheme for a family of fourth order. Submitted, 2015.
405
Horst Osberger and Daniel Matthes. Convergence of a fully discrete variational scheme for a thin film equation. Radon Series on Computational and Applied Mathematics, 2015. accepted.
406
M. R. Oswald, J. Stühmer, and D. Cremers. Generalized connectivity constraints for spatio-temporal 3D reconstruction. In European Conference on Computer Vision (ECCV), 32–46. 2014. doi:10.1007/978-3-319-10593-2\_3.
407
Marcel Padilla, Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. On bubble rings and ink chandeliers. ACM Trans. Graph. 38, 4, Article 129, July 2019. doi:10.1145/3306346.3322962.
408
Arnau Padrol. Many neighborly polytopes and oriented matroids. Discrete Comput. Geom., 50(4):865–902, December 2013. doi:10.1007/s00454-013-9544-7.
409
Arnau Padrol and Julian Pfeifle. Polygons as slices of higher-dimensional polytopes. Preprint, April 2014.
410
Arnau Padrol and Louis Theran. Delaunay triangulations with disconnected realization spaces. In Siu-Wing Cheng and Olivier Devillers, editors, 30th Annual Symposium on Computational Geometry, SOCG'14, Kyoto, Japan, June 08 - 11, 2014, 163 – 170. ACM, 2014. doi:10.1145/2582112.2582119.
411
Arnau Padrol and Günter M Ziegler. Six topics on inscribable polytopes. In Advances in Discrete Differential Geometry, pages 407–419. Springer, 2016. doi:10.1007/978-3-662-50447-5\_13.
412
Hao Pan, Yi-King Choi, Yang Liu, Wenchao Hu, Qiang Du, Konrad Polthier, Caiming Zhang, and Wenping Wang. Robust modeling of constant mean curvature surfaces. ACM Trans. Graph., 31(4):85:1–85:11, July 2012. doi:10.1145/2185520.2185581.
413
Tatiana Pavljukevich. Spinor representation of Bryant surfaces with catenoidal and smooth ends. PhD thesis, TU Berlin, 2014.
414
D. Pellis, M. Kilian, F. Dellinger, J. Wallner, and H. Pottmann. Visual smoothness of polyhedral surfaces. ACM Trans. Graphics, 2019. URL: http://hdl.handle.net/10754/653104.
415
Davide Pellis and Helmut Pottmann. Aligning principal stress and curvature directions. Advances in Architectural Geometry, pages 34–53, 2018.
416
Chi-Han Peng, Helmut Pottmann, and Peter Wonka. Designing patterns using triangle-quad hybrid meshes. ACM Trans. Graphics, 37(4):14, 2018. Proc. SIGGRAPH.
417
Philipp Petersen. Shearlet approximation of functions with discontinuous derivatives. preprint, August 2015.
418
Philipp Petersen and Mones Raslan. Approximation properties of hybrid shearlet-wavelet frames for sobolev spaces. Advances in Computational Mathematics, 45(3):1581–1606, June 2019. doi:10.1007/s10444-019-09679-9.
419
Philipp Petersen and Felix Voigtlaender. Optimal approximation of piecewise smooth functions using deep relu neural networks. Neural Networks, 108:296–330, 2018. doi:10.1016/j.neunet.2018.08.019.
420
M. Petrera, A. Pfadler, and Yu. Suris. On integrability of hirota-kimura type discretizations. Regular and Chaotic Dynamics, 16(3):245–289, June 2011. doi:10.1134/S1560354711030051.
421
M. Petrera and Y. B. Suris. S. kovalevskaya system, its generalization and discretization. Frontiers of Mathematics in China, 2013, 8, No. 5, p. 1047-1065, August 2012. doi:10.1007/s11464-013-0305-y.
422
M. Petrera and Y. B. Suris. Spherical geometry and integrable systems. Geometriae Dedicata, August 2012. doi:10.1007/s10711-013-9843-4.
423
Matteo Petrera. Mathematical Physics I: Dynamical Systems and Classical Mechanics. Lecture Notes. Logos Verlag Berlin GmbH, 2013. ISBN 978-3-8325-3569-8. URL: http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=3569\&lng=deu\&id=.
