1
Saddle Tower. URL: http://virtualmathmuseum.org/Surface/saddle\_tower/saddle\_tower.html.
2
Scherk's Minimal Surfaces. URL: http://mathworld.wolfram.com/ScherksMinimalSurfaces.html.
3
Scherk's Second Surface. URL: http://www.msri.org/publications/sgp/jim/geom/minimal/library/scherk2/index.html.
4
M. Cicalese A. Braides and N.K. Yip. Crystalline Motion of Interfaces Between Patterns. Journal of Statistical Physics October 2016, Volume 165, Issue 2, pp 274–319, October 2016. URL: https://link.springer.com/article/10.1007/s10955-016-1609-6.
5
S. Sechelmann A.I. Bobenko, U. Bücking. Discrete minimal surfaces of Koebe type. In R. Verge-Rebelo D. Levi and P. Winternitz, editors, Modern Approaches to Discrete Curvatur, pages 259–291. Springer, 2017.
6
Uwe Abresch. Constant mean curvature tori in terms of elliptic functions. J. Reine Angew. Math., 1987. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=876223.
7
K. Adiprasito and B. Benedetti. Metric geometry, convexity and collapsibility. 2013.
8
K. Adiprasito and B. Benedetti. Subdivisions, shellability, and collapsibility of products. Combinatorica, 2015. accepted, preprint at arxiv.
9
K. Adiprasito and B. Benedetti. Tight complexes in $3$-space admit perfect discrete Morse functions. Eur. J. Comb., 45:71–84, 2015.
10
K. Adiprasito, B. Benedetti, and F. H. Lutz. Extremal examples of collapsible complexes and random discrete Morse theory. 2014. 20 pages.
11
Karim Adiprasito, Philip Brinkmann, Arnau Padrol, Pavel Paták, Zuzana Patáková, and Raman Sanyal. Colorful simplicial depth, Minkowski sums, and generalized Gale transforms. International Mathematics Research Notices, 2017. doi:10.1093/imrn/rnx184.
12
Karim Adiprasito and Arnau Padrol. The universality theorem for neighborly polytopes. Combinatorica, February 2015. accepted, preprint at arxiv.
13
Karim Adiprasito and Arnau Padrol. A universality theorem for projectively unique polytopes and a conjecture of Shephard. Israel J. Math., 211:239–255, 2016.
14
Karim Adiprasito, Arnau Padrol, and Louis Theran. Universality theorems for inscribed polytopes and Delaunay triangulations. Discrete Comput. Geom., 54:412–431, 2015.
15
Karim Adiprasito and Raman Sanyal. Relative Stanley-Reisner theory and Upper Bound Theorems for Minkowski sums. Publ. Math. Inst. Hautes Études Sci., 124:99–163, 2016. doi:10.1007/s10240-016-0083-7.
16
Karim Adiprasito and Raman Sanyal. Whitney numbers of arrangements via measure concentration of intrinsic volumes. Preprint, 2016.
17
Karim Alexander Adiprasito and Bruno Benedetti. The Hirsch conjecture holds for normal flag complexes. preprint, revised April 2013, March 2013.
18
Niklas C Affolter. Miquel Dynamics, Clifford Lattices and the Dimer Model. Preprint at arxiv, August 2018.
19
Arseniy Akopyan and Alexander Bobenko. Incircular nets and confocal conics. Transactions of the American Mathematical Society, 370(4):2825–2854, 2018. doi:10.1090/tran/7292.
20
Uwe Albresch. Constant mean curvature tori in terms of elliptic functions. J. Reine Angew. Math. 374, 1987. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=876223.
21
R. Alicandro, M. Cicalese, and M. Ruf. Domain formation in magnetic polymer composites: an approach via stochastic homogenization. Arch. Rat. Mech. Anal., 218(2):945--984, 2015.
22
Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael Joswig. Tropicalizing the simplex algorithm. SIAM Journal on Discrete Mathematics, 29(2):751–795, 2015. doi:10.1137/130936464.
23
Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael Joswig. Log-barrier interior point methods are not strongly polynomial. SIAM J. Appl. Algebra Geom., 2(1):140–178, 2018. URL: https://doi.org/10.1137/17M1142132, doi:10.1137/17M1142132.
24
Stefano Almi and Ilaria Lucardesi. Energy release rate and stress intensity factors in planar elasticity in presence of smooth cracks. Nonlinear Differ. Equ. Appl. (2018) 25: 43., August 2018. doi:10.1007/s00030-018-0536-4.
25
Amir Vaxman, Christian Müller, and Ofir Weber. Canonical Möbius Subdivision. ACM Trans. Graphics (Proc. SIGGRAPH ASIA), 2018. URL: http://www.geometrie.tuwien.ac.at/geom/ig/publications/moebiussubdivision/moebiussubdivision.pdf.
26
Héctor Andrade-Loarca, Gitta Kutyniok, Ozan Öktem, and Philipp Petersen. Extraction of Digital Wavefront Sets using Applied Harmonic Analysis and Deep Neural Networks. preprint, January 2019.
27
Oliver Junge Andres Denner and Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, Vol. 3, Issue 2, 2016. doi:10.3934/jcd.2016008.
28
L. Arcidiacono, M. Engel, and C. Kuehn. Discretized Fast-Slow Systems near Pitchfork Singularities. preprint, February 2019.
29
Benjamin Assarf, Ewgenij Gawrilow, Katrin Herr, Michael Joswig, Benjamin Lorenz, Andreas Paffenholz, and Thomas Rehn. Computing convex hulls and counting integer points with \polymake . Math. Program. Comput., 9(1):1–38, 2017. URL: http://dx.doi.org/10.1007/s12532-016-0104-z, doi:10.1007/s12532-016-0104-z.
30
Benjamin Assarf, Michael Joswig, and Andreas Paffenholz. Smooth Fano Polytopes with Many Vertices. Discrete Computational Geometry, Springer US, 2014(52):153–194, 2014. doi:10.1007/s00454-014-9607-4.
31
Benjamin Assarf, Michael Joswig, and Julian Pfeifle. Webs of stars or how to triangulate free sums of point configurations. J. Combin. Theory Ser. A, 159:183–214, 2018. URL: https://doi.org/10.1016/j.jcta.2018.05.007, doi:10.1016/j.jcta.2018.05.007.
32
Benjamin Assarf and Benjamin Nill. A bound for the splitting of smooth Fano polytopes with many vertices. Journal of Algebraic Combinatorics, 43(1):153–172, 2016. doi:10.1007/s10801-015-0630-1.
33
Dror Atariah. Parameterizations in the Configuration Space and Approximations of Related Surfaces. PhD thesis, Freie Universität Berlin, 2014. URL: http://www.diss.fu-berlin.de/diss/receive/FUDISS\_thesis\_000000096803.
34
Dror Atariah, Günter Rote, and Mathijs Wintraecken. Optimal Triangulation of saddle surfaces. Technical Report, Freie Universität Berlin, 2015.
35
Dominique Attali, Ulrich Bauer, Olivier Devillers, Marc Glisse, and André Lieutier. Homological reconstruction and simplification in $\mathbb R^3$. Computational Geometry, 48(8):606–621, September 2015. URL: http://dx.doi.org/10.1016/j.comgeo.2014.08.010, doi:10.1016/j.comgeo.2014.08.010.
36
Yuen Au Yeung. Crystalline Order, Surface Energy Densities and Wulff Shapes: Emergence from Atomistic Models. PhD thesis, Technische Universität München, München, 2013. URL: http://mediatum.ub.tum.de/node?id=1142127.
37
R. Badal, M. Cicalese, L. De Luca, and M. Ponsiglione. Gamma-convergence analysis of a generalized XY model: fractional vortices and string defects. Commun. Math. Phys. 358 (2018), no. 2, 705–739, March 2018. URL: https://link.springer.com/article/10.1007/s00220-017-3026-3\#citeas.
38
Changyeob Baek, Andrew O. Sageman-Furnas, Mohammad K. Jawed, and Pedro M. Reis. Form finding in elastic gridshells. Proceedings of the National Academy of Sciences, 115(1):75–80, 2018. doi:10.1073/pnas.1713841115.
39
Djordje Baralić, Pavle V. M. Blagojević, Roman Karasev, and Aleksandar Vučić. Index of Grassmann manifolds and orthogonal shadows. Forum Mathematicum, 30(6):1539–1572, July 2018. doi:10.1007/s00454-018-0006-0.
40
Victor V Batyrev and Lev A Borisov. Mirror duality and string-theoretic Hodge numbers. Inventiones mathematicae, 126(1):183–203, 1996.
41
Victor V. Batyrev. Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties. J. Alg. Geom, pages 493–535, 1994.
42
Ulrich Bauer and Herbert Edelsbrunner. The Morse Theory of Cech and Delaunay Filtrations. In Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG'14. New York, NY, USA, 2014. ACM. URL: http://dx.doi.org/10.1145/2582112.2582167, doi:10.1145/2582112.2582167.
43
Ulrich Bauer and Herbert Edelsbrunner. The Morse theory of Čech and Delaunay complexes. Transactions of the American Mathematical Society, 369(5):3741–3762, 2017. doi:10.1090/tran/6991.
44
Ulrich Bauer, Herbert Edelsbrunner, Grzegorz Jablonski, and Marian Mrozek. Persistence in sampled dynamical systems faster. Preprint, September 2017.
45
Ulrich Bauer, Claudia Landi, and Facundo Memoli. The Reeb Graph Edit Distance is Universal. preprint, January 2018.
46
Ulrich Bauer and Michael Lesnick. Induced matchings and the algebraic stability of persistence barcodes. Journal of Computational Geometry, 6(2):162–191, 2015. URL: http://jocg.org/index.php/jocg/article/view/205.
47
Ulrich Bauer and Michael Lesnick. Persistence Diagrams as Diagrams: A Categorification of the Stability Theorem. Preprint, November 2016.
48
Ulrich Bauer and Florian Pausinger. Persistent Betti numbers of random Čech complexes. preprint, January 2018.
49
Ulrich Bauer, Konrad Polthier, and Max Wardetzky. Uniform Convergence of Discrete Curvatures from Nets of Curvature Lines. Discrete and Computational Geometry, 43(4):798–823, 2010. URL: http://www.springerlink.com/content/84210067816n0m78/.
50
Ulrich Bauer and Abhishek Rathod. Hardness of Approximation for Morse Matching. preprint, January 2018.
51
Adam Bednorz and Witold Bednorz. Analytic sphere eversion using ruled surfaces. Differential Geometry and its Applications, 2019.
52
Andrey K. Belyaev, Caroline Lasser, and Giulio Trigila. Landau–Zener type surface hopping algorithms. The Journal of Chemical Physics, 140(22):–, June 2014. URL: http://scitation.aip.org/content/aip/journal/jcp/140/22/10.1063/1.4882073, doi:10.1063/1.4882073.
53
B. Benedetti. Smoothing discrete Morse theory. Annali Sc. Norm. Sup. Cl. Sci., 2015. accepted, preprint at arxiv.
54
B. Benedetti and F. H. Lutz. Random discrete Morse theory and a new library of triangulations. Experimental Mathematics, 23(1):66–94, 2014.
55
Bruno Benedetti and Frank H. Lutz. Knots in Collapsible and Non-Collapsible Balls. Electronic Journal of Combinatorics, August 2013. Paper P31, 29 pages. URL: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i3p31.
56
R.F. Bikbaev, A.I. Bobenko, and A.R. Its. Landau-Lifshitz equation, uniaxial anisotropy case: Theory of exact solutions. Theoretical and Mathematical Physics, 178(2):143–193, February 2014. URL: http://dx.doi.org/10.1007/s11232-014-0135-4, doi:10.1007/s11232-014-0135-4.
57
Havard Bakke Bjerkevik and Magnus Bakke Botnan. Computational Complexity of the Interleaving Distance. Proceedings of the 34th International Symposium on Computational Geometry (SoCG 2018), May 2018. doi:10.4230/LIPIcs.SoCG.2018.13.
58
Pavle V. M. Blagojevic, Florian Frick, Albert Haase, and Günter M. Ziegler. Hyperplane mass partitions via relative Equivariant Obstruction Theory. preprint, September 2015.
59
Pavle V. M. Blagojevic, Florian Frick, Benjamin Matschke, and Günter M. Ziegler. Tight and non-tight topological Tverberg type theorems. Oberwolfach Reports, 11(3):2284–2287, 2014.
60
Pavle V. M. Blagojevic, Florian Frick, and Günter M. Ziegler. Tverberg plus constraints. Bulletin of the London Mathematical Society, 46:953–967, 2014. Extended Abstract: Oberwolfach Reports, 11(1):14-16, 2014. URL: http://blms.oxfordjournals.org/cgi/content/abstract/bdu049?ijkey=s0zAd5sXaMm0aIt, doi:10.1112/blms/bdu049.
61
Pavle V. M. Blagojevic, Wolfgang Lück, and Günter M. Ziegler. On highly regular embeddings. Preprint, 19 pages; Transactions Amer. Math. Soc. to appear, Extended Abstract: in Proc. "Combinatorial Methods in Topology and Algebra” (CoMeTa), Cortona, May 2013.
62
Pavle V. M. Blagojević, Albert Haase, and Günter M. Ziegler. Tverberg-Type Theorems for Matroids: A Counterexample and a Proof. Combinatorica, Feb 2019. URL: https://doi.org/10.1007/s00493-018-3846-6, doi:10.1007/s00493-018-3846-6.
63
Pavle V. M. Blagojević, Günter Rote, Johanna K. Steinmeyer, and Günter M. Ziegler. Convex Equipartitions of Colored Point Sets. Discrete \\& Computational Geometry, 61(2):355–363, Mar 2019. URL: https://doi.org/10.1007/s00454-017-9959-7, doi:10.1007/s00454-017-9959-7.
64
Pavle V. M. Blagojević, Aleksandra S. Dimitrijević Blagojević, and Günter M. Ziegler. The topological transversal Tverberg theorem plus constraints. Preprint, "Discrete and Intuitive Geometry – László Fejes Tóth 100 Festschrift" (G. Ambrus, I. Bárány, K. J. Böröczky, G. Fejes Tóth, J. Pach, eds.), Bolyai Society Mathematical Studies series, to appear, march 2016.
65
Pavle V. M. Blagojević, Aleksandra S. Dimitrijević Blagojević, and Günter M. Ziegler. Polynomial partitioning for several sets of varieties. J. Fixed Point Theory Appl., 19:1653–1660, 2017.
66
Pavle V. M. Blagojević, Florian Frick, Albert Haase, and Günter M. Ziegler. Hyperplane mass partitions via relative equivariant obstruction theory. Documenta Mathematica, 21:735–771, 2016. URL: http://emis.ams.org/journals/DMJDMV/vol-21/20.pdf.