424
Matteo Petrera. Mathematical Physics II: Classical Statistical Mechanics. Lecture Notes. Logos Verlag Berlin GmbH, 2014. ISBN 978-3-8325-3719-7. URL: http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=3719\&lng=deu\&id=.
425
Matteo Petrera. Mathematical Physics III - Integrable Systems of Classical Mechanics. Lecture Notes. Logos Verlag Berlin GmbH, 2015. ISBN 978-3-8325-3950-4. URL: http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=3950\&lng=deu\&id=.
426
Matteo Petrera, Andreas Pfadler, and Yuri B Suris. On the construction of elliptic solutions of integrable birational maps. Experimental Mathematics, 26(3):324–341, 2017. doi:10.1080/10586458.2016.1166354.
427
Matteo Petrera and Yuri B Suris. A construction of commuting systems of integrable symplectic birational maps. Preprint, 2016.
428
Matteo Petrera and Yuri B Suris. A construction of commuting systems of integrable symplectic birational maps. lie-poisson case. Preprint, 2016.
429
Matteo Petrera and Yuri B Suris. A construction of a large family of commuting pairs of integrable symplectic birational four-dimensional maps. Proceedings of the Royal Society of London A: Mathematical, 2017. doi:10.1098/rspa.2016.0535.
430
Matteo Petrera and Yuri B Suris. On the classification of multidimensionally consistent 3d maps. Letters in Mathematical Physics, 107(11):2013–2027, 2017. doi:10.1007/s11005-017-0976-5.
431
Matteo Petrera and Yuri B Suris. Variational symmetries and pluri-lagrangian systems in classical mechanics. Journal of Nonlinear Mathematical Physics, 24(sup1):121–145, 2017. doi:10.1080/14029251.2017.1418058.
432
Matteo Petrera and Yuri B. Suris. New results on integrability of the kahan-hirota-kimura discretizations. In Nonlinear systems and their remarkable mathematical structures. Vol. 1, pages 94–121. CRC Press, Boca Raton, FL, 2019. URL: https://www.crcpress.com/Nonlinear-Systems-and-Their-Remarkable-Mathematical-Structures-Volume-I/Euler/p/book/9781138601000.
433
Matteo Petrera and Mats Vermeeren. Variational symmetries and pluri-lagrangian structures for integrable hierarchies of pdes. preprint, 2019.
434
Matteo Petrera and René Zander. New classes of quadratic vector fields admitting integral-preserving kahan–hirota–kimura discretizations. Journal of Physics A: Mathematical and Theoretical, 50(20):205203, 2017. doi:10.1088/1751-8121/aa6a0f.
435
U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2(1):15–36, 1993. URL: http://www.cs.jhu.edu/\textasciitilde misha/Fall09/Pinkall93.pdf.
436
Ulrich Pinkall and Boris Springborn. A discrete version of liouville's theorem on conformal maps. Preprint, 2019.
437
Ulrich Pinkall and Jonas Tervooren. A weierstrass representation for 2d elasticity. preprint, June 2017.
438
Simon Plazotta. A bdf2-approach for the non-linear fokker-planck equation. Discrete Contin. Dyn. Syst., 39(5):2893–2913, May 2019. doi:10.3934/dcds.2019120.
439
Simon Plazotta and Jonathan Zinsl. High-frequency limit of non-autonomous gradient flows of functionals with time-periodic forcing. Journal of Differential Equations, Vol. 261, Issue 12, 15 December 2016, Pages 6806-6855, December 2016. doi:10.1016/j.jde.2016.09.003.
440
K. Poelke and K. Polthier. Domain coloring of complex functions: an implementation-oriented introduction. IEEE Computer Graphics and Applications, 32(5):90–97, 2012. doi:10.1109/MCG.2012.100.
441
Konstantin Poelke and Konrad Polthier. Boundary-aware hodge decompositions for piecewise constant vector fields. Computer-Aided Design, 78:126 – 136, 2016. doi:10.1016/j.cad.2016.05.004.