67
Pavle V. M. Blagojević, Albert Haase, and Günter M. Ziegler. Tverberg-type theorems for matroids: A counterexample and a proof. Preprint, 2017.
68
Pavle V. M. Blagojević, Nevena Palić, and Günter M. Ziegler. Cutting a part from many measures. Preprint, 15 pages, October 2017.
69
Pavle V. M. Blagojević, Günter Rote, Johanna Steinmeyer, and Günter M. Ziegler. Convex equipartitions of colored point sets. Discrete Comput. Geometry, December 2017. Published online.
70
Pavle V. M. Blagojević and Pablo Soberón. Thieves can make sandwiches. preprint, September 2017. doi:10.1112/blms.12109.
71
Pavle V. M. Blagojević and Günter M. Ziegler. Beyond the Borsuk-Ulam Theorem: The Topological Tverberg Story. In Martin Loebl, Jaroslav Nešetřil, and Robin Thomas, editors, Journey Through Discrete Mathematics. A Tribute to Jiří Matoušek, pages 273–341. Springer, May 2017. doi:10.1007/978-3-319-44479-6\_11.
72
Wilhelm Blaschke. Vorlesungen über Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie. III. Differentialgeometrie der Kreise und Kugeln. Vol. 29. Grundlehren Math. Wiss., 1929.
73
Pengbo Bo, Michael Bartoň, Denys Plakhotnik, and Helmut Pottmann. Towards efficient 5-axis flank CNC machining of free-form surfaces via fitting envelopes of surfaces of revolution. Computer Aided Design, 79:1–11, 2016.
74
Pengbo Bo, Michael Bartoň, and Helmut Pottmann. Automatic fitting of conical envelopes to free-form surfaces for flank CNC machining. Computer Aided Design, 91:84–94, 2017.
75
A. Bobenko, T. Hoffmann, and B. Springborn. Minimal surfaces from circle patterns: Geometry from combinatorics. Ann. of Math., 164(1):231–264, 2006.
76
A. Bobenko and U. Pinkall. Discretization of surfaces and integrable systems. In Discrete integrable geometry and physics, volume 16 of Oxford Lecture Ser. Math. Appl., pages 3–58. Oxford Univ. Press, 1999. URL: http://page.math.tu-berlin.de/\textasciitilde bobenko/papers/1999\_Bob\_Pin.pdf.
77
A. I. Bobenko, N. Dimitrov, and S. Sechelmann. Discrete uniformization of finite branched covers over the Riemann sphere via hyper-ideal circle patterns. 2015.
78
A. I. Bobenko and F. Günther. Discrete Riemann surfaces based on quadrilateral cellular decompositions. 2015.
79
A. I. Bobenko and F. Günther. Discrete complex analysis on planar quad-graphs. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
80
A. I. Bobenko and T. Hoffmann. S-conical cmc surfaces. Towards a unified theory of discrete surfaces with constant mean curvature. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
81
A. I. Bobenko, T. Hoffmann, B. König, and S. Sechelmann. S-conical minimal surfaces. Towards a unified theory of discrete minimal surfaces. Preprint, 2015.
82
A. I. Bobenko and A. Its. The asymptotic behaviour of the discrete holomorphic map $Z^a$ via the Riemann-Hilbert method. Duke Math.~J., 2015. accepted.
83
A. I. Bobenko, U. Pinkall, and B. Springborn. Discrete conformal maps and ideal hyperbolic polyhedra. Geom. Topol., 19:2155–2215, 2015. doi:10.2140/gt.2015.19.2155.
84
A. I. Bobenko and W. Schief. Discrete line complexes and integrable evolution of minors. Proc. Royal Soc. A, 471(2175):23 pp., 2015. doi:10.1098/rspa.2014.0819.
85
A. I. Bobenko, S. Sechelmann, and B. Springborn. Discrete conformal maps: Boundary value problems, circle domains, Fuchsian and Schottky uniformization. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
86
A. I. Bobenko and Yu. B. Suris. Discrete pluriharmonic functions as solutions of linear pluri-Lagrangian systems. Commun. Math. Phys., 336(1):199–215, 2015.
87
A.I. Bobenko and B. Springborn. Diskretisierung in Geometrie und Dynamik - Elastische Stäbe und Rauchringe. Mitteilungen der DMV, 21(1):218–224, December 2013. URL: http://www.degruyter.com/view/j/dmvm.2013.21.issue-00004/issue-files/dmvm.2013.21.issue-00004.xml.
88
Alexander Bobenko, Tim Hoffmann, Benno König, and Stefan Sechelmann. Towards a unifying theory of discrete minimal surfaces. in preparation, 2015.
89
Alexander Bobenko and Mikhail Skopenkov. Discrete Riemann surfaces: linear discretization and its convergence. J. reine und angew. Math., October 2014. doi:10.1515/crelle-2014-0065.
90
Alexander I Bobenko and Ulrike Bücking. Convergence of discrete period matrices and discrete holomorphic integrals for ramified coverings of the Riemann sphere. Preprint at arXiv, September 2018.
91
Alexander I Bobenko, Nikolay Dimitrov, and Stefan Sechelmann. Discrete Uniformization of Polyhedral Surfaces with Non-positive Curvature and Branched Covers over the Sphere via Hyper-ideal Circle Patterns. Discrete & Computational Geometry, 57(2):431–469, 2017.
92
Alexander I Bobenko and Felix Günther. Discrete Riemann surfaces based on quadrilateral cellular decompositions. Advances in Mathematics, 311:885–932, 2017.
93
Alexander I Bobenko, Sebastian Heller, and Nicholas Schmitt. Minimal n-Noids in hyperbolic and anti-de Sitter 3-space. preprint, February 2019. URL: https://arxiv.org/abs/1902.07992.
94
Alexander I Bobenko, Emanuel Huhnen-Venedey, and Thilo Rörig. Supercyclidic nets. International Mathematics Research Notices, 2017(2):323–371, February 2017. doi:10.1093/imrn/rnv328.
95
Alexander I Bobenko, Helmut Pottmann, and Thilo Rörig. Multi-Nets. Classification of discrete and smooth surfaces with characteristic properties on arbitrary parameter rectangles. Preprint, 2018.
96
Alexander I Bobenko and Wolfgang K Schief. Circle complexes and the discrete CKP equation. International Mathematics Research Notices, 2017(5):1504–1561, 2016. doi:10.1093/imrn/rnw021.
97
Alexander I Bobenko, Wolfgang K Schief, Yuri B Suris, and Jan Techter. On a Discretization of Confocal Quadrics. II. A Geometric Approach to General Parametrizations. International Mathematics Research Notices, 12 2018. URL: https://doi.org/10.1093/imrn/rny279, arXiv:http://oup.prod.sis.lan/imrn/advance-article-pdf/doi/10.1093/imrn/rny279/27090691/rny279.pdf, doi:10.1093/imrn/rny279.
98
Alexander I Bobenko and Ananth Sridhar. Abelian Higgs vortices and discrete conformal maps. Letters in Mathematical Physics, 108(2):249–260, 2017.
99
Alexander I. Bobenko. Symmetries and Integrability of Difference Equations. London Mathematical Society Lecture Notes, 1999.
100
Alexander I. Bobenko and Sergey I. Agafonov. Discrete Zγ and Painlevé equations. International Mathematics Research Notices, 2000(4):165–193, 01 2000. URL: http://oup.prod.sis.lan/imrn/article-pdf/2000/4/165/1951661/2000-4-165.pdf, doi:10.1155/S1073792800000118.
101
Alexander I. Bobenko and Felix Günther. On Discrete Integrable Equations with Convex Variational Principles. Letters in Mathematical Physics, 102(2):181–202, September 2012. URL: http://dx.doi.org/10.1007/s11005-012-0583-4, doi:10.1007/s11005-012-0583-4.
102
Alexander I. Bobenko and Felix Günther. Discrete complex analysis – the medial graph approach. Actes des rencontres du CIRM 3 no. 1: Courbure discrète: théorie et applications, pages 159–169, 2013. URL: http://acirm.cedram.org/acirm-bin/fitem?id=ACIRM\_2013\_\_3\_1\_159\_0, doi:10.5802/acirm.65.
103
Alexander I. Bobenko, Udo Hertrich-Jeromin, and Inna Lukyanenko. Discrete constant mean curvature nets in space forms: Steiner's formula and Christoffel duality. Discrete and Computational Geometry, 52(4):612–629, 2014. doi:10.1007/s00454-014-9622-5.
104
Alexander I. Bobenko and Ivan Izmestiev. Alexandrov's theorem, weighted Delaunay triangulations, and mixed volumes. Annales de l'institut Fourier, 2008(58):447–505, 2008.
105
Alexander I. Bobenko and Tatyana V. Pavlyukevich. Bryant n-noids with smooth ends or symmetry. preprint, 2005.
106
Alexander I. Bobenko, Tatyana V. Pavlyukevich, and Boris A. Springborn. Hyperbolic constant mean curvature one surfaces: spinor representation and trinoids in hypergeometric functions. preprint, 2003.
107
Alexander I. Bobenko and Pascal Romon. Discrete CMC surfaces in Rˆ3 and discrete minimal surfaces in Sˆ3: a discrete Lawson correspondence. Journal of Integrable Systems, October 2017. URL: https://academic.oup.com/integrablesystems/article/2/1/xyx010/4344752.
108
Alexander I. Bobenko, Wolfgang K. Schief, Yuri B. Suris, and Jan Techter. On a discretization of confocal quadrics. I. An integrable systems approach. Journal of Integrable Systems, 1(1):xyw005, 2016. doi:10.1093/integr/xyw005.
109
Alexander I. Bobenko, Wolfgang K. Schief, and Jan Techter. Checkerboard incircular nets: Laguerre geometry and parametrisation. Geometriae Dedicata, Apr 2019. doi:10.1007/s10711-019-00449-x.
110
Alexander I. Bobenko, Stefan Sechelmann, and Boris Springborn. Discrete uniformization of Riemann surfaces. in preparation, 2015.
111
Alexander I. Bobenko and Boris A. Springborn. Variational principles for circle patterns and Köbe’s theorem. Trans. Amer. Math. Soc, 2004(356):659–689, 2004.
112
Alexander I. Bobenko and Boris A. Springborn. A discrete Laplace-Beltrami operator for simplicial surfaces. Discrete Comput. Geom., 38(4):740–756, 2007. doi:10.1007/s00454-007-9006-1.
113
Alexander I. Bobenko and Yuri B. Suris. Discrete Differential Geometry: Integrable Structure. American Mathematical Society, 2009.
114
Alexander I. Bobenko and Martin P. Weidner. On a new conformal functional for simplicial surfaces. preprint, 2015.
115
B. Bodmann, A. Flinth, and G. Kutyniok. Compressed Sensing for Analog Signals. preprint, March 2018.
116
B. G. Bodmann, P. G. Casazza, and G. Kutyniok. A Quantitative Notion of Redundancy for Finite Frames. Appl. Comput. Harmon. Anal., 30:348–362, 2011.
117
B. G. Bodmann, G. Kutyniok, and X. Zhuang. Coarse Quantization with the Fast Digital Shearlet Transform. In Wavelets and Sparsity XIV (San Diego, CA, 2011), SPIE Proc., volume 8138, 8138OZ–1 – 8138OZ–10. SPIE, Bellingham, WA, 2011. doi:10.1117/12.892720.
118
Bernhard G. Bodmann, Gitta Kutyniok, and Xiaosheng Zhuang. Gabor Shearlets. Appl. Comput. Harmon. Anal., March 2013. submitted. URL: http://www.math.tu-berlin.de/fileadmin/i26\_fg-kutyniok/Kutyniok/Papers/GaborShearlets.pdf.
119
Christoph Bohle, Paul Peters, and Ulrich Pinkall. Constrained Willmore surfaces. Calc. Var. Partial Differential Equations, 2008. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=2389993.
120
R. Boll. Two-dimensional variational systems on the root lattice $Q(A_N)$. preprint, 2016.
121
R. Boll, M. Petrera, and Yu. B. Suris. Multi-time Lagrangian 1-forms for families of Bäcklund transformations. Relativistic Toda-type systems. J. Phys. A: Math. Theor., 46(27):275024, 26 pp., 2013. URL: http://dx.doi.org/10.1088/1751-8113/46/27/275204, doi:10.1088/1751-8113/46/27/275204.
122
R. Boll, M. Petrera, and Yu. B. Suris. On integrability of discrete variational systems: Octahedron relations. Internat. Math. Res. Notes, 2015:rnv140, 24 pp., 2015.
123
R. Boll, M. Petrera, and Yu. B.. Suris. On the variational interpretation of the discrete KP equation. In A.I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, Berlin-Heidelberg-New York, 2016.
124
Raphael Boll. On Bianchi permutability of Bäcklund transformations for asymmetric quad-equations. Journal of Nonlinear Mathematical Physics, 20(4):577–605, December 2013. URL: http://dx.doi.org/10.1080/14029251.2013.865829, doi:10.1080/14029251.2013.865829.
125
Raphael Boll, Matteo Petrera, and Yuri B. Suris. What is integrability of discrete variational systems? Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, February 2014. URL: http://rspa.royalsocietypublishing.org/content/470/2162/20130550.abstract, arXiv:http://rspa.royalsocietypublishing.org/content/470/2162/20130550.full.pdf+html, doi:10.1098/rspa.2013.0550.
126
John Bolton, Franz Pedit, and Lyndon Woodward. Minimal surfaces and the affine Toda field model. J. Reine Angew. Math. 459, 1995. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=1319519.
127
Ciprian S. Borcea and Ileana Streinu. Kinematics of Expansive Planar Periodic Mechanisms. Advances in Robot Kinematics (ARK'14), July 2014. preprint.
128
Ciprian S. Borcea and Ileana Streinu. Liftings and stresses for planar periodic frameworks. in Proc. 30th Symposium on Computational Geometry (SoCG'14), June 2014. preprint.
129
Stefan Born, Ulrike Bücking, and Boris Springborn. Quasiconformal Dilatation of Projective Transformations and Discrete Conformal Maps. Discrete & Computational Geometry, 57(2):305–317, 2017.
130
F. Bornemann, A. Its, S. Olver, and G. Wechslberger. Numerical Methods for the Discrete Map $Z^a$. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
131
Folkmar Bornemann. A note on the expansion of the smallest eigenvalue distribution of the LUE at the hard edge. The Annals of Applied Probability, 26(3):1942–1946, 2016. doi:10.1214/15-AAP1121.
132
Folkmar Bornemann and Michael La Croix. The Singular Values of the GOE. Random Matrices: Theory Appl. 04, 1550009 (2015) (32 pages), June 2015. doi:10.1142/S2010326315500094.
133
Folkmar Bornemann and Peter J Forrester. Singular values and evenness symmetry in random matrix theory. In Forum Mathematicum, volume 28, 873–891. 2016. doi:10.1515/forum-2015-0055.
134
Folkmar Bornemann, Peter J. Forrester, and Anthony Mays. Finite Size Effects for Spacing Distributions in Random Matrix Theory: Circular Ensembles and Riemann Zeros. Studies in Applied Mathematics, 138(4):401–437, 2017. URL: http://dx.doi.org/10.1111/sapm.12160, doi:10.1111/sapm.12160.
135
Magnus Bakke Botnan and Michael Lesnick. Algebraic Stability of Zigzag Persistence Modules. Algebr. Geom. Topol., Volume 18, Number 6 (2018), 3133-3204, December 2018. URL: https://msp.org/scripts/coming.php?jpath=agt, doi:10.2140/agt.2018.18.3133.
136
P. Boufounos, G. Kutyniok, and H. Rauhut. Sparse Recovery from Combined Fusion Frame Measurements. IEEE Trans. Inform. Theory, 57:3864–3876, 2011.
137
Werner Boy. Über die Curvatura integra und die Topologie geschlossener Flächen. Mathematische Annalen, 57(2):151–184, June 1903. doi:10.1007/BF01444342.
138
A. Braides and M. Cicalese. Interfaces, modulated phases and textures in lattice systems. Arch. Rat. Mech. Anal., 223, (2017), 977-1017, February 2017. URL: https://link.springer.com/article/10.1007/s00205-016-1050-7.
139
A. Braides, M. Cicalese, and M. Ruf. Continuum limit and stochastic homogenization of discrete ferromagnetic thin films. Analysis & PDE, (2018), vol. 11, no.2, 499-553., March 2018. URL: https://msp.org/apde/2018/11-2/p06.xhtml.
140
Philip Brinkmann. f-Vector Spaces of Polytopes, Spheres, and Eulerian Lattices. PhD thesis, FU Berlin, June 2016. vii+132 pages. URL: http://www.diss.fu-berlin.de/diss/receive/FUDISS\_thesis\_000000103149.
141
Philip Brinkmann and Günter M Ziegler. A flag vector of a 3-sphere that is not the flag vector of a 4-polytope. Mathematika, 63(1):260–271, 2017. doi:10.1112/S0025579316000267.
142
Philip Brinkmann and Günter M. Ziegler. Small f-vectors of 3-spheres and of 4-polytopes. Mathematics of Computation, February 2018. doi:10.1090/mcom/3300.
143
Sarah Brodsky, Michael Joswig, Ralph Morrison, and Bernd Sturmfels. Moduli of tropical plane curves. Research in the Mathematical Sciences, 2(1):4, 2015. doi:10.1186/s40687-014-0018-1.
144
Tatiana A. Bubba, Gitta Kutyniok, Matti Lassas, Maximilian März, Wojciech Samek, Samuli Siltanen, and Vignesh Srinivasan. Learning The Invisible: A Hybrid Deep Learning-Shearlet Framework for Limited Angle Computed Tomography. Inverse Problems, 35(6):064002, June 2019. doi:10.1088/1361-6420/ab10ca.
145
Timo Burggraf, Michael Joswig, Marc E. Pfetsch, Manuel Radons, and Stefan Ulbrich. Semi-automatically optimized calibration of internal combustion engines. 2018. Preprint arXiv 1806.10980.
146
Imre Bárány, Pavle V. M. Blagojević, and Günter M. Ziegler. Tverberg’s theorem at 50: extensions and counterexamples. Notices of the AMS, 63(7):732–739, 2016. doi:10.1090/noti1415.
147
Helmut Bölcskei, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. Memory-optimal neural network approximation. In Wavelets and Sparsity XVII, volume 10394, 103940Q. International Society for Optics and Photonics, 2017. URL: https://www.math.tu-berlin.de/fileadmin/i26\_fg-kutyniok/Kutyniok/Papers/EfficientMemoryDNNs.pdf, doi:10.1117/12.2272490.
148
Helmut Bölcskei, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. Optimal Approximation with Sparsely Connected Deep Neural Networks. preprint, 2017.
149
U. Bücking. Approximation of conformal mappings using confomally equivalent triangular lattices. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
150
U. Bücking. Introduction to discrete complex analysis. In R. Verge-Rebelo D. Levi and P. Winternitz, editors, Symmetries and Integrability of Difference Equations: Lecture Notes of the Abecederian of SIDE 12, Montréal 2016, pages 153–193. Springer, 2017.
151
U. Bücking. On rigidity and convergence of circle patterns. Discrete Comput. Geom., 61(2):380–420, 2019. doi:10.1007/s00454-018-0022-0.
152
U. Bücking and D. Matthes. Constructing solutions to the Björling problem for isothermic surfaces by structure preserving discretization. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
153
Ulrike Bücking. $C^\infty $-convergence of conformal mappings for conformally equivalent triangular lattices. Results in Mathematics, 73(2):84, June 2018.
154
Ulrike Bücking. Conformally symmetric triangular lattices and discrete θ-conformal maps. preprint, August 2018.
155
R. Schubert C. Lasser and S. Troppmann. Non-Hermitian propagation of Hagedorn wavepackets. 33pp, 2015.
156
Jason Cantarella, Joseph H. G. Fu, Robert B. Kusner, and John M. Sullivan. Ropelength Criticality. Geom. Topol., 18:1973–2043, 2014.
157
Jason Cantarella, Joseph H. G. Fu, Robert B. Kusner, John M. Sullivan, and Nancy C. Wrinkle. Criticality for the Gehring Link Problem. Geom. Topol., 10:2055–2115, 2006.
158
Jason Cantarella, Robert B. Kusner, and John M. Sullivan. On the minimum ropelength of knots and links. Invent. Math., 150:257–286, 2002.
159
Wolfgang Carl. A Laplace Operator on Semi-Discrete Surfaces. Foundations of Computational Mathematics, pages 1–36, 2015. URL: http://dx.doi.org/10.1007/s10208-015-9271-y, doi:10.1007/s10208-015-9271-y.
160
Wolfgang Carl and Johannes Wallner. Variational Laplacians for semidiscrete surfaces. submitted, 2014. URL: http://www.geometrie.tugraz.at/carl/gradients.pdf.
161
José A. Carrillo, Bertram Düring, Daniel Matthes, and David S. McCormick. A Lagrangian Scheme for the Solution of Nonlinear Diffusion Equations Using Moving Simplex Meshes. J Sci Comput, November 2017. URL: https://doi.org/10.1007/s10915-017-0594-5.
162
Cinzia Casagrande. The number of vertices of a Fano polytope. Annales de l'Institut Fourier, 56(1):121–130, 2006. URL: https://aif.centre-mersenne.org/item/AIF\_2006\_\_56\_1\_121\_0, doi:10.5802/aif.2175.
163
P. Casazza, A. Heinecke, F. Krahmer, and G. Kutyniok. Optimally sparse frames. IEEE Trans. Inform. Theory, 57(11):7279–7287, 2011. URL: http://num.math.uni-goettingen.de/\textasciitilde f.krahmer/CHKK11.pdf.
164
Cesar Ceballos, Arnau Padrol, and Camilo Sarmiento. Dyck path triangulations and extendability. Journal of Combinatorial Theory, Series A, 131(0):187–208, 2015. URL: http://www.sciencedirect.com/science/article/pii/S009731651400140X.
165
I. Chao, U. Pinkall, P. Sanan, and P. Schröder. A simple geometric model for elastic deformations. ACM Transactions on Graphics, 2010. URL: http://www.eecs.berkeley.edu/\textasciitilde sequin/CS285/PAPERS/Chao\_Elastic-Model.pdf.
166
Thomas Chappell, Tobias Friedl, and Raman Sanyal. Two double poset polytopes. SIAM Journal on Discrete Mathematics, 31(4):2378–2413, 2017. URL: http://epubs.siam.org/doi/10.1137/16M1091800.
167
Hao Chen and Arnau Padrol. Scribability Problems for Polytopes. Preprint, August 2015.
168
A. Chern, U. Pinkall, and P. Schröder. Close-to-conformal deformations of volumes. ACM Transactions on Graphics, 34(4):56, 2015.
169
Albert Chern. A Reflectionless Discrete Perfectly Matched Layer. With minor revision accepted by Journal of Computational Physics., March 2019.
170
Albert Chern, Felix Knöppel, Franz Pedit, and Ulrich Pinkall. Commuting Hamiltonian flows of curves in real space forms. Preprint, September 2018.
171
Albert Chern, Felix Knöppel, Franz Pedit, Ulrich Pinkall, and Peter Schröder. Finding Conformal and Isometric Immersions of Surfaces. Preprint, January 2019.
172
Albert Chern, Felix Knöppel, and Peter Pinkall, Ulrich and​ ​Schröder. Inside Fluids: Clebsch Maps for Visualization and Processing. ACM Trans. Graph., 36(4):142:1–142:11, July 2017. doi:10.1145/3072959.3073591.
173
Albert Chern, Felix Knöppel, Peter Pinkall, Ulrich and​ ​Schröder, and Steffen Weißmann. Schrödinger's Smoke. ACM Trans. Graph., 35:77:1–77:13, July 2016. doi:10.1145/2897824.2925868.
174
Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. Shape from Metric. ACM Trans. Graph., 37(4):63:1–63:17, August 2018. URL: http://multires.caltech.edu/pubs/ShapeFromMetric.pdf, doi:10.1145/3197517.3201276.
175
M. Cicalese and F. Solombrino. Frustrated ferromagnetic spin chains: a variational approach to chirality transitions. Journal of Nonlinear Science, 25(291-313), 2015.
176
Marco Cicalese, Antoine Gloria, and Matthias Ruf. From statistical polymer physics to nonlinear elasticity. preprint, September 2018.
177
Marco Cicalese, Matthias Ruf, and Francesco Solombrino. Chirality transitions in frustrated S2-valued spin systems. Math. Models Methods Appl. Sci., 26, (2016), no. 8, 1481-1529, July 2016. doi:10.1142/S0218202516500366.
178
Flore Nabet Clément Cancès, Daniel Matthes. A two-phase two-fluxes degenerate Cahn-Hilliard model as constrained Wasserstein gradient flow. preprint, December 2017.
179
Giulia Codenotti, Lukas Katthän, and Raman Sanyal. On f-and h-vectors of relative simplicial complexes. Preprint, 2017.
180
David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of Persistence Diagrams. Discrete and Computational Geometry, 37(1):103–120, January 2007. URL: http://dx.doi.org/10.1007/s00454-006-1276-5, doi:10.1007/s00454-006-1276-5.
181
Leonardo Colombo, Fernando Jiménez, and David Martín de Diego. Variational integrators for underactuated mechanical control systems with symmetries. submitted, September 2012.
182
David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties. American Mathematical Society, 2011.
183
K. Crane, U. Pinkall, and P. Schröder. Spin transformations of discrete surfaces. ACM Transactions on Graphics, 2011. URL: http://www.cs.columbia.edu/\textasciitilde keenan/Projects/SpinTransformations/paper.pdf.
184
Keenan Crane, Ulrich Pinkall, and Peter Schröder. Robust Fairing via Conformal Curvature Flow. ACM Trans. Graph., 2013. URL: http://www.cs.columbia.edu/\textasciitilde keenan/Projects/ConformalWillmoreFlow/paper.pdf.
185
P. Deift, C. S. Güntürk, and F. Krahmer. An Optimal Family of Exponentially Accurate One-Bit Sigma-Delta Quantization Schemes. Comm. Pure Appl. Math., 64(7):883–919, 2011. URL: http://num.math.uni-goettingen.de/\textasciitilde f.krahmer/DGK11.pdf.
186
U.K. Deiters and T. Kraska. High-Pressure Fluid Phase Equilibria: Phenomenology and Computation. Supercritical Fluid Science an. Elsevier Science, 2012. ISBN 9780444563477.
187
Charles Delaunay. Sur la surface de révolution dont la courbure moyenne est constante. Journal de mathématiques pures et appliquées, 1841. URL: http://sites.mathdoc.fr/JMPA/feuilleter.php?id=JMPA\_1841\_1\_6.
188
A. Delshams, M. Gonchenko, and S. Gonchenko. On dynamics and bifurcations of area-preserving maps with homoclinic tangencies. Submitted to Nonlinearity, July 2014.
189
A. Delshams, M. Gonchenko, and P. Gutiérrez. A methodology for obtaining asymptotic estimates for the exponentially small splitting of separatrices to whiskered tori with quadratic frequencies. To appear in Research Perspectives CRM Barcelona, July 2014.
190
Amadeu Delshams, Marina Gonchenko, and Sergey V. Gonchenko. On bifurcations of area-preserving and nonorientable maps with quadratic homoclinic tangencies. Regul. Chaotic Dyn., 19(6):702–717, 2014. URL: http://dx.doi.org/10.1134/S1560354714060082, doi:10.1134/S1560354714060082.
191
Amadeu Delshams, Marina Gonchenko, and Pere Gutiérrez. Continuation of the exponentially small transversality for the splitting of separatrices to a whiskered torus with silver ratio. Regul. Chaotic Dyn., 19(6):663–680, 2014. URL: http://dx.doi.org/10.1134/S1560354714060057, doi:10.1134/S1560354714060057.
192
Amadeu Delshams, Marina Gonchenko, and Pere Gutiérrez. Exponentially Small Lower Bounds for the Splitting of Separatrices to Whiskered Tori with Frequencies of Constant Type. International Journal of Bifurcation and Chaos, 24(08):1440011, 2014. URL: http://www.worldscientific.com/doi/abs/10.1142/S0218127414400112, arXiv:http://www.worldscientific.com/doi/pdf/10.1142/S0218127414400112, doi:10.1142/S0218127414400112.
193
Amadeu Delshams, Marina Gonchenko, and Pere Gutiérrez. Exponentially small asymptotic estimates for the splitting of separatrices to whiskered tori with quadratic and cubic frequencies. Electron. Res. Announc. Math. Sci., 21:41–61, 2014. URL: http://dx.doi.org/10.3934/era.2014.21.41, doi:10.3934/era.2014.21.41.
194
Elizabeth Denne, Yuanan Diao, and John M. Sullivan. Quadrisecants give new lower bounds for the ropelength of a knot. Geom. Topol., 10:1–26, 2006.
195
Elizabeth Denne and John M. Sullivan. The Distortion of a Knotted Curve. Proc. Amer. Math. Soc., 137:1139–1148, 2009.
196
N. Dimitrov. Hyper-ideal Circle Patterns with Cone Singularities. Results in Mathematics, pages 1–45, 2015. doi:10.1007/s00025-015-0453-3.