442
Konstantin Poelke and Konrad Polthier. Discrete topology-revealing vector fields on simplicial surfaces with boundary. In Proc. of TopoInVis 2017. 2017. URL: https://www.semanticscholar.org/paper/Discrete-Topology-Revealing-Vector-Fields-on-with-Poelke-Polthier/e21049641234976a56bbb668287b382412ccdfe1.
443
Konrad Polthier and Faniry Razafindrazaka. Discrete geometry for reliable surface quad-remeshing. In Robert S. Anderssen, Philip Broadbridge, Yasuhide Fukumoto, Kenji Kajiwara, Tsuyoshi Takagi, Evgeny Verbitskiy, and Masato Wakayama, editors, Applications + Practical Conceptualization + Mathematics = fruitful Innovation, volume 11 of Mathematics for Industry, pages 261–275. Springer Japan, 2016. doi:10.1007/978-4-431-55342-7\_22.
444
Helmut Pottmann, Michael Eigensatz, Amir Vaxman, and Johannes Wallner. Architectural geometry. Computers and Graphics, 47:145–164, 2015. URL: http://www.geometrie.tugraz.at/wallner/survey.pdf, doi:10.1016/j.cag.2014.11.002.
445
Helmut Pottmann, Caigui Jiang, Mathias Höbinger, Jun Wang, Philippe Bompas, and Johannes Wallner. Cell packing structures. Computer-Aided Design, 2014. to appear. Special issue on Material Ecology. doi:10.1016/j.cad.2014.02.009.
446
Helmut Pottmann and Johannes Wallner. Geometry and freeform architecture. In Wolfgang König, editor, Mathematics and Society, pages 131–151. EMS, 2016. doi:10.4171/164.
447
Jürgen Richter-Gebert Qingchun Ren and Bernd Sturmfels. Cayley-bacharach formulas. The American Mathematical Monthly, 122(9):845–854, 2015.
448
A. Garroni R. Alicandro, L. De Luca and M. Ponsiglione. Metastability and dynamics of discrete topological singularities in two dimensions: a gamma-convergence approach. Archive for Rational Mechanics and Analysis, 214(1):269–330, 2014.
449
Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. Discrete geodesic nets for modeling developable surfaces. ACM Trans. Graph., 37(2):16:1–16:17, July 2018. doi:10.1145/3180494.
450
Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. The shape space of discrete orthogonal geodesic nets. ACM Trans. Graph., Vol. 37, No. 6, Article 228, November 2018. URL: http://igl.ethz.ch/projects/dog-space/Shape-Space-Of-DOGS-SA-2018-Rabinovich.pdf, doi:10.1145/3272127.3275088.
451
Faniry Razafindrazaka and Konrad Polthier. Regular map smoothing. IMAGEN-A, March 2013. URL: http://munkres.us.es/Volume3/Volumen3/N\_5\_files/5.4.pdf.
452
Faniry Razafindrazaka and Konrad Polthier. The 6-ring. In George W. Hart and Reza Sarhangi, editors, Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture, 279–286. Phoenix, Arizona, 2013. Tessellations Publishing. URL: http://archive.bridgesmathart.org/2013/bridges2013-279.html.
453
Faniry Razafindrazaka and Konrad Polthier. Regular surfaces and regular maps. In George Hart Gary Greenfield and Reza Sarhangi, editors, Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture, 225–234. Phoenix, Arizona, 2014. Tessellations Publishing. URL: http://archive.bridgesmathart.org/2014/bridges2014-225.html.
454
Faniry Razafindrazaka and Konrad Polthier. Realization of regular maps large genus. In Valerio Pascucci Janine Bennet, Fabien Vivodtzev, editor, Topological and Statistical Methods for Complex Data, pages 239–252. Springer Berlin Heidelberg, 2015. URL: http://page.mi.fu-berlin.de/faniry/files/faniryTSCD2015.pdf, doi:10.1007/978-3-662-44900-4\_14.