197
Benedict Dingfelder and J.A.C. Weideman. An improved Talbot method for numerical Laplace transform inversion. Numerical Algorithms, 68(1):167–183, 2015. URL: http://dx.doi.org/10.1007/s11075-014-9895-z, doi:10.1007/s11075-014-9895-z.
198
Sebastian Eberhardt, Steffen Weissmann, Ulrich Pinkall, and Nils Thuerey. Hierarchical Vorticity Skeletons. Proceedings of the Symposium on Computer Animation (SCA '12), to appear:11, June 2017. URL: https://ge.in.tum.de/download/2017-sca-eberhardt.pdf.
199
Holger Eble, Michael Joswig, Lisa Lamberti, and Will Ludington. Cluster partitions and fitness landscapes of the Drosophila fly microbiome. 2018. Preprint arXiv 1809.02533.
200
H. Edelsbrunner. The union of balls and its dual shape. Discrete and Computational Geometry, 13(1):415–440, December 1995. URL: http://dx.doi.org/10.1007/bf02574053, doi:10.1007/bf02574053.
201
Herbert Edelsbrunner. Surface Reconstruction by Wrapping Finite Sets in Space. In Boris Aronov, Saugata Basu, János Pach, and Micha Sharir, editors, Discrete and Computational Geometry, volume 25 of Algorithms and Combinatorics, pages 379–404. Springer Berlin Heidelberg, 2003. URL: http://dx.doi.org/10.1007/978-3-642-55566-4\\_17, doi:10.1007/978-3-642-55566-4\\_17.
202
Herbert Edelsbrunner, Grzegorz Jablonski, and Marian Mrozek. The Persistent Homology of a Self-Map. Foundations of Computational Mathematics, pages 1–32, 2014. URL: http://dx.doi.org/10.1007/s10208-014-9223-y, doi:10.1007/s10208-014-9223-y.
203
Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological Persistence and Simplification. Discrete & Computational Geometry, 28(4):511–533, November 2002. URL: http://dx.doi.org/10.1007/s00454-002-2885-2, doi:10.1007/s00454-002-2885-2.
204
Herbert Edelsbrunner, Anton Nikitenko, and Matthias Reitzner. Expected sizes of Poisson–Delaunay mosaics and their discrete Morse functions. Advances in Applied Probability, 49(3):745–767, 2017.
205
Herbert Edelsbrunner and Florian Pausinger. Approximation and convergence of the intrinsic volume. Advances in Mathematics, 2015. accepted.
206
Herbert Edelsbrunner and Katharina Ölsböck. Holes and dependences in an ordered complex. Computer Aided Geometric Design, August 2019. URL: http://pub.ist.ac.at/\textasciitilde edels/Papers/2018-J-06-HolesDependences.pdf.
207
Maximilian Engel and Christian Kuehn. Discretized Fast-Slow Systems near Transcritical Singularities. preprint, June 2018.
208
Maximilian Engel, Jeroen S.W. Lamb, and Martin Rasmussen. Conditioned Lyapunov exponents for random dynamical systems. preprint, May 2018.
209
Leonhard Euler. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti. 174. URL: eulerarchive.org.
210
Myfanwy E. Evans and Stephen T. Hyde. From three-dimensional weavings to swollen corneocytes. J.~R. Soc. Interface, 8:1274–1280, 2011. URL: http://rsif.royalsocietypublishing.org/content/8/62/1274.short, doi:10.1098/rsif.2010.0722.
211
Myfanwy E. Evans, Vanessa Robins, and Stephen Hyde. Periodic entanglement I: nets from hyperbolic reticulations. Acta Cryst., A69:241–261, 2013. URL: http://journals.iucr.org/a/issues/2013/03/00/eo5019/index.html, doi:10.1107/S0108767313001670.
212
Myfanwy E. Evans, Vanessa Robins, and Stephen Hyde. Periodic entanglement II: weavings from hyperbolic line patterns. Acta Cryst., A69:262–275, 2013. URL: http://journals.iucr.org/a/issues/2013/03/00/eo5020/index.html, doi:10.1107/S0108767313001682.
213
Myfanwy E. Evans, Vanessa Robins, and Stephen Hyde. Ideal geometry of periodic entanglements. P. R. Soc. A, 471(2181):2015.0254, 2015. doi:10.1098/rspa.2015.0254.
214
Myfanwy E. Evans and Roland Roth. Shaping the skin: the interplay of mesoscale geometry and corneocyte swelling. Phys. Rev. Lett., 112(3):038102:1–5, 2014. URL: http://link.aps.org/doi/10.1103/PhysRevLett.112.038102.
215
Günter Ewald. Combinatorial convexity and algebraic geometry. Springer, 1996.
216
Sebastián Ferraro, Fernando Jiménez, and David Martín de Diego. New developments on the Geometric Nonholonomic Integrator. Nonlinearity, 28:871-900, 2015.
217
D. Ferus, K. Leschke, F. Pedit, and U. Pinkall. Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori. Inventiones Mathematicae, 146(3):507–593, 2001.
218
Dirk Ferus and Franz Pedit. S1-equivariant minimal tori in S4 and S1-equivariant Willmore tori in S3. Math. Z., 1990. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=1055991.
219
Moritz Firsching. Realizability and inscribability for some simplicial spheres and matroid polytopes. Preprint, August 2015.
220
Moritz Firsching. Optimization Methods in Discrete Geometry. PhD thesis, FU Berlin, January 2016. 85 pages. URL: http://www.diss.fu-berlin.de/diss/receive/FUDISS\_thesis\_000000101268.
221
Moritz Firsching. Realizability and inscribability for simplicial polytopes via nonlinear optimization. Mathematical Programming, 166(1-2):273–295, 2017. doi:10.1007/s10107-017-1120-0.
222
Michael Fisher, Boris Springborn, Peter Schröder, and Alexander I. Bobenko. An algorithm for the construction of intrinsic Delaunay triangulations with applications to digital geometry processing. Computing, 81(2-3):199–213, 2007. doi:10.1007/s00607-007-0249-8.
223
Benedikt Fluhr. The Mayer-Vietoris Pyramid Sheaf-theoretically. Poster Session: Bridging Statistics and Sheaves at IMA, Minneapolis, May 2018. URL: http://bfluhr.com/bucket/poster-ima.pdf.
224
Simon Flöry, Yukie Nagai, Florin Isvoranu, Helmut Pottmann, and Johannes Wallner. Ruled Free Forms. In Lars Hesselgren, Shrikant Sharma, Johannes Wallner, Niccolo Baldassini, Philippe Bompas, and Jacques Raynaud, editors, Advances in Architectural Geometry 2012, pages 57–66. Springer, 2012. doi:10.1007/978-3-7091-1251-9\_4.
225
Marco Di Francesco, Massimo Fornasier, Jan-Christian Hütter, and Daniel Matthes. Asymptotic Behavior of Gradient Flows Driven by Nonlocal Power Repulsion and Attraction Potentials in One Dimension. accepted at SIAM-MA, January 2014.
226
Florian Frick and Raman Sanyal. Minkowski complexes and convex threshold dimension. Journal of Combinatorial Theory, Series A, 151:202–206, 2017. URL: http://www.sciencedirect.com/science/article/pii/S0097316517300584.
227
Tobias Friedl, Cordian Riener, and Raman Sanyal. Reflection groups, reflection arrangements, and invariant real varieties. Proceedings of the American Mathematical Society, 2017. URL: http://www.ams.org/journals/proc/0000-000-00/S0002-9939-2017-13821-0/home.html, doi:10.1090/proc/13821.
228
R. D. James G. Friesecke and D. Jüstel. Twisted x-rays: incoming waveforms yielding discrete diffraction patterns for helical structures. 2015.
229
Wolfgang Gaim and Caroline Lasser. Corrections to Wigner type phase space methods. Nonlinearity, 27(12):2951–2974, 2014. URL: http://stacks.iop.org/0951-7715/27/i=12/a=2951, doi:10.1088/0951-7715/27/12/2951.
230
Andreas Gathmann, Michael Kerber, and Hannah Markwig. Tropical fans and the moduli spaces of tropical curves. Compositio Mathematica, 145(1):173–195, 2009. doi:10.1112/S0010437X08003837.
231
Konstantinos Gavriil, Alexander Schiftner, and Helmut Pottmann. Optimizing B-spline surfaces for developability and paneling architectural freeform surfaces. Computer-Aided Design, 111:29 – 43, 2019. doi:https://doi.org/10.1016/j.cad.2019.01.006 [doi.org].
232
Ewgenij Gawrilow and Michael Joswig. polymake: a framework for analyzing convex polytopes. In Polytopes - combinatorics and computation (Oberwolfach, 1997), volume 29 of DMV Sem., pages 43–73. Birkhäuser, Basel, 2000. doi:10.1007/978-3-0348-8438-9\_2.
233
Laura Gellert and Raman Sanyal. On degree sequences of undirected, directed, and bidirected graphs. European Journal of Combinatorics, 64:113–124, 2017. URL: http://www.sciencedirect.com/science/article/pii/S0195669817300409.
234
M. Genzel, G. Kutyniok, and M. März. $\ell ^1$-Analysis Minimization and Generalized \mbox (Co-)Sparsity: When Does Recovery Succeed? preprint, October 2017.
235
Georg Glaeser and Konrad Polthier. Bilder der Mathematik. Springer Spektrum, 2 edition, 2010. ISBN 978-3-662-43416-1. Nachdruck 2014.
236
Georg Glaeser and Konrad Polthier. Wiskunde in beeld. Uitgevrij Veen Magazines BV, 2012. ISBN 978-90-8571-250-3.
237
Georg Glaeser and Konrad Polthier. Immagini Della Matematica. Springer, Italia, 2013. ISBN 978-88-6030-619-7.
238
Georg Glaeser and Konrad Polthier. Surprenantes images de mathématiques. Belin, 2013. ISBN 978-27-0115-695-8. Janie Molard(Übersetzerin).
239
Bernd Gonska and Arnau Padrol. Neighborly inscribed polytopes and Delaunay triangulations. Preprint, August 2013.
240
Bernd Gonska and Arnau Padrol. Many neighborly inscribed polytopes and Delaunay triangulations. In 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 161–168. 2014. URL: http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAT0115.
241
Bernd Gonska and Günter M. Ziegler. Inscribable stacked polytopes. Adv. Geom., 13:723–740, 2013.
242
Olga Graf, Ayush Bhandari, and Felix Krahmer. One-Bit Unlimited Sampling. preprint, november 2018.
243
Francesco Grande, Arnau Padrol, and Raman Sanyal. Extension complexity and realization spaces of hypersimplices. Discrete Comput Geom, 2017. doi:10.1007/s00454-017-9925-4.
244
Francesco Grande and Raman Sanyal. Theta rank, levelness, and matroid minors. J. Combin. Theory Ser. B, 123:1–31, 2017. doi:10.1016/j.jctb.2016.11.002.
245
P. Grohs, G. Kutyniok, J. Ma, and P. Petersen. Anisotropic multiscale systems on bounded domains. preprint, 2015.
246
Philipp Grohs, Sandra Keiper, Gitta Kutyniok, and Martin Schäfer. α-Molecules. preprint, July 2014.
247
Philipp Grohs and Gitta Kutyniok. Parabolic molecules. Found. Comput. Math., 14(2):299–337, 2014. URL: http://dx.doi.org/10.1007/s10208-013-9170-z, doi:10.1007/s10208-013-9170-z.
248
Bifurcations of the nodoids, volume 24, Mathematisches Forschungsinstitut Oberwolfach, 2007. Progress in surface theory.
249
Felix Günther. Discrete Riemann surfaces and integrable systems. PhD thesis, TU Berlin, September 2014. URL: http://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/5659.
250
Felix Günther, Caigui Jiang, and Helmut Pottmann. Smooth polyhedral surfaces. preprint, March 2017.
251
J. Keller H. Dietert and S. Troppmann. An invariant class of Hermite type multivariate polynomials for the Wigner transform. 22pp, 2015.
252
Christian Haase, Martina Juhnke-Kubitzke, Raman Sanyal, and Thorsten Theobald. Mixed Ehrhart polynomials. Electron. J. Combin., 24(Issue 1):Paper #P1.10, 2017. URL: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i1p10.
253
Simon Hampe and Michael Joswig. Tropical computations in polymake. In Gebhard Böckle, Wolfram Decker, and Gunter Malle, editors, Algorithmic and experimental methods in algebra, geometry, and number theory, pages 361–385. Springer, Cham, 2017.
254
Simon Hampe, Michael Joswig, and Benjamin Schröter. Algorithms for Tight Spans and Tropical Linear Spaces. Journal of Symbolic Computation, 2018. Proceedings of MEGA 2017. doi:10.1016/j.jsc.2018.06.016.
255
Anna Maria Hartkopf and Günter M. Ziegler. Adopt a Polyhedron - A Citizen Art Project in Mathematics. In Eve Torrence, Bruce Torrence, Carlo Séquin, and Kristóf Fenyvesi, editors, Proceedings of Bridges 2018: Mathematics, Art, Music, Architecture, Education, Culture, 579–584. Phoenix, Arizona, 2018. Tessellations Publishing.
256
Lynn Heller. Constrained Willmore tori and elastic curves in 2-dimensional space forms. Comm. Anal. Geom., 2014. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=3210758.
257
Sven Herrmann, Anders Jensen, Michael Joswig, and Bernd Sturmfels. How to draw tropical planes. Electron. J. Combin., 2009(16):26, 2009. URL: http://www.combinatorics.org/Volume\_16/Abstracts/v16i2r6.html.
258
Sven Herrmann and Michael Joswig. Totally splittable polytopes. Discrete Comput. Geom., 44(1):149–166, 2010. doi:10.1007/s00454-009-9217-8.
259
Klaus Hildebrandt and Konrad Polthier. Generalized shape operators on polyhedral surfaces. Computer Aided Geometric Design, 28(5):321 – 343, 2011. URL: http://www.sciencedirect.com/science/article/pii/S0167839611000628, doi:DOI: 10.1016/j.cagd.2011.05.001.
260
Klaus Hildebrandt and Konrad Polthier. On approximation of the Laplace-Beltrami operator and the Willmore energy of surfaces. Computer Graphics Forum, 30(5):1513–1520, 2011. URL: http://dx.doi.org/10.1111/j.1467-8659.2011.02025.x, doi:10.1111/j.1467-8659.2011.02025.x.
261
Klaus Hildebrandt, Konrad Polthier, and Max Wardetzky. On the convergence of metric and geometric properties of polyhedral surfaces. Geometriae Dedicata, 123(1):89–112, 2006.
262
Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, and Konrad Polthier. Modal shape analysis beyond Laplacian. Computer Aided Geometric Design, 29(5):204–218, 2012. doi:10.1016/j.cagd.2012.01.001.
263
Nigel J. Hitchin. Harmonic maps from a 2-torus to the 3-sphere. J. Differential Geom. 31 no. 3, 1990. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=1053342.
264
Tim Hoffmann. Conformally Symmetric Circle Packings. 2001. URL: http://page.math.tu-berlin.de/\textasciitilde hoffmann/interactive/cscpOnline/Applets.html.
265
Tim Hoffmann. Discrete Hashimoto Surfaces and a Doubly Discrete Smoke-Ring Flow. Discrete Differential Geometry, 2008(38):95–115, 2008.
266
Tim Hoffmann and Andrew O. Sageman-Furnas. A \$\$2\backslash times 2\$\$2\texttimes 2Lax Representation, Associated Family, and Bäcklund Transformation for Circular K-Nets. Discrete \\& Computational Geometry, 56(2):472–501, Sep 2016. URL: https://doi.org/10.1007/s00454-016-9802-6, doi:10.1007/s00454-016-9802-6.
267
Tim Hoffmann, Andrew O. Sageman-Furnas, and Max Wardetzky. A Discrete Parametrized Surface Theory in ℝ3. International Mathematics Research Notices, 2017(14):4217–4258, 07 2016. URL: https://doi.org/10.1093/imrn/rnw015, arXiv:http://oup.prod.sis.lan/imrn/article-pdf/2017/14/4217/18767591/rnw015.pdf, doi:10.1093/imrn/rnw015.
268
Tim Hoffmann and Zi Ye. A discrete extrinsic and intrinsic Dirac operator. Preprint, February 2018.
269
Emanuel Huhnen-Venedey. Cyclidic and hyperbolic nets: A piecewise smooth discretization of orthogonal and asymptotic nets in discrete differential geometry. PhD thesis, TU Berlin, 2014.
270
Emanuel Huhnen-Venedey and Thilo Rörig. Discretization of asymptotic line parametrizations using hyperboloid surface patches. Geometriae Dedicata, 168(1):265–289, February 2014. URL: http://dx.doi.org/10.1007/s10711-013-9830-9, doi:10.1007/s10711-013-9830-9.
271
Emanuel Huhnen-Venedey and Wolfgang K. Schief. On Weingarten Transformations of Hyperbolic Nets. International Mathematics Research Notices, 2014. URL: http://imrn.oxfordjournals.org/content/early/2014/01/24/imrn.rnt354.abstract, arXiv:http://imrn.oxfordjournals.org/content/early/2014/01/24/imrn.rnt354.full.pdf+html, doi:10.1093/imrn/rnt354.
272
Mark A. Iwen, Felix Krahmer, Sara Krause-Solberg, and Johannes Maly. On Recovery Guarantees for One-Bit Compressed Sensing on Manifolds. preprint, July 2018.
273
Ivan Izmestiev, Robert B. Kusner, Günter Rote, Boris Springborn, and John M. Sullivan. There is no triangulation of the torus with vertex degrees 5, 6, ... , 6, 7 and related results: geometric proofs for combinatorial theorems. Geometriae Dedicata, 166(1):15–29, October 2013. URL: http://dx.doi.org/10.1007/s10711-012-9782-5, doi:10.1007/s10711-012-9782-5.
274
C. Lasser J. Keller and T. Ohsawa. A new phase space density for quantum expectations. 24pp, 2015.
275
Hildeberto Jardón-Kojakhmetov and Christian Kuehn. On fast-slow consensus networks with a dynamic weight. preprint, April 2019.
276
Caigui Jiang, Chengcheng Tang, Marko Tomičić, Johannes Wallner, and Helmut Pottmann. Interactive modeling of architectural freeform structures - combining geometry with fabrication and statics. In P. Block, J. Knippers, and W. Wang, editors, Advances in Architectural Geometry. Springer, 2014.
277
Caigui Jiang, Chengcheng Tang, Amir Vaxman, Peter Wonka, and Helmut Pottmann. Polyhedral Patterns. ACM Trans. Graphics, 2015. Proc. SIGGRAPH Asia.
278
Caigui Jiang, Jun Wang, Johannes Wallner, and Helmut Pottmann. Freeform Honeycomb Structures. Comput. Graph. Forum, 33(5):185–194, 2014. Proc. Symposium Geometry Processing. doi:10.1111/cgf.12444.
279
Fernando Jimenez and Juergen Scheurle. On the discretization of nonholonomic dynamics in $\mathbb R^n$. J. Geom. Mechanics, 7(1):43-80, 2015.
280
Michael R. Jimenez, Christian Müller, and Helmut Pottmann. Discretizations of Surfaces with Constant Ratio of Principal Curvatures. Discrete Comput. Geom., 2019. accepted for publication. URL: http://www.geometrie.tuwien.ac.at/ig/publications/constratio/constratio.pdf, doi:10.1007/s00454-019-00098-7.
281
F. Jiménez. Hamilton-Dirac systems for charged particles in gauge fields. J. Geom. Phys., 94:35-49, 2015.
282
F. Jiménez and J. Scheurle. On the discretization of the Euler-Poincaré-Suslov equations in $SO(3)$. arXiv:1506.01289 [math.NA], 2015.
283
Fernando Jiménez and Hiroaki Yoshimura. Dirac Structures in Vakonomic Mechanics. J. Geom. Phys., 2015. accepted.
284
Katharina Jochemko and Raman Sanyal. Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem. accepted for publication, preprint on arxiv, 2015.
285
Katharina Jochemko and Raman Sanyal. Combinatorial mixed valuations. Advances in Mathematics, 319:630–652, 2017. doi:10.1016/j.aim.2017.08.032.
286
Charles Jordan, Michael Joswig, and Lars Kastner. Parallel enumeration of triangulations. Electron. J. Combin., 25(3):Paper 3.6, 27, 2018. URL: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i3p6.
287
M. Joswig, R. Löwe, and Springborn B. Secondary fans and secondary polyhedra of punctured Riemann surfaces. To appear in $\textit Exp. Math.$, 2017.
288
Michael Joswig, Joe Kileel, Bernd Sturmfels, and André Wagner. Rigid multiview varieties. International Journal of Algebra and Computation, 26(04):775–788, 2016. doi:10.1142/S021819671650034X.
289
Michael Joswig and Georg Loho. Weighted digraphs and tropical cones. Linear Algebra and its Applications, 501:304–343, 2016. doi:10.1016/j.laa.2016.02.027.
290
Michael Joswig and Georg Loho. Monomial tropical cones for multicriteria optimization. 2017. Preprint.
291
Michael Joswig, Milan Mehner, Stefan Sechelmann, Jan Techter, and Alexander I. Bobenko. DGD Gallery: Storage, sharing, and publication of digital research data. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
292
Michael Joswig and Marc E. Pfetsch. Computing optimal Morse matchings. SIAM J. Discrete Math., 20(1):11–25 (electronic), 2006. doi:10.1137/S0895480104445885.
293
Michael Joswig and Konrad Polthier. EG-Models - a New Journal for Digital Geometry Models. In J. Borwein, M. Morales, K. Polthier, and J.F. Rodrigues, editors, Multimedia Tools for Communicating Mathematics, pages 165–190. Springer, 2002.
294
Michael Joswig and Thilo Rörig. Polytope mit vielen Splits und ihre Sekundärfächer. Math. Semesterber., 59(2):145–152, 2012. doi:10.1007/s00591-012-0102-9.
295
Michael Joswig and Benjamin Schröter. Matroids from hypersimplex splits. Journal of Combinatorial Theory, Series A, 151:254–284, 2017. doi:10.1016/j.jcta.2017.05.001.
296
Michael Joswig and Benjamin Schrüter. The degree of a tropical basis. Proc. Amer. Math. Soc., 146(3):961–970, 2018. doi:10.1090/proc/13787.
297
Michael Joswig and Ben Smith. Polyhedral Tropical Geometry of Higher Rank. 2018. Preprint arXiv 1809.01457.
298
Michael Joswig and Thorsten Theobald. Polyhedral and algebraic methods in computational geometry. Universitext. Springer, London, 2013. ISBN 978-1-4471-4816-6; 978-1-4471-4817-3. Revised and updated translation of the 2008 German original. doi:10.1007/978-1-4471-4817-3.
299
Michael Joswig and Günter M. Ziegler. Foldable triangulations of lattice polygons. Amer. Math. Monthly, 121(8):706–710, 2014. doi:10.4169/amermathmont.121.08.706.
300
Daniel Matthes José A. Carrillo, Bertram Düring and David S. McCormick. A Lagrangian Scheme for the Solution of Nonlinear Diffusion Equations Using Moving Simplex Meshes. Journal of Scientific Computing, June 2018, Volume 75, Issue 3, pp 1463–1499, November 2017. doi:10.1007/s10915-017-0594-5.
301
Oliver Junge and Ioannis G Kevrekidis. On the sighting of unicorns: A variational approach to computing invariant sets in dynamical systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, Nr. 6, Volume 27, June 2017. doi:10.1063/1.4983468.
302
Oliver Junge, Daniel Matthes, and Horst Osberger. A fully discrete variational scheme for solving Fokker-Planck equations in higher space dimensions. submitted, 2015.
303
U. Pinkall K. Crane and P. Schröder. Robust fairing via conformal curvature flow. ACM Trans. Graph, 32(4):61:1--61:10, July 2013.
304
G. Kamberov, F. Pedit, and U. Pinkall. Bonnet pairs and isothermic surfaces. Duke Math. J., 92(3):637–644, 04 1998. doi:10.1215/S0012-7094-98-09219-5.
305
Mikhail M. Kapranov. Chow quotients of Grassmannians. I, I. M. Gel'fand Seminar, Amer. Math. Soc., Providence, RI, 1993(16):29–110, 1993.
306
H. Karcher. Construction of Minimal Surfaces. Univ., 1989.
307
Hermann Karcher and Ulrich Pinkall. Die Boysehe Fläche in Oberwolfach. Mitteilungen der DMV, Volume 5 (1), March 1997.
308
Hermmann Karcher, Ulrich Pinkall, and Ivan Sterling. New minimal surfaces in S^3. J. Differential Geom., 1988. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=961512.
309
Günter M. Ziegler Karim Adiprasito. Many projectively unique polytopes. Inventiones math., 199:581–652, 2015. URL: http://link.springer.com/article/10.1007/s00222-014-0519-y, doi:10.1007/s00222-014-0519-y.
310
Oleg Karpenkov and Johannes Wallner. On offsets and curvatures for discrete and semidiscrete surfaces. Beitr. Algebra Geom., 55:207–228, 2014. doi:10.1007/s13366-013-0146-6.
311
S. Keiper, G. Kutyniok, D. G. Lee, and G. E. Pfander. Compressed sensing for finite-valued signals. Linear Algebra and its Applications, 532:570–613, November 2017. doi:10.1016/j.laa.2017.07.006.
312
J. Keller. Quantum Dynamics on Potential Energy Surfaces-Simpler States and Simpler Dynamics. PhD thesis, TU München, October 2015.
313
Johannes Keller and Caroline Lasser. Propagation of Quantum Expectations with Husimi Functions. SIAM Journal on Applied Mathematics, 73(4):1557–1581, July 2013. URL: http://epubs.siam.org/doi/abs/10.1137/120889186, arXiv:http://epubs.siam.org/doi/pdf/10.1137/120889186, doi:10.1137/120889186.
314
Johannes Keller and Caroline Lasser. Quasi-classical description of molecular dynamics based on Egorov's theorem. The Journal of Chemical Physics, August 2014. URL: http://scitation.aip.org/content/aip/journal/jcp/141/5/10.1063/1.4891517, doi:10.1063/1.4891517.
315
Wjatscheslaw Kewlin. Deformation of constant mean curvature tori in a three sphere. PhD thesis, Universität Mannheim, 2008.
316
Liliya Kharevych, Boris Springborn, and Peter Schröder. Discrete Conformal Mappings via Circle Patterns. ACM Trans. Graph., 2006. doi:10.1145/1138450.1138461.
317
M. Kilian and M.U. Schmidt. On the moduli of constant mean curvature cylinders of finite type in the 3-sphere. preprint, 2007.
318
Martin Kilian. On the associated family of Delaunay surfaces. Proc. Amer. Math. Soc., 2004. URL: http://sites.mathdoc.fr/JMPA/feuilleter.php?id=JMPA\_1841\_1\_6.
319
Martin Kilian, Davide Pellis, Johannes Wallner, and Helmut Pottmann. Material-minimizing forms and structures. ACM Trans. Graphics, 36(6):article 173, 2017. Proc. SIGGRAPH Asia. doi:http://dx.doi.org/10.1145/3130800.3130827.
320
Martin Kilian, Martin Schmidt, and Nicholas Schmitt. Flows of constant mean curvature tori in the 3-sphere: The equivariant case. preprint, 2010.
321
Martin Kilian, Nicholas Schmitt, and Ivan Sterling. Dressing CMC n-noids. Math. Z., 2004. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=2073454.
322
Pisamai Kittipoom, Gitta Kutyniok, and Wang-Q Lim. Construction of compactly supported shearlet frames. Constr. Approx., 35(1):21–72, 2012. doi:10.1007/s00365-011-9142-y.
323
Felix Knoeppel and Ulrich Pinkall. Complex line bundles over simplicial complexes and their applications. preprint, January 2017.
324
F. Knöppel. Complex Line Bundles over Simplicial Complexes. PhD thesis, TU Berlin, 2015.
325
F. Knöppel, K. Crane, U. Pinkall, and P. Schröder. Stripe patterns on surfaces. ACM Trans. Graph., 34(4):39:1--39:11, July 2015.
326
F. Knöppel and U. Pinkall. Complex Line Bundles over Simplicial Complexes and their Applications. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
327
Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. Globally optimal direction fields. ACM Trans. Graph., 2013. URL: http://www.cs.columbia.edu/\textasciitilde keenan/Projects/GloballyOptimalDirectionFields/paper.pdf.
328
Benedikt Kolbe and Myfanwy E. Evans. Enumerating Isotopy Classes of Tilings guided by the symmetry of Triply-Periodic Minimal Surfaces. preprint, August 2018.
329
Zoi Tokoutsi Konstantin Poelke and Konrad Polthier. Complex Polynomial Mandalas and their Symmetries. In George Hart Gary Greenfield and Reza Sarhangi, editors, Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture, 433–436. Phoenix, Arizona, 2014. Tessellations Publishing. URL: http://archive.bridgesmathart.org/2014/bridges2014-433.html.
330
U. Kortenkamp and J. Richter-Gebert. Grundlagen Dynamischer Geometrie. In H.-J. Elschenbroich, Th. Gawlick, and H.-W. Henn, editors, Zeichnung - Figur - Zugfigur: Mathematische und didaktische Aspekte Dynamischer Geometrie-Software, pages 123–145. Franzbecker, Hildesheim, 2001.