455
Faniry H. Razafindrazaka, Ulrich Reitebuch, and Konrad Polthier. Perfect matching quad layouts for manifold meshes. Computer Graphics Forum (proceedings of EUROGRAPHICS Symposium on Geometry Processing), 2015. URL: http://www.mi.fu-berlin.de/en/math/groups/ag-geom/publications/db/2015\_RRP\_PerfectMatchingQuadLayoutsForManifoldMeshes\_New.pdf.
456
R. Reisenhofer, S. Bosse, G. Kutyniok, and T. Wiegand. A haar wavelet-based perceptual similarity index for image quality assessment. Signal Proc. Image Comm., 61:33–43, February 2018. doi:10.1016/j.image.2017.11.001.
457
J. Richter-Gebert. Perspectives on Projective Geometry: A Guided Tour Through Real and Complex Geometry. Springer, 2011.
458
J. Richter-Gebert and U. Kortenkamp. Complexity issues in dynamic geometry. In M. Rojas and F. Cucker, editors, Foundations of Computational Mathematics: Proceedings of the Smalefest 2000, Hong Kong, July 13-17, 2000, 355–404. Singapore, 2002. World Scientific.
459
J. Richter-Gebert and U. Kortenkamp. The power of scripting: dgs meets programming. Acta didactica Napocensia, 3(2):67–78, 2010.
460
J. Richter-Gebert and U. Kortenkamp. The Cinderella.2 Manual: Working with The Interactive Geometry Software. Springer, 2012. URL: https://www.springer.com/de/book/9783540349242.
461
Jürgen Richter-Gebert. Touch und tablet: stationen einer designstudie. Heintz, G., Pinkernell, G., Schacht, F. (Hrsg.): Digitale Werkzeuge für den Mathematikunterricht. Festschrift für Hans-Jürgen Elschenbroich, 2015. URL: http://science-to-touch.com/articles.
462
Matthias Ruf. Motion of discrete interfaces in low-contrast random environments. ESAIM: COCV, Volume 24, Number 3, July–September 2018, October 2017. doi:10.1051/cocv/2017067.
463
Thilo Rörig, Stefan Sechelmann, Agata Kycia, and Moritz Fleischmann. Surface panelization using periodic conformal maps. In Philippe Block, Jan Knippers, Niloy Mitra, and Wenping Wang, editors, Advances in Architectural Geometry 2014. Springer, September 2014. Best Paper Award.
464
Angkana Rüland, Christian Zillinger, and Barbara Zwicknagl. Higher sobolev regularity of convex integration solutions in elasticity: the dirichlet problem with affine data in int ($K^lc$). SIAM Journal on Mathematical Analysis, 50(4):3791–3841, 2018. doi:10.1137/17M1149687.
465
Angkana Rüland, Christian Zillinger, and Barbara Zwicknagl. Higher sobolev regularity of convex integration solutions in elasticity: the planar geometrically linearized hexagonal-to-rhombic phase transformation. Journal of Elasticity, January 2019. doi:10.1007/s10659-018-09719-3.
466
U. Pinkall S. Weissmann and P. Schröder. Smoke rings from smoke. ACM Transactions on Graphics, 33, 2014.
467
Andrew O. Sageman-Furnas, Albert Chern, Mirela Ben-Chen, and Amir Vaxman. Chebyshev nets from commuting polyvector fields. ACM Trans. Graphics, 38(6):172:1–172:16, 2019. Proc. SIGGRAPH Asia. doi:10.1145/3355089.3356564.
468
Manuele Santoprete, Jürgen Scheurle, and Sebastian Walcher. Motion in a symmetric potential on the hyperbolic plane. Canadian J. of Mathematics, August 2013. 27 pages. doi:10.4153/CJM-2013-026-2.
469
Raman Sanyal and Christian Stump. Lipschitz polytopes of posets and permutation statistics. Preprint, 2017.
470
Felix Krahmer Sara Krause-Solberg, Olga Graf. One-bit sigma-delta modulation on a closed loop. november 2018. poster.