331
U. Kortenkamp and J. Richter-Gebert. Using automatic theorem proving to improve the usability of geometry software. In Proceedings of the Mathematical User Interfaces Workshop. 2004.
332
Ulrich Kortenkamp, Stefan Kranich, Jürgen Richter-Gebert, M. Strobel, Martin von Gagern, and J. Wurster. CindyJS: A growing collection of interactive demonstrations. 2015. URL: http://www.science-to-touch.com/DGD.
333
H. Kourimska, L. Skuppin, and B. Springborn. A variational principle for cyclic polygons with prescribed edge lengths. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
334
F. Krahmer, G. Kutyniok, and J. Lemvig. Sparsity and spectral properties of dual frames. Linear Algebra and its Applications, 439(4):982 – 998, 2013. URL: http://num.math.uni-goettingen.de/\textasciitilde f.krahmer/KKL12.pdf.
335
F. Krahmer, S. Mendelson, and H. Rauhut. Suprema of Chaos Processes and the Restricted Isometry Property. Comm. Pure Appl. Math., 67(11):1877–1904, 2014. URL: http://num.math.uni-goettingen.de/\textasciitilde f.krahmer/KMR12.pdf.
336
F. Krahmer, R. Saab, and R. Ward. Root-exponential accuracy for coarse quantization of finite frame expansions. IEEE Trans. Inform. Theory, 58(2):1069–1079, 2012. URL: http://num.math.uni-goettingen.de/\textasciitilde f.krahmer/KSW12.pdf.
337
F. Krahmer, R. Saab, and Ö. Yilmaz. Sigma-Delta quantization of sub-Gaussian frame expansions and its application to compressed sensing. Inform. Inference, 3(1):40–58, 2014. URL: http://num.math.uni-goettingen.de/\textasciitilde f.krahmer/KSY13.
338
F. Krahmer and R. Ward. Lower bounds for the error decay incurred by coarse quantization schemes. Appl. Comput. Harmonic Anal., 32(1):131–138, 2012. URL: http://num.math.uni-goettingen.de/\textasciitilde f.krahmer/KW12.pdf.
339
Stefan Kranich. An epsilon-delta bound for plane algebraic curves and its use for certified homotopy continuation of systems of plane algebraic curves. preprint, May 2015.
340
Stefan Kranich. GPU-based visualization of domain-coloured algebraic Riemann surfaces. preprint, July 2015.
341
Stefan Kranich. Generation of real algebraic loci via complex detours. preprint, October 2015.
342
Stefan Kranich. Continuity in Dynamic Geometry: An Algorithmic Approach. PhD thesis, TU München, April 2016. URL: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20160418-1281075-1-5.
343
Sara Krause-Solberg, Olga Graf, and Felix Krahmer. One-Bit Sigma-Delta Modulation on a Closed Loop. 2018 IEEE Statistical Signal Processing Workshop (SSP), August 2018. URL: https://ieeexplore.ieee.org/document/8450721.
344
Niklas Krauth, Matthias Nieser, and Konrad Polthier. Differential-Based Geometry and Texture Editing with Brushes. J. Math. Imaging Vis., 48(2):359–368, February 2014. URL: http://dx.doi.org/10.1007/s10851-013-0443-6, doi:10.1007/s10851-013-0443-6.
345
Christian Kuehn and Christian Münch. Duck Traps: Two-dimensional Critical Manifolds in Planar Systems. preprint, August 2018.
346
Rob Kusner. Conformal Geometry and Complete Minimal Surfaces. Bull. Amer. Math. Soc, 1987.
347
Gitta Kutyniok and Wang-Q Lim. Compactly supported shearlets are optimally sparse. J. Approx. Theory, 163(11):1564–1589, 2011. doi:10.1016/j.jat.2011.06.005.
348
Gitta Kutyniok and Wang-Q Lim. Dualizable Shearlet Frames and Sparse Approximation. preprint, 2014.
349
Gitta Kutyniok, Wang-Q Lim, and Rafael Reisenhofer. ShearLab 3D: Faithful Digital Shearlet Transforms based on Compactly Supported Shearlets. Preprint, January 2014.
350
Gitta Kutyniok, Volker Mehrmann, and Philipp Petersen. Regularization and Numerical Solution of the Inverse Scattering Problem using Shearlet Frames. preprint, July 2014.
351
Gitta Kutyniok and Philipp Petersen. Classification of edges using compactly supported shearlets. Applied and Computational Harmonic Analysis, 2015. doi:10.1016/j.acha.2015.08.006.
352
Florian Käferböck. Affine arc length polylines and curvature continuous uniform B-splines. Computer-Aided Geom. Design, 2014.
353
Florian Käferböck and Helmut Pottmann. Smooth surfaces from bilinear patches: discrete affine minimal surfaces. Computer-Aided Geom. Design, 30:476–489, 2013.
354
Felix Kälberer, Matthias Nieser, and Konrad Polthier. QuadCover - Surface Parameterization using Branched Coverings. Comput. Graph. Forum, 26(3):375–384, 2007.
355
Benno König. A Geometric Construction for the Associated Family of S–Isothermic CMC Surfaces. Dissertation, September 2018. URL: http://mediatum.ub.tum.de?id=1368384.
356
G. Friesecke L. De Luca. Classification of Particle Numbers with Unique Heitmann-Radin Minimizer. J. Stat. Phys. 167, Issue 6, 1586–1592, 2017, April 2017. URL: https://link.springer.com/article/10.1007/s10955-017-1781-3.
357
G. Friesecke L. De Luca. Crystallization in two dimensions and a discrete Gauss-Bonnet theorem. J Nonlinear Sci 28, 69-90, 2017, June 2017. URL: https://link.springer.com/article/10.1007\%2Fs00332-017-9401-6.
358
D. Labate, W-Q. Lim, G. Kutyniok, and G. Weiss. Sparse multidimensional representation using shearlets. SPIE Proc. 5914, SPIE, Bellingham, pages 254–262, 2005. URL: http://en.wikipedia.org/wiki/Bandelet\\_(computer\\_science).
359
Jean-Philippe Labbé and Carsten Lange. Cambrian acyclic domains: counting $c$-singletons. Preprint, 2018.
360
Jean-Philippe Labbé, Günter Rote, and Günter M. Ziegler. Area difference bounds for dissections of a square into an odd number of triangles. Preprint, August 2017.
361
Elisa Lafuente Hernández, Stefan Sechelmann, Thilo Rörig, and Christoph Gengnagel. Topology Optimisation of Regular and Irregular Elastic Gridshells by Means of a Non-linear Variational Method. In Lars Hesselgren, Shrikant Sharma, Johannes Wallner, Niccolo Baldassini, Philippe Bompas, and Jacques Raynaud, editors, Advances in Architectural Geometry 2012, pages 147–160. Springer Vienna, 2013. URL: http://dx.doi.org/10.1007/978-3-7091-1251-9\_11, doi:10.1007/978-3-7091-1251-9\_11.
362
W. Y. Lam and U. Pinkall. Holomorphic vector fields and quadratic differentials on planar triangular meshes. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
363
W.Y. Lam. Infinitesimal conformal deformations of triangulated surfaces. TU Berlin, 2013.
364
Wai Yeung Lam. Discrete minimal surfaces: critical points of the area functional from integrable systems. International Mathematics Research Notices, 2018(6):1808–1845, December 2016. doi:10.1093/imrn/rnw267.
365
Wai Yeung Lam. Infinitesimal deformations of discrete surfaces. preprint, June 2016.
366
Wai Yeung Lam and Ulrich Pinkall. Holomorphic Vector Fields and Quadratic Differentials on Planar Triangular Meshes. preprint, November 2015.
367
Wai Yeung Lam and Ulrich Pinkall. Isothermic Triangulated Surfaces. preprint, January 2015.
368
Wai Yeung Lam and Ulrich Pinkall. Infinitesimal conformal deformations of triangulated surfaces in space. Discrete & Computational Geometry, 60(4):831–858, December 2018. doi:10.1007/s00454-018-0008-y.
369
Philipp Lang. CMC-Trinoids with Properly Embedded Annular Ends. PhD thesis, Technische Universität München, München, 2010.
370
Carsten Lange and Konrad Polthier. Anisotropic smoothing of point sets. Computer Aided Geometric Design, 22(7):680–692, 2005.
371
Caroline Lasser and Stephanie Troppmann. Hagedorn Wavepackets in Time-Frequency and Phase Space. Journal of Fourier Analysis and Applications, 20(4):679–714, May 2014. URL: http://dx.doi.org/10.1007/s00041-014-9330-9, doi:10.1007/s00041-014-9330-9.
372
Herbert B. Lawson. Complete minimal surfaces in $S^3$. The Annals of Mathematics, 1970. URL: http://www.math.jhu.edu/\textasciitilde js/Math748/lawson.s3.pdf.
373
Christian Lessig, Philipp Petersen, and Martin Schäfer. Bendlets: A second-order shearlet transform with bent elements. Applied and Computational Harmonic Analysis, 2017. doi:10.1016/j.acha.2017.06.002.
374
Lauri Loiskekoski and Günter M Ziegler. Simple polytopes without small separators. Israel Journal of Mathematics, 221(2):731–739, 2017. doi:10.1007/s11856-017-1572-1.
375
Lauri Loiskekoski and Günter M. Ziegler. Simple polytopes without small separators, II: Thurston's bound. Preprint, Israel J. Math., to appear, 2017.
376
Andreas Loos and Günter Ziegler. Panorama der Mathematik. Springer Spektrum, 2016.
377
Andreas Loos and Günter M Ziegler. „Was ist Mathematik" lernen und lehren. Mathematische Semesterberichte, 63(1):155–169, 2016. doi:10.1007/s00591-016-0167-y.
378
Jackie Ma and Philipp Petersen. Linear independence of compactly supported separable shearlet systems. Journal of Mathematical Analysis and Applications, 428:238–257, 2015. doi:10.1016/j.jmaa.2015.03.001.
379
Jan Maas and Daniel Matthes. Long-Time Behavior of a Finite Volume Discretization for a Fourth Order Diffusion Equation. Nonlinearity, Volume 29, Number 7, June 2016. URL: http://iopscience.iop.org/article/10.1088/0951-7715/29/7/1992/meta.
380
Diane Maclagan and Bernd Sturmfels. Introduction to tropical geometry. American Mathematical Society, 2015.
381
Tomas Sauer Mariantonia Cotronei, Caroline Moosmüller and Nada Sissouno. Level-Dependent Interpolatory Hermite Subdivision Schemes and Wavelets. Constructive Approximation, July 2018. doi:10.1007/s00365-018-9444-4.
382
Daniel Matthes and Horst Osberger. Convergence of a Variational Lagrangian Scheme for a Nonlinear Drift Diffusion Equation. ESAIM: Mathematical Modelling and Numerical Analysis, 48(03):697–726, 2014. Cambridge Univ Press.
383
Daniel Matthes and Horst Osberger. A convergent Lagrangian discretization for a nonlinear fourth order equation. Found. Comput. Math., 2015. online first.
384
Daniel Matthes and Simon Plazotta. A Variational Formulation of the BDF2 Method for Metric Gradient Flows. ESAIM: M2AN, Forthcoming article, July 2018. doi:10.1051/m2an/2018045.
385
Daniel Matthes and Benjamin Söllner. Convergent Lagrangian Discretization for Drift-Diffusion with Nonlocal Aggregation. Innovative Algorithms and Analysis pp 313-351, March 2017. doi:10.1007/978-3-319-49262-9\_12.
386
Jeroen S.W. Lamb Maximilian Engel and Martin Rasmussen. Bifurcation analysis of a stochastically driven limit cycle. Communications in Mathematical Physics, 365(3), 935-942, February 2019. doi:10.1007/s00220-019-03298-7.
387
Rafe Mazzeo. Bifurcating nodoids. Contemp. Math., 314,, 2002. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=1941630.
388
Robert McLachlan. A gallery of constant-negative-curvature surfaces. Math. Intelligencer, 1994. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=1294998.
389
Michael Melko and Ivan Sterling. Application of soliton theory to the construction of pseudospherical surfaces in R^3. Ann. Global Anal. Geom., 1993. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=1201412.
390
Michael Melko and Ivan Sterling. Integrable systems, harmonic maps and the classical theory of surfaces. Aspects Math., E23,, 1994. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=1264184.
391
J-F Mennemann, D Matthes, R-M Weishäupl, and T Langen. Optimal control of Bose-Einstein condensates in three dimensions. New Journal of Physics, 17(11):113027, November 2015. URL: http://stacks.iop.org/1367-2630/17/i=11/a=113027.
392
Ferdinand Minding. Wie sich entscheiden lässt, ob zwei gegebene krumme Flächen auf einander abwickelbar sind oder nicht; nebst Bemerkungen über die Flächen von unveränderlichem Krümmungsmaaße. J. Reine Angew. Math., 1839. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=1578218.
393
Hiroyuki Miyata and Arnau Padrol. Enumeration of neighborly polytopes and oriented matroids. Experimental Math., 24:489–505, 2015. doi:10.1080/10586458.2015.1015084.
394
Aaron Montag and Jürgen Richter-Gebert. CindyGL: Authoring GPU-Based Interactive Mathematical Content. ICMS 2016: Mathematical Software – ICMS 2016 pp 359-365, July 2016. doi:10.1007/978-3-319-42432-3\_44.
395
Aaron Montag and Jürgen Richter-Gebert. Bringing Together Dynamic Geometry Software and the Graphics Processing Unit. preprint, August 2018.
396
Christian Mueller. Planar discrete isothermic nets of conical type. preprint, March 2015. doi:10.1007/s13366-015-0256-4.
397
Christian Müller. On Discrete Constant Mean Curvature Surfaces. Discrete Comput. Geom., 51(3):516–538, 2014. doi:10.1007/s00454-014-9577-6.
398
Christian Müller. Semi-Discrete Constant Mean Curvature Surfaces. Math. Z., 279:459–478, 2015. doi:10.1007/s00209-014-1377-4.
399
Christian Müller. Semi-discrete constant mean curvature surfaces. Mathematische Zeitschrift, 279(1-2):459–478, 2015. URL: http://www.geometrie.tuwien.ac.at/geom/ig/publications/2015/sdcmc2015/sdcmc.pdf, doi:10.1007/s00209-014-1377-4.
400
Christian Müller. Planar discrete isothermic nets of conical type. Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 57(2):459–482, June 2016. doi:10.1007/s13366-015-0256-4.
401
E. Nava-Yazdani and K. Polthier. De Casteljauʼs algorithm on manifolds. Computer Aided Geometric Design, 30(7):722 – 732, 2013. URL: http://www.sciencedirect.com/science/article/pii/S0167839613000551, doi:10.1016/j.cagd.2013.06.002.
402
Matteo Negri, Stefano Almi, and Sandro Belz. Convergence of discrete and continuous unilateral flows for Ambrosio-Tortorelli energies and application to mechanics. ESAIM: Mathematical Modelling and Numerical Analysis, September 2018. doi:10.1051/m2an/2018057.
403
Matthias Nieser, Jonathan Palacios, Konrad Polthier, and Eugene Zhang. Hexagonal Global Parameterization of Arbitrary Surfaces. IEEE Transactions on Visualization and Computer Graphics, 18(6):865–878, 2012. doi:10.1109/TVCG.2011.118.
404
Benjamin Nill and Arnau Padrol. The degree of point configurations: Ehrhart theory, Tverberg points and almost neighborly polytopes. European Journal of Combinatorics (special issue in honour of Michel Las Vergnas), 50:159–179, 2015.
405
Daniel Matthes Oliver Junge and Horst Osberger. A Fully Discrete Variational Scheme for Solving Nonlinear Fokker–Planck Equations in Multiple Space Dimensions. SIAM Journal on Numerical Analysis, Vol. 55, Nr. 1, pp.419-443, 2017. doi:10.1137/16M1056560.
406
H. Osberger. Fully variational Lagrangian discretizations for second and fourth order evolution equations. September 2015.
407
Horst Osberger. Long-Time Behaviour of a Fully Discrete Lagrangian Scheme for a Family of Fourth Order. Submitted, 2015.
408
Horst Osberger and Daniel Matthes. Convergence of a Fully Discrete Variational Scheme for a Thin Film Equation. Radon Series on Computational and Applied Mathematics, 2015. accepted.
409
Marcel Padilla. Point Vortex Dynamics on Closed Surfaces. Master's thesis, Technische Universität Berlin, 4 2018.
410
Marcel Padilla, Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. On Bubble Rings and Ink Chandeliers. ACM Trans. Graph. 38, 4, Article 129, July 2019. doi:10.1145/3306346.3322962.
411
Arnau Padrol. Many neighborly polytopes and oriented matroids. Discrete Comput. Geom., 50(4):865–902, December 2013. doi:10.1007/s00454-013-9544-7.
412
Arnau Padrol and Julian Pfeifle. Polygons as slices of higher-dimensional polytopes. Preprint, April 2014.
413
Arnau Padrol and Louis Theran. Delaunay triangulations with disconnected realization spaces. In Siu-Wing Cheng and Olivier Devillers, editors, 30th Annual Symposium on Computational Geometry, SOCG'14, Kyoto, Japan, June 08 - 11, 2014, 163 – 170. ACM, 2014. URL: http://doi.acm.org/10.1145/2582112.2582119, doi:10.1145/2582112.2582119.
414
Arnau Padrol and Günter M Ziegler. Six topics on inscribable polytopes. In Advances in Discrete Differential Geometry, pages 407–419. Springer, 2016. doi:10.1007/978-3-662-50447-5\_13.
415
Hao Pan, Yi-King Choi, Yang Liu, Wenchao Hu, Qiang Du, Konrad Polthier, Caiming Zhang, and Wenping Wang. Robust Modeling of Constant Mean Curvature Surfaces. ACM Trans. Graph., 31(4):85:1–85:11, July 2012. URL: http://doi.acm.org/10.1145/2185520.2185581, doi:10.1145/2185520.2185581.
416
Tatiana Pavljukevich. Spinor representation of Bryant surfaces with catenoidal and smooth ends. PhD thesis, TU Berlin, 2014.
417
D. Pellis, M. Kilian, F. Dellinger, J. Wallner, and H. Pottmann. Visual Smoothness of polyhedral surfaces. ACM Trans. Graphics, 2019. URL: http://hdl.handle.net/10754/653104.
418
Davide Pellis and Helmut Pottmann. Aligning principal stress and curvature directions. Advances in Architectural Geometry, pages 34–53, 2018.
419
Chi-Han Peng, Helmut Pottmann, and Peter Wonka. Designing patterns using triangle-quad hybrid meshes. ACM Trans. Graphics, 37(4):14, 2018. Proc. SIGGRAPH.
420
Philipp Petersen. Shearlet approximation of functions with discontinuous derivatives. preprint, August 2015.
421
Philipp Petersen and Mones Raslan. Approximation properties of shearlet frames for Sobolev spaces. preprint, 2017.
422
Philipp Petersen and Felix Voigtlaender. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Networks, 108:296–330, 2018. doi:10.1016/j.neunet.2018.08.019.
423
M. Petrera and Y. B. Suris. S. Kovalevskaya system, its generalization and discretization. Frontiers of Mathematics in China, 2013, 8, No. 5, p. 1047-1065, August 2012. doi:10.1007/s11464-013-0305-y.
424
M. Petrera and Y. B. Suris. Spherical geometry and integrable systems. Geometriae Dedicata, August 2012. doi:10.1007/s10711-013-9843-4.
425
Matteo Petrera. Mathematical Physics I: Dynamical Systems and Classical Mechanics. Lecture Notes. Logos Verlag Berlin GmbH, 2013. ISBN 978-3-8325-3569-8. URL: http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=3569\&lng=deu\&id=.
426
Matteo Petrera. Mathematical Physics II: Classical Statistical Mechanics. Lecture Notes. Logos Verlag Berlin GmbH, 2014. ISBN 978-3-8325-3719-7. URL: http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=3719\&lng=deu\&id=.
427
Matteo Petrera. Mathematical Physics III - Integrable Systems of Classical Mechanics. Lecture Notes. Logos Verlag Berlin GmbH, 2015. ISBN 978-3-8325-3950-4. URL: http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=3950\&lng=deu\&id=.
428
Matteo Petrera, Andreas Pfadler, and Yuri B Suris. On the construction of elliptic solutions of integrable birational maps. Experimental Mathematics, 26(3):324–341, 2017. doi:10.1080/10586458.2016.1166354.
429
Matteo Petrera and Yuri B Suris. A construction of commuting systems of integrable symplectic birational maps. Preprint, 2016.
430
Matteo Petrera and Yuri B Suris. A construction of commuting systems of integrable symplectic birational maps. Lie-Poisson case. Preprint, 2016.
431
Matteo Petrera and Yuri B Suris. A construction of a large family of commuting pairs of integrable symplectic birational four-dimensional maps. Proceedings of the Royal Society of London A: Mathematical, 2017. doi:10.1098/rspa.2016.0535.
432
Matteo Petrera and Yuri B Suris. On the classification of multidimensionally consistent 3D maps. Letters in Mathematical Physics, 107(11):2013–2027, 2017. doi:10.1007/s11005-017-0976-5.
433
Matteo Petrera and Yuri B Suris. Variational symmetries and pluri-Lagrangian systems in classical mechanics. Journal of Nonlinear Mathematical Physics, 24(sup1):121–145, 2017. doi:10.1080/14029251.2017.1418058.
434
Matteo Petrera and René Zander. New classes of quadratic vector fields admitting integral-preserving Kahan–Hirota–Kimura discretizations. Journal of Physics A: Mathematical and Theoretical, 50(20):205203, 2017. doi:10.1088/1751-8121/aa6a0f.
435
U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2(1):15–36, 1993. URL: http://www.cs.jhu.edu/\textasciitilde misha/Fall09/Pinkall93.pdf.
436
Ulrich Pinkall. Hopf tori in S3. Invent. Math., 1985. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=799274.
437
Ulrich Pinkall and Konrad Polthier. Computing discrete minimal surfaces and their conjugates. Experiment. Math.,, 1993.
438
Ulrich Pinkall and Jonas Tervooren. A Weierstrass representation for 2D elasticity. preprint, June 2017.
439
Simon Plazotta. A BDF2-Approach for the Non-linear Fokker-Planck Equation. preprint, January 2018.
440
Simon Plazotta. A BDF2-approach for the non-linear Fokker-Planck equation. AIMS Discrete and Continuous Dynamical Systems - Series A (DCDS-A, Vol. 39, no. 5, May 2019 regular issue), May 2019. doi:10.3934/dcds.2019120.
441
Simon Plazotta and Jonathan Zinsl. High-frequency limit of non-autonomous gradient flows of functionals with time-periodic forcing. Journal of Differential Equations, Vol. 261, Issue 12, 15 December 2016, Pages 6806-6855, December 2016. doi:10.1016/j.jde.2016.09.003.
442
K. Poelke and K. Polthier. Domain Coloring of Complex Functions: An Implementation-Oriented Introduction. IEEE Computer Graphics and Applications, 32(5):90–97, 2012. doi:10.1109/MCG.2012.100.
443
Konrad Polthier and Faniry Razafindrazaka. Discrete Geometry for Reliable Surface Quad-Remeshing. In Robert S. Anderssen, Philip Broadbridge, Yasuhide Fukumoto, Kenji Kajiwara, Tsuyoshi Takagi, Evgeny Verbitskiy, and Masato Wakayama, editors, Applications + Practical Conceptualization + Mathematics = fruitful Innovation, volume 11 of Mathematics for Industry, pages 261–275. Springer Japan, 2016. URL: http://dx.doi.org/10.1007/978-4-431-55342-7\_22, doi:10.1007/978-4-431-55342-7\_22.
444
Helmut Pottmann, Michael Eigensatz, Amir Vaxman, and Johannes Wallner. Architectural Geometry. Computers and Graphics, 47:145–164, 2015. URL: http://www.geometrie.tugraz.at/wallner/survey.pdf, doi:10.1016/j.cag.2014.11.002.
445
Helmut Pottmann, Caigui Jiang, Mathias Höbinger, Jun Wang, Philippe Bompas, and Johannes Wallner. Cell packing structures. Computer-Aided Design, 2014. to appear. Special issue on Material Ecology. doi:10.1016/j.cad.2014.02.009.
446
Helmut Pottmann and Johannes Wallner. Geometry and freeform architecture. In Wolfgang König, editor, Mathematics and Society, pages 131–151. EMS, 2016. doi:http://dx.doi.org/10.4171/164.
447
Jürgen Richter-Gebert Qingchun Ren and Bernd Sturmfels. Cayley-Bacharach Formulas. The American Mathematical Monthly, 122(9):845--854, 2015.
448
A. Garroni R. Alicandro, L. De Luca and M. Ponsiglione. Metastability and dynamics of discrete topological singularities in two dimensions: a Gamma-convergence approach. Archive for Rational Mechanics and Analysis, 214(1):269--330, 2014.
449
Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. Discrete Geodesic Nets for Modeling Developable Surfaces. ACM Trans. Graph., 2018. URL: http://doi.acm.org/10.1145/3180494.
450
Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. Discrete geodesic nets for modeling developable surfaces. ACM Trans. Graph., 37(2):16:1-16:17, February 2018. URL: https://dl.acm.org/citation.cfm?doid=3191713.3180494.
451
Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. The Shape Space of Discrete Orthogonal Geodesic Nets. ACM Trans. Graph., Vol. 37, No. 6, Article 228, November 2018. URL: http://igl.ethz.ch/projects/dog-space/Shape-Space-Of-DOGS-SA-2018-Rabinovich.pdf.
452
Faniry Razafindrazaka and Konrad Polthier. Regular Map Smoothing. IMAGEN-A, March 2013. URL: http://munkres.us.es/Volume3/Volumen3/N\_5\_files/5.4.pdf.
453
Faniry Razafindrazaka and Konrad Polthier. The 6-ring. In George W. Hart and Reza Sarhangi, editors, Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture, 279–286. Phoenix, Arizona, 2013. Tessellations Publishing. URL: http://archive.bridgesmathart.org/2013/bridges2013-279.html.
454
Faniry Razafindrazaka and Konrad Polthier. Regular Surfaces and Regular Maps. In George Hart Gary Greenfield and Reza Sarhangi, editors, Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture, 225–234. Phoenix, Arizona, 2014. Tessellations Publishing. URL: http://archive.bridgesmathart.org/2014/bridges2014-225.html.
455
Faniry Razafindrazaka and Konrad Polthier. Realization of Regular Maps Large Genus, pages 239–252. Springer Berlin Heidelberg, 2015. URL: http://page.mi.fu-berlin.de/faniry/files/faniryTSCD2015.pdf, doi:10.1007/978-3-662-44900-4\_14.
456
Faniry H. Razafindrazaka, Ulrich Reitebuch, and Konrad Polthier. Perfect Matching Quad Layouts for Manifold Meshes. Computer Graphics Forum (proceedings of EUROGRAPHICS Symposium on Geometry Processing), 2015. URL: http://www.mi.fu-berlin.de/en/math/groups/ag-geom/publications/db/2015\_RRP\_PerfectMatchingQuadLayoutsForManifoldMeshes\_New.pdf.
457
R. Reisenhofer, S. Bosse, G. Kutyniok, and T. Wiegand. A Haar Wavelet-Based Perceptual Similarity Index for Image Quality Assessment. Signal Proc. Image Comm., 61:33–43, February 2018. doi:10.1016/j.image.2017.11.001.
458
Ronald Richter, Jan Eric Kyprianidis, Boris Springborn, and Marc Alexa. Constrained Modelling of 3-Valent Meshes Using a Hyperbolic Deformation Metric. Computer Graphics Forum, 2016. doi:https://doi.org/10.1111/cgf.12805.
459
J. Richter-Gebert. Perspectives on Projective Geometry: A Guided Tour Through Real and Complex Geometry. Springer, 2011.
460
J. Richter-Gebert and U. Kortenkamp. Complexity issues in dynamic geometry. In M. Rojas and F. Cucker, editors, Foundations of Computational Mathematics: Proceedings of the Smalefest 2000, Hong Kong, July 13-17, 2000, 355–404. Singapore, 2002. World Scientific.
461
J. Richter-Gebert and U. Kortenkamp. The power of scripting: DGS meets programming. Acta didactica Napocensia, 3(2):67–78, 2010.
462
J. Richter-Gebert and U. Kortenkamp. The Cinderella.2 Manual: Working with The Interactive Geometry Software. Springer, 2012.
463
Jürgen Richter-Gebert. Interactive particle model explorer. Museum for Minerals and Mathematics, Oberwolfach, 2015. URL: http://www.mima.museum.
464
Jürgen Richter-Gebert. Touch und Tablet: Stationen einer Designstudie. Heintz, G., Pinkernell, G., Schacht, F. (Hrsg.): Digitale Werkzeuge für den Mathematikunterricht. Festschrift für Hans-Jürgen Elschenbroich, 2015. URL: http://science-to-touch.com/articles.
465
Matthias Ruf. Motion of discrete interfaces in low-contrast random environments. ESAIM: COCV, Volume 24, Number 3, July–September 2018, October 2017. doi:10.1051/cocv/2017067.