471
Katharina Schaar. Fundamental Properties of Phirotopes. PhD thesis, Technische Universität München, July 2017. Dissertation. URL: http://mediatum.ub.tum.de/603815?show\_id=1341483.
472
Jürgen Scheurle and Sebastian Walcher. Minima of invariant functions: the inverse problem. Acta Applicandae Mathematicae, 137(1):233-252, 2015. accepted for publication by Acta Applicandae Mathematicae. doi:10.1007/s10440-014-9997-6.
473
Eike Schling, Martin Kilian, Hui Wang, Denis Schikore, and Helmut Pottmann. Design and construction of curved support structures with repetitive parameters. In Lars Hesselgren, Axel Kilian, Samar Malek, Karl-Gunnar Olsson, Olga Sorkine-Hornung, and Chris Williams, editors, Advances in Architectural Geometry, pages 140–165. Klein Publishing Ltd, 2018.
474
Stefan Sechelmann. Variational Methods for Discrete Surface Parameterization. Applications and Implementation. PhD thesis, TU Berlin, June 2016. URL: http://dx.doi.org/10.14279/depositonce-5415.
475
Stefan Sechelmann, Thilo Rörig, and Alexander I. Bobenko. Quasiisothermic mesh layout. In Lars Hesselgren, Shrikant Sharma, Johannes Wallner, Niccolo Baldassini, Philippe Bompas, and Jacques Raynaud, editors, Advances in Architectural Geometry 2012, pages 243–258. Springer Vienna, 2013. doi:10.1007/978-3-7091-1251-9\_20.
476
Christoph Seidel, Thilo Rörig, and Stefan Sechelmann. Planar quad layout on nurbs-surfaces from symmetric conjugate curves. September 2014. Presented at Advances in Architectural Geometry 2014.
477
Ling Shi, Jun Wang, and Helmut Pottmann. Smooth surfaces from rational bilinear patches. Comput. Aided Geom. Design, 31(1):1–12, 2014. doi:10.1016/j.cagd.2013.11.001.
478
Hannah Sjöberg and Günter M. Ziegler. Semi-algebraic sets of $f$-vectors. Preprint, November 2017.
479
Hannah Sjöberg and Günter M. Ziegler. Characterizing face and flag vector pairs for polytopes. Preprint, March 2018.
480
Martin Skrodzki. Neighborhood computation of point set surfaces. Master's thesis, Freie University Berlin, 2014.
481
Martin Skrodzki, Johanna Jansen, and Konrad Polthier. Directional density measure to intrinsically estimate and counteract non-uniformity in point clouds. Computer Aided Geometric Design, 64:73 – 89, 2018. URL: http://www.sciencedirect.com/science/article/pii/S0167839618300256, doi:10.1016/j.cagd.2018.03.011.
482
Martin Skrodzki, Eric Zimmermann, and Konrad Polthier. Variational shape approximation of point set surfaces. In IGS 2019 International Geometry Summit - Poster Proceedings, 54–57. 2019. URL: https://drive.google.com/file/d/1eq3LDDOtpFH77fXsv37ugk7ORdf5k3e1/view.
483
Gard Spreemann, Benjamin Dunn, Magnus Bakke Botnan, and Nils A. Baas. Using persistent homology to reveal hidden covariates in systems governed by the kinetic ising model. Journal: Phys. Rev. E 97, 032313, March 2018. doi:10.1103/PhysRevE.97.032313.
484
B. Springborn. The hyperbolic geometry of markov's theorem on diophantine approximation and quadratic forms. Enseign. Math., 63(3-4):333–373, 2017. doi:10.4171/LEM/63-3/4-5.
485
B. Springborn, P. Schröder, and U. Pinkall. Conformal equivalence of triangle meshes. ACM Transactions on Graphics, 2008. URL: http://www.multires.caltech.edu/pubs/ConfEquiv.pdf, doi:10.1145/1360612.1360676.
486
Boris Springborn. A variational principle for weighted delaunay triangulations and hyperideal polyhedra. J. Differential Geom., 78(2):333–367, 2008. URL: http://projecteuclid.org/euclid.jdg/1203000270.
487
Boris Springborn. Hyperbolic polyhedra and discrete uniformization. preprint, July 2017.
488
Boris Springborn. Ideal hyperbolic polyhedra and discrete uniformization. Discrete Comput. Geom., September 2019. doi:10.1007/s00454-019-00132-8.
489
Ananth Sridhar and Yuri B Suris. Commutativity in lagrangian and hamiltonian mechanics. J. Geom. Phys., 137:154–161, 2019. doi:10.1016/j.geomphys.2018.09.019.
490
Sandro Belz Stefano Almi. Consistent finite-dimensional approximation of phase-field models of fracture. Ann. Mat. Pura Appl. (4), 198(4):1191–1225, 2019. doi:10.1007/s10231-018-0815-z.
491
Michael Strobel. First steps in non-standard projective geometry. Preprint, March 2018.
492
Michael Strobel. Non-standard Analysis in Projective Geometry. PhD thesis, Technische Universität München, 2018. URL: http://mediatum.ub.tum.de/1444961.
493
Michael Strobel. Non-standard analysis in dynamic geometry. Journal of Symbolic Computation: Special Issue on Dynamic Geometry and Automated Reasoning, 2019. doi:10.1016/j.jsc.2018.12.006.
494
Xian Sun, Caigui Jiang, Johannes Wallner, and Helmut Pottmann. Vertex normals and face curvatures of triangle meshes. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
495
Yu. B. Suris. Variational formulation of commuting hamiltonian flows: multi-time lagrangian 1-forms. J. Geometric Mechanics, 5(3):365–379, 2013. doi:10.3934/jgm.2013.5.365.
496
Yu. B. Suris. Variational symmetries and pluri-lagrangian systems. In Th. Hagen, F. Rupp, and J. Scheurle, editors, Dynamical Systems, Number Theory and Applications: A Festschrift in Honor of Professor Armin Leutbecher's 80th Birthday. World Scientific, Singapore, 2015.
497
Yu. B. Suris and M. Vermeeren. On the lagrangian structure of integrable hierarchies. In A.I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, Berlin-Heidelberg-New York, 2016.
498
Yuri B. Suris. Billiards in confocal quadrics as a pluri-lagrangian system. Theoretical and Applied Mechanics, 43(2):221–228, 2016. doi:10.2298/TAM160304008S.
499
Chengcheng Tang, Pengbo Bo, Johannes Wallner, and Helmut Pottmann. Interactive design of developable surfaces. ACM Trans. Graphics, 2015. accepted.
500
Chengcheng Tang, Martin Kilian, Pengbo Bo, Johannes Wallner, and Helmut Pottmann. Analysis and design of curved support structures. In Sigrid Adriaenssens, Fabio Gramazio, Matthias Kohler, Achim Menges, and Mark Pauly, editors, Advances in Architectural Geometry 2016, pages 8–23. VDF Hochschulverlag, ETH Zürich, 2016.
501
Chengcheng Tang, Xiang Sun, Alexandra Gomes, Johannes Wallner, and Helmut Pottmann. Form-finding with polyhedral meshes made simple. ACM Trans. Graphics, 33(4):$\\#$70,1–9, 2014. Proc. SIGGRAPH. doi:10.1145/2601097.2601213.
502
Peg Tyre. Math revolution. Atlantic Daily, March 2016. URL: https://www.theatlantic.com/magazine/archive/2016/03/the-math-revolution/426855.
503
Amir Vaxman, Christian Müller, and Ofir Weber. Conformal mesh deformations with möbius transformations. ACM Transactions on Graphics (TOG), 34(4):55, 2015. URL: http://www.geometrie.tuwien.ac.at/geom/ig/publications/2015/conformal2015/conformal2015.pdf.
504
Amir Vaxman, Christian Müller, and Ofir Weber. Regular meshes from polygonal patterns. ACM Transactions on Graphics (TOG), 36(4):113, 2017. doi:10.1145/3072959.3073593.