466
Thilo Rörig, Stefan Sechelmann, Agata Kycia, and Moritz Fleischmann. Surface panelization using periodic conformal maps. In Philippe Block, Jan Knippers, Niloy Mitra, and Wenping Wang, editors, Advances in Architectural Geometry 2014. Springer, September 2014. Best Paper Award.
467
U. Pinkall S. Weissmann and P. Schröder. Smoke rings from smoke. ACM Transactions on Graphics, 33, 2014.
468
Manuele Santoprete, Jürgen Scheurle, and Sebastian Walcher. Motion in a Symmetric Potential on the Hyperbolic Plane. Canadian J. of Mathematics, August 2013. 27 pages. doi:10.4153/CJM-2013-026-2.
469
Raman Sanyal and Christian Stump. Lipschitz polytopes of posets and permutation statistics. Preprint, 2017.
470
Felix Krahmer Sara Krause-Solberg, Olga Graf. One-bit sigma-delta modulation on a closed loop. poster, november 2018.
471
Katharina Schaar. Fundamental Properties of Phirotopes. PhD Dissertation, July 2017. URL: http://mediatum.ub.tum.de/603815?show\_id=1341483.
472
Heinrich Ferdinand Scherk. Bemerkungen über die kleinste Fläche innerhalb gegebener Grenzen. Journal für Reine und Angewandte Mathematik, 1835(13):185–208, 1835.
473
Jürgen Scheurle and Sebastian Walcher. Minima of invariant functions: The inverse problem. Acta Applicandae Mathematicae, 137(1):233-252, 2015. accepted for publication by Acta Applicandae Mathematicae. doi:10.1007/s10440-014-9997-6.
474
Eike Schling, Martin Kilian, Hui Wang, Denis Schikore, and Helmut Pottmann. Design and construction of curved support structures with repetitive parameters. In Lars Hesselgren, Axel Kilian, Samar Malek, Karl-Gunnar Olsson, Olga Sorkine-Hornung, and Chris Williams, editors, Advances in Architectural Geometry, pages 140–165. Klein Publishing Ltd, 2018.
475
Nicholas Schmitt. Constant Mean Curvature n-noids with Platonic Symmetries. Preprint, 2007.
476
Nicholas Schmitt, Martin Kilian, Shimpei Kobayashi, and Wayne Rossman. Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms. J. Lond. Math. Soc., 2007. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=2352721.
477
Hermann Amandus Schwarz. Sur une définition erronée de l'aire d'une surface courbe. Gesammelte mathematische Abhandlungen, 1890(2):309–311, 1890.
478
Stefan Sechelmann. Variational Methods for Discrete Surface Parameterization. Applications and Implementation. PhD thesis, TU Berlin, June 2016. URL: http://dx.doi.org/10.14279/depositonce-5415.
479
Stefan Sechelmann, Thilo Rörig, and Alexander I. Bobenko. Quasiisothermic Mesh Layout. In Lars Hesselgren, Shrikant Sharma, Johannes Wallner, Niccolo Baldassini, Philippe Bompas, and Jacques Raynaud, editors, Advances in Architectural Geometry 2012, pages 243–258. Springer Vienna, 2013. URL: http://dx.doi.org/10.1007/978-3-7091-1251-9\_20, doi:10.1007/978-3-7091-1251-9\_20.
480
Christoph Seidel, Thilo Rörig, and Stefan Sechelmann. Planar quad layout on NURBS-surfaces from symmetric conjugate curves. September 2014. Presented at Advances in Architectural Geometry 2014.
481
Ling Shi, Jun Wang, and Helmut Pottmann. Smooth surfaces from rational bilinear patches. Comput. Aided Geom. Design, 31(1):1–12, 2014. doi:10.1016/j.cagd.2013.11.001.
482
Hannah Sjöberg and Günter M Ziegler. Semi-algebraic sets of f-vectors. Israel J. Math., to appear., 2017.
483
Hannah Sjöberg and Günter M. Ziegler. Semi-algebraic sets of f-vectors. Preprint, November 2017.
484
Hannah Sjöberg and Günter M. Ziegler. Characterizing face and flag vector pairs for polytopes. Preprint, March 2018.
485
Martin Skrodzki. Neighborhood Computation of Point Set Surfaces. Master's thesis, Freie University Berlin, 2014.
486
Brian Smyth. A generalization of a theorem of Delaunay on constant mean curvature surfaces. IMA Vol. Math. Appl., 51,, 1993. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=1226924.
487
David Speyer and Bernd Sturmfels. The tropical Grassmannian. Adv. Geom., 2004(4):389–411, 2004. doi:10.1515/advg.2004.023.
488
Gard Spreemann, Benjamin Dunn, Magnus Bakke Botnan, and Nils A. Baas. Using persistent homology to reveal hidden covariates in systems governed by the kinetic Ising model. Journal: Phys. Rev. E 97, 032313, March 2018. doi:10.1103/PhysRevE.97.032313.
489
B. Springborn. The hyperbolic geometry of Markov's theorem on Diophantine approximation and quadratic forms. Enseign. Math., 63(3-4):333–373, 2017. doi:10.4171/LEM/63-3/4-5.
490
B. Springborn, P. Schröder, and U. Pinkall. Conformal equivalence of triangle meshes. ACM Transactions on Graphics, 2008. URL: http://www.multires.caltech.edu/pubs/ConfEquiv.pdf, doi:10.1145/1360612.1360676.
491
Boris Springborn. A variational principle for weighted Delaunay triangulations and hyperideal polyhedra. J. Differential Geom., 78(2):333–367, 2008. URL: http://projecteuclid.org/euclid.jdg/1203000270.
492
Boris Springborn. Hyperbolic polyhedra and discrete uniformization. preprint, July 2017.
493
Boris A. Springborn. A unique representation of polyhedral types. Centering via Möbius transformations. Mathematische Zeitschrift, 249(3):513–517, Mar 2005. doi:10.1007/s00209-004-0713-5.
494
Ananth Sridhar and Yuri B Suris. Commutativity in Lagrangian and Hamiltonian mechanics. Preprint, 2018.
495
Sandro Belz Stefano Almi. Consistent Finite-Dimensional Approximation of Phase-Field Models of Fracture. preprint, July 2017.
496
Ivan Sterling and Henry Wente. Existence and classification of constant mean curvature multibubbletons of finite and infinite type. Indiana Univ. Math. J., 1993. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=1266092.
497
Michael Strobel. First Steps in Non-standard Projective Geometry. Preprint, March 2018.
498
Michael Strobel. Non-standard Analysis in Dynamic Geometry. Journal of Symbolic Computation: Special Issue on Dynamic Geometry and Automated Reasoning, January 2018.
499
Xian Sun, Caigui Jiang, Johannes Wallner, and Helmut Pottmann. Vertex normals and face curvatures of triangle meshes. In A. I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, 2016.
500
Yu. B. Suris. Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J. Geometric Mechanics, 5(3):365–379, 2013. URL: http://dx.doi.org/10.3934/jgm.2013.5.365, doi:10.3934/jgm.2013.5.365.
501
Yu. B. Suris. Variational symmetries and pluri-Lagrangian systems. In Th. Hagen, F. Rupp, and J. Scheurle, editors, Dynamical Systems, Number Theory and Applications: A Festschrift in Honor of Professor Armin Leutbecher's 80th Birthday. World Scientific, Singapore, 2015.
502
Yu. B. Suris and M. Vermeeren. On the Lagrangian structure of integrable hierarchies. In A.I. Bobenko, editor, Advances in Discrete Differential Geometry. Springer, Berlin-Heidelberg-New York, 2016.
503
Yuri B. Suris. Billiards in confocal quadrics as a pluri-Lagrangian system. Theoretical and Applied Mechanics, 43(2):221–228, 2016. doi:10.2298/TAM160304008S.
504
Chengcheng Tang, Pengbo Bo, Johannes Wallner, and Helmut Pottmann. Interactive design of developable surfaces. ACM Trans. Graphics, 2015. accepted.
505
Chengcheng Tang, Martin Kilian, Pengbo Bo, Johannes Wallner, and Helmut Pottmann. Analysis and design of curved support structures. In Sigrid Adriaenssens, Fabio Gramazio, Matthias Kohler, Achim Menges, and Mark Pauly, editors, Advances in Architectural Geometry 2016, pages 8–23. VDF Hochschulverlag, ETH Zürich, 2016.
506
Chengcheng Tang, Xiang Sun, Alexandra Gomes, Johannes Wallner, and Helmut Pottmann. Form-finding with Polyhedral Meshes Made Simple. ACM Trans. Graphics, 33(4):$\\#$70,1–9, 2014. Proc. SIGGRAPH. doi:10.1145/2601097.2601213.
507
Jeroen S.W. Lamb Thai Son Doan, Maximilian Engel and Martin Rasmussen. Hopf bifurcation with additive noise. Nonlinearity 31 (2018), no. 10, 4567–4601, October 2017.
508
Amir Vaxman, Christian Mueller, and Ofir Weber. Regular Meshes from Polygonal Patterns. preprint, July 2017. URL: https://doi.org/10.1145/3072959.3073593.
509
Amir Vaxman, Christian Müller, and Ofir Weber. Conformal mesh deformations with Möbius transformations. ACM Transactions on Graphics (TOG), 34(4):55, 2015. URL: http://www.geometrie.tuwien.ac.at/geom/ig/publications/2015/conformal2015/conformal2015.pdf.
510
Amir Vaxman, Christian Müller, and Ofir Weber. Regular meshes from polygonal patterns. ACM Transactions on Graphics (TOG), 36(4):113, 2017. doi:10.1145/3072959.3073593.
511
M. Vermeeren. A dynamical solution to the Basel problem. arXiv:1506.05288 [math.CA], 2015.
512
M. Vermeeren. Modified equations for variational integrators. arXiv:1505.05411 [math.NA], 2015.
513
Mats Vermeeren. Continuum limits of pluri-Lagrangian systems. J. Integrable Syst., 4(1):1–34, February 2019. arXiv:http://arxiv.org/abs/1706.06830, doi:10.1093/integr/xyy020.
514
Mats Vermeeren. Modified equations for variational integrators applied to Lagrangians linear in velocities. J. Geom. Mech., 11(1):1–22, March 2019. doi:10.3934/jgm.2019001.
515
Dominic Volland. A Discrete Hilbert Transform with Circle Packings. Springer Spektrum, Weisbaden, 2017. ISBN 978-3-658-20456-3/pbk; 978-3-658-20457-0/ebook. doi:10.1007/978-3-658-20457-0.
516
Christoph von Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt. An Efficient Construction of Reduced Deformable Objects. ACM Trans. Graph., 32(6):213:1–213:10, November 2013. URL: http://doi.acm.org/10.1145/2508363.2508392, doi:10.1145/2508363.2508392.
517
Masato Wakayama, Robert S. Anderssen, Jin Cheng, Yasuhide Fukumoto, Robert McKibbin, Konrad Polthier, Tsuyoshi Takagi, and Kim-Chuan Toh, editors. The Impact of Applications on Mathematics. Proceedings of the Forum of Mathematics for Industry 2013, Japan, 2014. Springer.
518
Rolf Walter. Explicit examples to the H-problem of Heinz Hopf. Geom. Dedicata no.2, 1987. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=892400.
519
J. Wang, C. Jiang, P. Bompas, J. Wallner, and H. Pottmann. Discrete Line Congruences for Shading and Lighting. Computer Graphics Forum, 32(5):53–62, 2013. Proc. Symposium Geometry Processing. doi:10.1111/cgf.12172.
520
G. Wechslberger. Automatic Contour Deformation of Riemann-Hilbert Problems. PhD thesis, TU Munich, July 2015.
521
Georg Wechslberger and Folkmar Bornemann. Automatic Deformation of Riemann–Hilbert Problems with Applications to the Painlevé II Transcendents. Constructive Approximation, pages 1–21, June 2013. URL: http://dx.doi.org/10.1007/s00365-013-9199-x, doi:10.1007/s00365-013-9199-x.
522
S. Weißmann and U. Pinkall. Filament-based smoke with vortex shedding and variational reconnection. ACM Transactions on Graphics, 2010.
523
Steffen Weißmann, Ulrich Pinkall, and Peter Schröder. Smoke Rings from Smoke. ACM Trans. Graph., 33(4):140:1–140:8, July 2014. URL: http://doi.acm.org/10.1145/2601097.2601171, doi:10.1145/2601097.2601171.
524
Henry C. Wente. Counterexample to a conjecture of H. Hopf. Pacific J. Math. no.1, 1986. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=815044.
525
N.S. Witte, F. Bornemann, and P.J. Forrester. Joint distribution of the first and second eigenvalues at the soft edge of unitary ensembles. Nonlinearity, Volume 26, Number 6, pp. 1799-1822, June 2013. doi:10.1088/0951-7715/26/6/1799.
526
Zi Ye, Olga Diamanti, Chengcheng Tang, Leonidas Guibas, and Tim Hoffmann. A unified discrete framework for intrinsic and extrinsic Dirac operators for geometry processing. Computer Graphics Forum, Volume 37, Issue 5, August 2018, Pages 93-106, August 2018. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13494.
527
Günter M Ziegler and Andreas Loos. “What is Mathematics?” and why we should ask, where one should experience and learn that, and how to teach it. In Proceedings of the 13th International Congress on Mathematical Education, 63–77. Springer, November 2017. doi:10.1007/978-3-319-62597-3\_5.
528
Günter M. Ziegler. Additive structures on f-vector sets of polytopes. Advances in Geometry, October 2018. Published online.
529
Günter M. Ziegler and Andreas Loos. Teaching and Learning "What is Mathematics". In Proc. International Congress of Mathematicians, Seoul 2014, volume IV, pages 1201–1215. Kyung Moon Books, Seoul, Korea, 2014.
530
Günter M. Ziegler and Andreas Loos. ZEIT-Akademie Mathematik. Zeitverlag Gerd Bucerius, Hamburg, 2014. 4 DVDs mit Begleitheft (95 Seiten).
531
Jonathan Zinsl. Geodesically Convex Energies and Confinement of Solutions for a Multi-Component System of Nonlocal Interaction Equations. Submitted, 2014.
532
Jonathan Zinsl and Daniel Matthes. Exponential Convergence to Equilibrium in a Coupled Gradient Flow System Modelling Chemotaxis. Analysis & PDE, 8(2):425–466, 2015.
533
Jonathan Zinsl and Daniel Matthes. Transport Distances and Geodesic Convexity for Systems of Degenerate Diffusion Equations. Calculus of Variations and Partial Differential Equations, 2015. accepted.
534
Mikkel Øbro. Classification of terminal simplicial reflexive d-polytopes with 3d − 1 vertices. manuscripta mathematica, 125(1):69–79, Jan 2008. doi:10.1007/s00229-007-0133-z.