505
M. Vermeeren. A dynamical solution to the basel problem. preprint, 2015.
506
Mats Vermeeren. Modified equations for variational integrators. Num. Math., 137:1001–1037, 2017. doi:10.1007/s00211-017-0896-4.
507
Mats Vermeeren. Numerical precession in variational discretizations of the kepler problem. In K. Ebrahimi-Fard and M. Barbero Linan, editors, Discrete Mechanics, Geometric Integration and Lie–Butcher Series, pages 333–348. Springer, Cham, 2018. doi:10.1007/978-3-030-01397-4\_10.
508
Mats Vermeeren. A variational perspective on continuum limits of abs and lattice gd equations. SIGMA Symmetry Integrability Geom. Methods Appl., 15:044, 2019. doi:10.3842/SIGMA.2019.044.
509
Mats Vermeeren. Continuum limits of pluri-lagrangian systems. J. Integrable Syst., 4(1):1–34, February 2019. doi:10.1093/integr/xyy020.
510
Mats Vermeeren. Modified equations for variational integrators applied to lagrangians linear in velocities. J. Geom. Mech., 11(1):1–22, March 2019. doi:10.3934/jgm.2019001.
511
Mats Vermeeren, Alessandro Bravetti, and Marcello Seri. Contact variational integrators. Journal of Physics A: Mathematical and Theoretical, 52(44):445206, 2019. doi:10.1088/1751-8121/ab4767.
512
Dominic Volland. A Discrete Hilbert Transform with Circle Packings. Springer Spektrum, Weisbaden, 2017. ISBN 978-3-658-20456-3/pbk; 978-3-658-20457-0/ebook. doi:10.1007/978-3-658-20457-0.
513
Martin von Gagern, Ulrich Kortenkamp, Jürgen Richter-Gebert, and Michael Strobel. Cindyjs. In International Congress on Mathematical Software, 319–326. Springer, 2016. doi:10.1007/978-3-319-42432-3\_39.
514
Martin von Gagern and Jürgen Richter-Gebert. Cindyjs plugins. In International Congress on Mathematical Software, 327–334. Springer, 2016. doi:10.1007/978-3-319-42432-3\_40.
515
Christoph von Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt. An efficient construction of reduced deformable objects. ACM Trans. Graph., 32(6):213:1–213:10, November 2013. doi:10.1145/2508363.2508392.
516
Masato Wakayama, Robert S. Anderssen, Jin Cheng, Yasuhide Fukumoto, Robert McKibbin, Konrad Polthier, Tsuyoshi Takagi, and Kim-Chuan Toh, editors. The Impact of Applications on Mathematics. Proceedings of the Forum of Mathematics for Industry 2013, Japan, 2014. Springer.
517
Hui Wang, Davide Pellis, Florian Rist, Helmut Pottmann, and Christian Müller. Discrete geodesic parallel coordinates. ACM Trans. Graph., 38(6):173:1–173:13, November 2019. doi:10.1145/3355089.3356541.
518
J. Wang, C. Jiang, P. Bompas, J. Wallner, and H. Pottmann. Discrete line congruences for shading and lighting. Computer Graphics Forum, 32(5):53–62, 2013. Proc. Symposium Geometry Processing. doi:10.1111/cgf.12172.
519
G. Wechslberger. Automatic Contour Deformation of Riemann-Hilbert Problems. PhD thesis, TU Munich, July 2015.
520
G. Wechslberger and F. Bornemann. Automatic deformation of riemann-hilbert problems with applications to the painlevé ii transcendents. Constr. Approx., 39(1):151–171, 2014. doi:10.1007/s00365-013-9199-x.
521
Georg Wechslberger and Folkmar Bornemann. Automatic deformation of riemann–hilbert problems with applications to the painlevé ii transcendents. Constructive Approximation, pages 1–21, June 2013. doi:10.1007/s00365-013-9199-x.
522
S. Weißmann and U. Pinkall. Filament-based smoke with vortex shedding and variational reconnection. ACM Transactions on Graphics, 2010.
523
Steffen Weißmann, Ulrich Pinkall, and Peter Schröder. Smoke rings from smoke. ACM Trans. Graph., 33(4):140:1–140:8, July 2014. doi:10.1145/2601097.2601171.
524
Steffen Wiewel, Moritz Becher, and Nils Thuerey. Latent-space physics: towards learning the temporal evolution of fluid flow. In Computer Graphics Forum, volume 38. Wiley Online Library, 2019. doi:10.1111/cgf.13620.
525
N.S. Witte, F. Bornemann, and P.J. Forrester. Joint distribution of the first and second eigenvalues at the soft edge of unitary ensembles. Nonlinearity, Volume 26, Number 6, pp. 1799-1822, June 2013. doi:10.1088/0951-7715/26/6/1799.
526
You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. Tempogan: a temporally coherent, volumetric gan for super-resolution fluid flow. TOG, 37(4):95, 2018. doi:10.1145/3197517.3201304.
527
Sunil Kumar Yadav, Ulrich Reitebuch, and Konrad Polthier. Mesh denoising based on normal voting tensor and binary optimization. IEEE Transactions on Visualization and Computer Graphics, 24(8):2366–2379, August 2018. doi:10.1109/TVCG.2017.2740384.
528
Sunil Kumar Yadav, Ulrich Reitebuch, Martin Skrodzki, Eric Zimmermann, and Konrad Polthier. Constraint-based point set denoising using normal voting tensor and restricted quadratic error metrics. Computers and Graphics, 74:234 – 243, 2018. doi:10.1016/j.cag.2018.05.014.
529
N. Yang, R. Wang, J. Stueckler, and D. Cremers. Deep virtual stereo odometry: leveraging deep depth prediction for monocular direct sparse odometry. In European Conference on Computer Vision (ECCV), 817–833. 2018. URL: https://eccv2018.org/openaccess/content\_ECCV\_2018/papers/Nan\_Yang\_Deep\_Virtual\_Stereo\_ECCV\_2018\_paper.pdf.
530
Zi Ye, Olga Diamanti, Chengcheng Tang, Leonidas Guibas, and Tim Hoffmann. A unified discrete framework for intrinsic and extrinsic dirac operators for geometry processing. Computer Graphics Forum, 37(5):93–106, August 2018. doi:10.1111/cgf.13494.
531
Y. Au Yeung, G. Friesecke, and B. Schmidt. Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the wulff shape. Calc. Var. PDE, 44:81–100, 2012. doi:10.1007/s00526-011-0427-6.
532
Günter M Ziegler and Andreas Loos. “what is mathematics?” and why we should ask, where one should experience and learn that, and how to teach it. In Proceedings of the 13th International Congress on Mathematical Education, 63–77. Springer, November 2017. doi:10.1007/978-3-319-62597-3\_5.
533
Günter M. Ziegler. Additive structures on f-vector sets of polytopes. Advances in Geometry, October 2018. Published online.
534
Günter M. Ziegler and Andreas Loos. Teaching and learning "what is mathematics". In Proc. International Congress of Mathematicians, Seoul 2014, volume IV, pages 1201–1215. Kyung Moon Books, Seoul, Korea, 2014.
535
Günter M. Ziegler and Andreas Loos. ZEIT-Akademie Mathematik. Zeitverlag Gerd Bucerius, Hamburg, 2014. 4 DVDs mit Begleitheft (95 Seiten).
536
Jonathan Zinsl. Geodesically convex energies and confinement of solutions for a multi-component system of nonlocal interaction equations. Submitted, 2014.
537
Jonathan Zinsl and Daniel Matthes. Exponential convergence to equilibrium in a coupled gradient flow system modelling chemotaxis. Analysis & PDE, 8(2):425–466, 2015.
538
Jonathan Zinsl and Daniel Matthes. Transport distances and geodesic convexity for systems of degenerate diffusion equations. Calculus of Variations and Partial Differential Equations, 2015. accepted.
539
Barbara Zwicknagl. Microstructures in low-hysteresis shape memory alloys: scaling regimes and optimal needle shapes. Arch. Ration. Mech. Anal., 213(2):355–421, 2014. doi:10.1007/s00205-014-0736-y.